Support YOLOv8-pose c++ inference!

Support YOLOv8-pose c++ inference!
pull/70/head
triple Mu 2 years ago committed by GitHub
commit ea727d2cf8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 59
      csrc/pose/normal/CMakeLists.txt
  2. 157
      csrc/pose/normal/include/common.hpp
  3. 516
      csrc/pose/normal/include/yolov8-pose.hpp
  4. 162
      csrc/pose/normal/main.cpp
  5. 74
      docs/Pose.md
  6. 2
      docs/Segment.md

@ -0,0 +1,59 @@
cmake_minimum_required(VERSION 2.8.12)
set(CMAKE_CUDA_ARCHITECTURES 60 61 62 70 72 75 86)
set(CMAKE_CUDA_COMPILER /usr/local/cuda/bin/nvcc)
project(yolov8-pose LANGUAGES CXX CUDA)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -O3 -g")
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_BUILD_TYPE Release)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
# CUDA
find_package(CUDA REQUIRED)
message(STATUS "CUDA Libs: \n${CUDA_LIBRARIES}\n")
message(STATUS "CUDA Headers: \n${CUDA_INCLUDE_DIRS}\n")
# OpenCV
find_package(OpenCV REQUIRED)
message(STATUS "OpenCV Libs: \n${OpenCV_LIBS}\n")
message(STATUS "OpenCV Libraries: \n${OpenCV_LIBRARIES}\n")
message(STATUS "OpenCV Headers: \n${OpenCV_INCLUDE_DIRS}\n")
# TensorRT
set(TensorRT_INCLUDE_DIRS /usr/include/x86_64-linux-gnu)
set(TensorRT_LIBRARIES /usr/lib/x86_64-linux-gnu)
message(STATUS "TensorRT Libs: \n${TensorRT_LIBRARIES}\n")
message(STATUS "TensorRT Headers: \n${TensorRT_INCLUDE_DIRS}\n")
list(APPEND INCLUDE_DIRS
${CUDA_INCLUDE_DIRS}
${OpenCV_INCLUDE_DIRS}
${TensorRT_INCLUDE_DIRS}
./include
)
list(APPEND ALL_LIBS
${CUDA_LIBRARIES}
${OpenCV_LIBRARIES}
${TensorRT_LIBRARIES}
)
include_directories(${INCLUDE_DIRS})
add_executable(${PROJECT_NAME}
main.cpp
include/yolov8-pose.hpp
include/common.hpp
)
target_link_directories(${PROJECT_NAME} PUBLIC ${ALL_LIBS})
target_link_libraries(${PROJECT_NAME} PRIVATE nvinfer nvinfer_plugin cudart ${OpenCV_LIBS})
if (${OpenCV_VERSION} VERSION_GREATER_EQUAL 4.7.0)
message(STATUS "Build with -DBATCHED_NMS")
add_definitions(-DBATCHED_NMS)
endif ()

@ -0,0 +1,157 @@
//
// Created by ubuntu on 4/7/23.
//
#ifndef POSE_NORMAL_COMMON_HPP
#define POSE_NORMAL_COMMON_HPP
#include "opencv2/opencv.hpp"
#include <sys/stat.h>
#include <unistd.h>
#include "NvInfer.h"
#define CHECK(call) \
do \
{ \
const cudaError_t error_code = call; \
if (error_code != cudaSuccess) \
{ \
printf("CUDA Error:\n"); \
printf(" File: %s\n", __FILE__); \
printf(" Line: %d\n", __LINE__); \
printf(" Error code: %d\n", error_code); \
printf(" Error text: %s\n", \
cudaGetErrorString(error_code)); \
exit(1); \
} \
} while (0)
class Logger : public nvinfer1::ILogger
{
public:
nvinfer1::ILogger::Severity reportableSeverity;
explicit Logger(nvinfer1::ILogger::Severity severity = nvinfer1::ILogger::Severity::kINFO) :
reportableSeverity(severity)
{
}
void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override
{
if (severity > reportableSeverity)
{
return;
}
switch (severity)
{
case nvinfer1::ILogger::Severity::kINTERNAL_ERROR:
std::cerr << "INTERNAL_ERROR: ";
break;
case nvinfer1::ILogger::Severity::kERROR:
std::cerr << "ERROR: ";
break;
case nvinfer1::ILogger::Severity::kWARNING:
std::cerr << "WARNING: ";
break;
case nvinfer1::ILogger::Severity::kINFO:
std::cerr << "INFO: ";
break;
default:
std::cerr << "VERBOSE: ";
break;
}
std::cerr << msg << std::endl;
}
};
inline int get_size_by_dims(const nvinfer1::Dims& dims)
