Update README.md

Update readme, for using dynamic onnx and then to converting to TensorRT
pull/242/head
Sagyndyk 6 months ago committed by GitHub
parent f51f6a1aae
commit cb1d0e280b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
  1. 11
      README.md

@ -57,7 +57,7 @@ Besides, other scripts won't work.
# Export End2End ONNX with NMS
You can export your onnx model by `ultralytics` API and add postprocess such as bbox decoder and `NMS` into ONNX model at the same time.
Use --dynamic for batching.
``` shell
python3 export-det.py \
--weights yolov8s.pt \
@ -66,7 +66,7 @@ python3 export-det.py \
--topk 100 \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--dynamic
--device cuda:0
```
@ -111,17 +111,14 @@ python3 build.py \
You can modify `iou-thres` `conf-thres` `topk` by yourself.
### 2. Export Engine by Trtexec Tools
### 2. Export Engine by Trtexec Tools (for converting dynamic onnx please use this option)
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools.
Usage:
``` shell
/usr/src/tensorrt/bin/trtexec \
--onnx=yolov8s.onnx \
--saveEngine=yolov8s.engine \
--fp16
trtexec --onnx=yolov8m.onnx --saveEngine=model.engine --fp16 --minShapes=images:1x3x640x640 --optShapes=images:8x3x640x640 --maxShapes=images:16x3x640x640
```
**If you installed TensorRT by a debian package, then the installation path of `trtexec`

Loading…
Cancel
Save