parent
64dd1005ff
commit
c2c62cf338
5 changed files with 128 additions and 5 deletions
After Width: | Height: | Size: 476 KiB |
After Width: | Height: | Size: 165 KiB |
@ -0,0 +1,121 @@ |
||||
from models import TRTModule |
||||
from pathlib import Path |
||||
import cv2 |
||||
import argparse |
||||
import numpy as np |
||||
import torch |
||||
import random |
||||
|
||||
random.seed(0) |
||||
|
||||
SUFFIXS = ('.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff', '.webp', '.pfm') |
||||
CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', |
||||
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', |
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', |
||||
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', |
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', |
||||
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', |
||||
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', |
||||
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', |
||||
'hair drier', 'toothbrush') |
||||
|
||||
COLORS = {cls: [random.randint(0, 255) for _ in range(3)] for i, cls in enumerate(CLASSES)} |
||||
|
||||
|
||||
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114)): |
||||
# Resize and pad image while meeting stride-multiple constraints |
||||
shape = im.shape[:2] # current shape [height, width] |
||||
if isinstance(new_shape, int): |
||||
new_shape = (new_shape, new_shape) |
||||
|
||||
# Scale ratio (new / old) |
||||
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) |
||||
|
||||
# Compute padding |
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) |
||||
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding |
||||
|
||||
dw /= 2 # divide padding into 2 sides |
||||
dh /= 2 |
||||
|
||||
if shape[::-1] != new_unpad: # resize |
||||
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) |
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) |
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) |
||||
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border |
||||
return im, np.array([r, r, r, r], dtype=np.float32), np.array([dw, dh, dw, dh], dtype=np.float32) |
||||
|
||||
|
||||
def blob(im): |
||||
im = im.transpose(2, 0, 1) |
||||
im = im[np.newaxis, ...] |
||||
im = np.ascontiguousarray(im).astype(np.float32) / 255 |
||||
return im |
||||
|
||||
|
||||
def main(args): |
||||
device = torch.device(args.device) |
||||
Engine = TRTModule(args.engine, device) |
||||
|
||||
images_path = Path(args.imgs) |
||||
assert images_path.exists() |
||||
save_path = Path(args.out_dir) |
||||
|
||||
if images_path.is_dir(): |
||||
images = [i.absolute() for i in images_path.iterdir() if i.suffix in SUFFIXS] |
||||
else: |
||||
assert images_path.suffix in SUFFIXS |
||||
images = [images_path.absolute()] |
||||
|
||||
if not args.show and not save_path.exists(): |
||||
save_path.mkdir(parents=True, exist_ok=True) |
||||
|
||||
for image in images: |
||||
save_image = save_path / image.name |
||||
bgr = cv2.imread(str(image)) |
||||
draw = bgr.copy() |
||||
bgr, ratio, dwdh = letterbox(bgr) |
||||
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) |
||||
tensor = blob(rgb) |
||||
ratio = torch.asarray(ratio, dtype=torch.float32, device=device) |
||||
dwdh = torch.asarray(dwdh, dtype=torch.float32, device=device) |
||||
tensor = torch.asarray(tensor, device=device) |
||||
num_dets, bboxes, scores, labels = Engine(tensor) |
||||
bboxes = bboxes[0, :num_dets.item()] |
||||
scores = scores[0, :num_dets.item()] |
||||
labels = labels[0, :num_dets.item()] |
||||
bboxes -= dwdh |
||||
bboxes /= ratio |
||||
for (bbox, score, label) in zip(bboxes, scores, labels): |
||||
bbox = bbox.round().int().tolist() |
||||
cls_id = int(label) |
||||
cls = CLASSES[cls_id] |
||||
color = COLORS[cls] |
||||
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2) |
||||
cv2.putText(draw, f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2), |
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.75, |
||||
[225, 255, 255], thickness=2) |
||||
if args.show: |
||||
cv2.imshow('result', draw) |
||||
cv2.waitKey(0) |
||||
else: |
||||
cv2.imwrite(str(save_image), draw) |
||||
|
||||
|
||||
def parse_args(): |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('--engine', type=str, help='Engine file') |
||||
parser.add_argument('--imgs', type=str, help='Images file') |
||||
parser.add_argument( |
||||
'--show', action='store_true', help='Show the detection results') |
||||
parser.add_argument( |
||||
'--out-dir', type=str, default='./output', help='Path to output file') |
||||
parser.add_argument( |
||||
'--device', type=str, default='cuda:0', help='TensorRT infer device') |
||||
args = parser.parse_args() |
||||
return args |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
args = parse_args() |
||||
main(args) |
Loading…
Reference in new issue