{
int size = 1;
for (int i = 0; i < dims.nbDims; i++)
{
size *= dims.d[i];
}
return size;
}
inline int type_to_size(const nvinfer1::DataType& dataType)
{
switch (dataType)
{
case nvinfer1::DataType::kFLOAT:
return 4;
case nvinfer1::DataType::kHALF:
return 2;
case nvinfer1::DataType::kINT32:
return 4;
case nvinfer1::DataType::kINT8:
return 1;
case nvinfer1::DataType::kBOOL:
return 1;
default:
return 4;
}
}
inline static float clamp(float val, float min, float max)
{
return val > min ? (val < max ? val : max) : min;
}
inline bool IsPathExist(const std::string& path)
{
if (access(path.c_str(), 0) == F_OK)
{
return true;
}
return false;
}
inline bool IsFile(const std::string& path)
{
if (!IsPathExist(path))
{
printf("%s:%d %s not exist\n", __FILE__, __LINE__, path.c_str());
return false;
}
struct stat buffer;
return (stat(path.c_str(), &buffer) == 0 && S_ISREG(buffer.st_mode));
}
inline bool IsFolder(const std::string& path)
{
if (!IsPathExist(path))
{
return false;
}
struct stat buffer;
return (stat(path.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode));
}
namespace pose
{
struct Binding
{
size_t size = 1;
size_t dsize = 1;
nvinfer1::Dims dims;
std::string name;
};
struct Object
{
cv::Rect_<float> rect;
int label = 0;
float prob = 0.0;
std::vector<float> kps;
};
struct PreParam
{
float ratio = 1.0f;
float dw = 0.0f;
float dh = 0.0f;
float height = 0;
float width = 0;
};
}
#endif //POSE_NORMAL_COMMON_HPP

@ -0,0 +1,516 @@
//
// Created by ubuntu on 1/20/23.
//
#ifndef POSE_NORMAL_YOLOv8_pose_HPP
#define POSE_NORMAL_YOLOv8_pose_HPP
#include "fstream"
#include "common.hpp"
#include "NvInferPlugin.h"
using namespace pose;
class YOLOv8_pose {
public:
explicit YOLOv8_pose(const std::string &engine_file_path);
~YOLOv8_pose();
void make_pipe(bool warmup = true);
void copy_from_Mat(const cv::Mat &image);
void copy_from_Mat(const cv::Mat &image, cv::Size &size);
void letterbox(
const cv::Mat &image,
cv::Mat &out,
cv::Size &size
);
void infer();
void postprocess(
std::vector<Object> &objs,
float score_thres = 0.25f,
float iou_thres = 0.65f,
int topk = 100
);
static void draw_objects(
const cv::Mat &image,
cv::Mat &res,
const std::vector<Object> &objs,
const std::vector<std::vector<unsigned int>> &SKELETON,
const std::vector<std::vector<unsigned int>> &KPS_COLORS,
const std::vector<std::vector<unsigned int>> &LIMB_COLORS
);
int num_bindings;
int num_inputs = 0;
int num_outputs = 0;
std::vector<Binding> input_bindings;
std::vector<Binding> output_bindings;
std::vector<void *> host_ptrs;
std::vector<void *> device_ptrs;
PreParam pparam;
private:
nvinfer1::ICudaEngine *engine = nullptr;
nvinfer1::IRuntime *runtime = nullptr;
nvinfer1::IExecutionContext *context = nullptr;
cudaStream_t stream = nullptr;
Logger gLogger{nvinfer1::ILogger::Severity::kERROR};
};
YOLOv8_pose::YOLOv8_pose(const std::string &engine_file_path) {
std::ifstream file(engine_file_path, std::ios::binary);
assert(file.good());
file.seekg(0, std::ios::end);
auto size = file.tellg();
file.seekg(0, std::ios::beg);
char *trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
initLibNvInferPlugins(&this->gLogger, "");
this->runtime = nvinfer1::createInferRuntime(this->gLogger);
assert(this->runtime != nullptr);
this->engine = this->runtime->deserializeCudaEngine(trtModelStream, size);
assert(this->engine != nullptr);
this->context = this->engine->createExecutionContext();
assert(this->context != nullptr);
cudaStreamCreate(&this->stream);
this->num_bindings = this->engine->getNbBindings();
for (int i = 0; i < this->num_bindings; ++i) {
Binding binding;
nvinfer1::Dims dims;
nvinfer1::DataType dtype = this->engine->getBindingDataType(i);
std::string name = this->engine->getBindingName(i);
binding.name = name;
binding.dsize = type_to_size(dtype);
bool IsInput = engine->bindingIsInput(i);
if (IsInput) {
this->num_inputs += 1;
dims = this->engine->getProfileDimensions(
i,
0,
nvinfer1::OptProfileSelector::kMAX);
binding.size = get_size_by_dims(dims);
binding.dims = dims;
this->input_bindings.push_back(binding);
// set max opt shape
this->context->setBindingDimensions(i, dims);
} else {
dims = this->context->getBindingDimensions(i);
binding.size = get_size_by_dims(dims);
binding.dims = dims;
this->output_bindings.push_back(binding);
this->num_outputs += 1;
}
}
}
YOLOv8_pose::~YOLOv8_pose() {
this->context->destroy();
this->engine->destroy();
this->runtime->destroy();
cudaStreamDestroy(this->stream);
for (auto &ptr: this->device_ptrs) {
CHECK(cudaFree(ptr));
}
for (auto &ptr: this->host_ptrs) {
CHECK(cudaFreeHost(ptr));
}
}
void YOLOv8_pose::make_pipe(bool warmup) {
for (auto &bindings: this->input_bindings) {
void *d_ptr;
CHECK(cudaMallocAsync(
&d_ptr,
bindings.size * bindings.dsize,
this->stream)
);
this->device_ptrs.push_back(d_ptr);
}
for (auto &bindings: this->output_bindings) {
void *d_ptr, *h_ptr;
size_t size = bindings.size * bindings.dsize;
CHECK(cudaMallocAsync(
&d_ptr,
size,
this->stream)
);
CHECK(cudaHostAlloc(
&h_ptr,
size,
0)
);
this->device_ptrs.push_back(d_ptr);
this->host_ptrs.push_back(h_ptr);
}
if (warmup) {
for (int i = 0; i < 10; i++) {
for (auto &bindings: this->input_bindings) {
size_t size = bindings.size * bindings.dsize;
void *h_ptr = malloc(size);
memset(h_ptr, 0, size);
CHECK(cudaMemcpyAsync(
this->device_ptrs[0],
h_ptr,
size,
cudaMemcpyHostToDevice,
this->stream)
);
free(h_ptr);
}
this->infer();
}
printf("model warmup 10 times\n");
}
}
void YOLOv8_pose::letterbox(
const cv::Mat &image,
cv::Mat &out,
cv::Size &size
) {
const float inp_h = size.height;
const float inp_w = size.width;
float height = image.rows;
float width = image.cols;
float r = std::min(inp_h / height, inp_w / width);
int padw = std::round(width * r);
int padh = std::round(height * r);
cv::Mat tmp;
if ((int) width != padw || (int) height != padh) {
cv::resize(
image,
tmp,
cv::Size(padw, padh)
);
} else {
tmp = image.clone();
}
float dw = inp_w - padw;
float dh = inp_h - padh;
dw /= 2.0f;
dh /= 2.0f;
int top = int(std::round(dh - 0.1f));
int bottom = int(std::round(dh + 0.1f));
int left = int(std::round(dw - 0.1f));
int right = int(std::round(dw + 0.1f));
cv::copyMakeBorder(
tmp,
tmp,
top,
bottom,
left,
right,
cv::BORDER_CONSTANT,
{114, 114, 114}
);
cv::dnn::blobFromImage(tmp,
out,
1 / 255.f,
cv::Size(),
cv::Scalar(0, 0, 0),
true,
false,
CV_32F
);
this->pparam.ratio = 1 / r;
this->pparam.dw = dw;
this->pparam.dh = dh;
this->pparam.height = height;
this->pparam.width = width;;
}
void YOLOv8_pose::copy_from_Mat(const cv::Mat &image) {
cv::Mat nchw;
auto &in_binding = this->input_bindings[0];
auto width = in_binding.dims.d[3];
auto height = in_binding.dims.d[2];
cv::Size size{width, height};
this->letterbox(
image,
nchw,
size
);
this->context->setBindingDimensions(
0,
nvinfer1::Dims
{
4,
{1, 3, height, width}
}
);
CHECK(cudaMemcpyAsync(
this->device_ptrs[0],
nchw.ptr<float>(),
nchw.total() * nchw.elemSize(),
cudaMemcpyHostToDevice,
this->stream)
);
}
void YOLOv8_pose::copy_from_Mat(const cv::Mat &image, cv::Size &size) {
cv::Mat nchw;
this->letterbox(
image,
nchw,
size
);
this->context->setBindingDimensions(
0,
nvinfer1::Dims
{4,
{1, 3, size.height, size.width}
}
);
CHECK(cudaMemcpyAsync(
this->device_ptrs[0],
nchw.ptr<float>(),
nchw.total() * nchw.elemSize(),
cudaMemcpyHostToDevice,
this->stream)
);
}
void YOLOv8_pose::infer() {
this->context->enqueueV2(
this->device_ptrs.data(),
this->stream,
nullptr
);
for (int i = 0; i < this->num_outputs; i++) {
size_t osize = this->output_bindings[i].size * this->output_bindings[i].dsize;
CHECK(cudaMemcpyAsync(this->host_ptrs[i],
this->device_ptrs[i + this->num_inputs],
osize,
cudaMemcpyDeviceToHost,
this->stream)
);
}
cudaStreamSynchronize(this->stream);
}
void YOLOv8_pose::postprocess(
std::vector<Object> &objs,
float score_thres,
float iou_thres,
int topk
) {
objs.clear();
auto num_channels = this->output_bindings[0].dims.d[1];
auto num_anchors = this->output_bindings[0].dims.d[2];
auto &dw = this->pparam.dw;
auto &dh = this->pparam.dh;
auto &width = this->pparam.width;
auto &height = this->pparam.height;
auto &ratio = this->pparam.ratio;
std::vector<cv::Rect> bboxes;
std::vector<float> scores;
std::vector<int> labels;
std::vector<int> indices;
std::vector<std::vector<float>> kpss;
cv::Mat output = cv::Mat(
num_channels,
num_anchors,
CV_32F,
static_cast<float *>(this->host_ptrs[0])
);
output = output.t();
for (int i = 0; i < num_anchors; i++) {
auto row_ptr = output.row(i).ptr<float>();
auto bboxes_ptr = row_ptr;
auto scores_ptr = row_ptr + 4;
auto kps_ptr = row_ptr + 5;
float score = *scores_ptr;
if (score > score_thres) {
float x = *bboxes_ptr++ - dw;
float y = *bboxes_ptr++ - dh;
float w = *bboxes_ptr++;
float h = *bboxes_ptr;
float x0 = clamp((x - 0.5f * w) * ratio, 0.f, width);
float y0 = clamp((y - 0.5f * h) * ratio, 0.f, height);
float x1 = clamp((x + 0.5f * w) * ratio, 0.f, width);
float y1 = clamp((y + 0.5f * h) * ratio, 0.f, height);
cv::Rect_<float> bbox;
bbox.x = x0;
bbox.y = y0;
bbox.width = x1 - x0;
bbox.height = y1 - y0;
std::vector<float> kps;
for (int k = 0; k < 17; k++) {
float kps_x = (*(kps_ptr + 3 * k) - dw) * ratio;
float kps_y = (*(kps_ptr + 3 * k + 1) - dh) * ratio;
float kps_s = *(kps_ptr + 3 * k + 2);
kps_x = clamp(kps_x, 0.f, width);
kps_y = clamp(kps_y, 0.f, height);
kps.push_back(kps_x);
kps.push_back(kps_y);
kps.push_back(kps_s);
}
bboxes.push_back(bbox);
labels.push_back(0);
scores.push_back(score);
kpss.push_back(kps);
}
}
#ifdef BATCHED_NMS
cv::dnn::NMSBoxesBatched(
bboxes,
scores,
labels,
score_thres,
iou_thres,
indices
);
#elif
cv::dnn::NMSBoxes(
bboxes,
scores,
score_thres,
iou_thres,
indices
);
#endif
int cnt = 0;
for (auto &i: indices) {
if (cnt >= topk) {
break;
}
Object obj;
obj.rect = bboxes[i];
obj.prob = scores[i];
obj.label = labels[i];
obj.kps = kpss[i];
objs.push_back(obj);
cnt += 1;
}
}
void YOLOv8_pose::draw_objects(
const cv::Mat &image,
cv::Mat &res,
const std::vector<Object> &objs,
const std::vector<std::vector<unsigned int>> &SKELETON,
const std::vector<std::vector<unsigned int>> &KPS_COLORS,
const std::vector<std::vector<unsigned int>> &LIMB_COLORS
) {
res = image.clone();
for (auto &obj: objs) {
cv::rectangle(
res,
obj.rect,
{0, 0, 255},
2
);
char text[256];
sprintf(
text,
"person %.1f%%",
obj.prob * 100
);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(
text,
cv::FONT_HERSHEY_SIMPLEX,
0.4,
1,
&baseLine
);
int x = (int) obj.rect.x;
int y = (int) obj.rect.y + 1;
if (y > res.rows)
y = res.rows;
cv::rectangle(
res,
cv::Rect(x, y, label_size.width, label_size.height + baseLine),
{0, 0, 255},
-1
);
cv::putText(
res,
text,
cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX,
0.4,
{255, 255, 255},
1
);
auto &kps = obj.kps;
for (int k = 0; k < 17; k++) {
int kps_x = std::round(kps[k * 3]);
int kps_y = std::round(kps[k * 3 + 1]);
float kps_s = kps[k * 3 + 2];
cv::Scalar kps_color = cv::Scalar(KPS_COLORS[k][0], KPS_COLORS[k][1], KPS_COLORS[k][2]);
if (kps_s > 0.5f) {
cv::circle(res, {kps_x, kps_y}, 5, kps_color, -1);
}
}
int sk_id = 0;
for (auto &ske: SKELETON) {
int pos1_x = std::round(kps[(ske[0] - 1) * 3]);
int pos1_y = std::round(kps[(ske[0] - 1) * 3 + 1]);
int pos2_x = std::round(kps[(ske[1] - 1) * 3]);
int pos2_y = std::round(kps[(ske[1] - 1) * 3 + 1]);
float pos1_s = kps[(ske[0] - 1) * 3 + 2];
float pos2_s = kps[(ske[1] - 1) * 3 + 2];
cv::Scalar limb_color = cv::Scalar(LIMB_COLORS[sk_id][0], LIMB_COLORS[sk_id][1], LIMB_COLORS[sk_id][2]);
sk_id += 1;
if (pos1_s < 0.5f || pos2_s < 0.5f) {
continue;
}
cv::line(res, {pos1_x, pos1_y}, {pos2_x, pos2_y}, limb_color, 2);
}
}
}
#endif //POSE_NORMAL_YOLOv8_pose_HPP

@ -0,0 +1,162 @@
//
// Created by ubuntu on 4/7/23.
//
#include "chrono"
#include "yolov8-pose.hpp"
#include "opencv2/opencv.hpp"
const std::vector<std::vector<unsigned int>> KPS_COLORS =
{{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{51, 153, 255},
{51, 153, 255},
{51, 153, 255},
{51, 153, 255},
{51, 153, 255},
{51, 153, 255}};
const std::vector<std::vector<unsigned int>> SKELETON = {{16, 14},
{14, 12},
{17, 15},
{15, 13},
{12, 13},
{6, 12},
{7, 13},
{6, 7},
{6, 8},
{7, 9},
{8, 10},
{9, 11},
{2, 3},
{1, 2},
{1, 3},
{2, 4},
{3, 5},
{4, 6},
{5, 7}};
const std::vector<std::vector<unsigned int>> LIMB_COLORS = {{51, 153, 255},
{51, 153, 255},
{51, 153, 255},
{51, 153, 255},
{255, 51, 255},
{255, 51, 255},
{255, 51, 255},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{255, 128, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0},
{0, 255, 0}};
int main(int argc, char **argv) {
// cuda:0
cudaSetDevice(0);
const std::string engine_file_path{argv[1]};
const std::string path{argv[2]};
std::vector<std::string> imagePathList;
bool isVideo{false};
assert(argc == 3);
auto yolov8_pose = new YOLOv8_pose(engine_file_path);
yolov8_pose->make_pipe(true);
if (IsFile(path)) {
std::string suffix = path.substr(path.find_last_of('.') + 1);
if (
suffix == "jpg" ||
suffix == "jpeg" ||
suffix == "png"
) {
imagePathList.push_back(path);
} else if (
suffix == "mp4" ||
suffix == "avi" ||
suffix == "m4v" ||
suffix == "mpeg" ||
suffix == "mov" ||
suffix == "mkv"
) {
isVideo = true;
} else {
printf("suffix %s is wrong !!!\n", suffix.c_str());
std::abort();
}
} else if (IsFolder(path)) {
cv::glob(path + "/*.jpg", imagePathList);
}
cv::Mat res, image;
cv::Size size = cv::Size{640, 640};
int num_labels = 80;
int topk = 100;
float score_thres = 0.25f;
float iou_thres = 0.65f;
std::vector<Object> objs;
cv::namedWindow("result", cv::WINDOW_AUTOSIZE);
if (isVideo) {
cv::VideoCapture cap(path);
if (!cap.isOpened()) {
printf("can not open %s\n", path.c_str());
return -1;
}
while (cap.read(image)) {
objs.clear();
yolov8_pose->copy_from_Mat(image, size);
auto start = std::chrono::system_clock::now();
yolov8_pose->infer();
auto end = std::chrono::system_clock::now();
yolov8_pose->postprocess(objs, score_thres, iou_thres, topk);
yolov8_pose->draw_objects(image, res, objs, SKELETON, KPS_COLORS, LIMB_COLORS);
auto tc = (double)
std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() / 1000.;
printf("cost %2.4lf ms\n", tc);
cv::imshow("result", res);
if (cv::waitKey(10) == 'q') {
break;
}
}
} else {
for (auto &path: imagePathList) {
objs.clear();
image = cv::imread(path);
yolov8_pose->copy_from_Mat(image, size);
auto start = std::chrono::system_clock::now();
yolov8_pose->infer();
auto end = std::chrono::system_clock::now();
yolov8_pose->postprocess(objs, score_thres, iou_thres, topk);
yolov8_pose->draw_objects(image, res, objs, SKELETON, KPS_COLORS, LIMB_COLORS);
auto tc = (double)
std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() / 1000.;
printf("cost %2.4lf ms\n", tc);
cv::imshow("result", res);
cv::waitKey(0);
}
}
cv::destroyAllWindows();
delete yolov8_pose;
return 0;
}

@ -0,0 +1,74 @@
# YOLOv8-pose Model with TensorRT
The yolov8-pose model conversion route is :
YOLOv8 PyTorch model -> ONNX -> TensorRT Engine
***Notice !!!*** We don't support TensorRT API building !!!
# Export Orin ONNX model by ultralytics
You can leave this repo and use the original `ultralytics` repo for onnx export.
### 1. Python script
Usage:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8s-pose.pt") # load a pretrained model (recommended for training)
success = model.export(format="engine", device=0) # export the model to engine format
assert success
```
After executing the above script, you will get an engine named `yolov8s-pose.engine` .
### 2. CLI tools
Usage:
```shell
yolo export model=yolov8s-pose.pt format=engine device=0
```
After executing the above command, you will get an engine named `yolov8s-pose.engine` too.
## Inference with c++
You can infer with c++ in [`csrc/pose/normal`](../csrc/pose/normal) .
### Build:
Please set you own librarys in [`CMakeLists.txt`](../csrc/pose/normal/CMakeLists.txt) and modify `KPS_COLORS` and `SKELETON` and `LIMB_COLORS` in [`main.cpp`](../csrc/pose/normal/main.cpp).
Besides, you can modify the postprocess parameters such as `score_thres` and `iou_thres` and `topk` in [`main.cpp`](../csrc/pose/normal/main.cpp).
```c++
int topk = 100;
float score_thres = 0.25f;
float iou_thres = 0.65f;
```
And build:
``` shell
export root=${PWD}
cd src/pose/normal
mkdir build
cmake ..
make
mv yolov8-pose ${root}
cd ${root}
```
Usage:
``` shell
# infer image
./yolov8-pose yolov8s-pose.engine data/bus.jpg
# infer images
./yolov8-pose yolov8s-pose.engine data
# infer video
./yolov8-pose yolov8s-pose.engine data/test.mp4 # the video path
```

@ -159,7 +159,7 @@ After executing the above script, you will get an engine named `yolov8s-seg.engi
Usage:
```shell
yolo export model=yolov8s.pt format=engine device=0
yolo export model=yolov8s-seg.pt format=engine device=0
```
After executing the above command, you will get an engine named `yolov8s-seg.engine` too.

Loading…
Cancel
Save