parent
cb1d0e280b
commit
bf458ef709
1 changed files with 101 additions and 75 deletions
@ -1,91 +1,117 @@ |
||||
from models import TRTModule # isort:skip |
||||
import argparse |
||||
from pathlib import Path |
||||
from io import BytesIO |
||||
|
||||
import cv2 |
||||
import onnx |
||||
import torch |
||||
from ultralytics import YOLO |
||||
|
||||
from config import CLASSES_DET, COLORS |
||||
from models.torch_utils import det_postprocess |
||||
from models.utils import blob, letterbox, path_to_list |
||||
from models.common import PostDetect, optim |
||||
|
||||
try: |
||||
import onnxsim |
||||
except ImportError: |
||||
onnxsim = None |
||||
|
||||
def main(args: argparse.Namespace) -> None: |
||||
device = torch.device(args.device) |
||||
Engine = TRTModule(args.engine, device) |
||||
H, W = Engine.inp_info[0].shape[-2:] |
||||
|
||||
# set desired output names order |
||||
Engine.set_desired(['num_dets', 'bboxes', 'scores', 'labels']) |
||||
|
||||
images = path_to_list(args.imgs) |
||||
save_path = Path(args.out_dir) |
||||
|
||||
if not args.show and not save_path.exists(): |
||||
save_path.mkdir(parents=True, exist_ok=True) |
||||
|
||||
for image in images: |
||||
save_image = save_path / image.name |
||||
bgr = cv2.imread(str(image)) |
||||
draw = bgr.copy() |
||||
bgr, ratio, dwdh = letterbox(bgr, (W, H)) |
||||
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) |
||||
tensor = blob(rgb, return_seg=False) |
||||
dwdh = torch.asarray(dwdh * 2, dtype=torch.float32, device=device) |
||||
tensor = torch.asarray(tensor, device=device) |
||||
# inference |
||||
data = Engine(tensor) |
||||
|
||||
bboxes, scores, labels = det_postprocess(data) |
||||
if bboxes.numel() == 0: |
||||
# if no bounding box |
||||
print(f'{image}: no object!') |
||||
continue |
||||
bboxes -= dwdh |
||||
bboxes /= ratio |
||||
|
||||
for (bbox, score, label) in zip(bboxes, scores, labels): |
||||
bbox = bbox.round().int().tolist() |
||||
cls_id = int(label) |
||||
cls = CLASSES_DET[cls_id] |
||||
color = COLORS[cls] |
||||
|
||||
text = f'{cls}:{score:.3f}' |
||||
x1, y1, x2, y2 = bbox |
||||
|
||||
(_w, _h), _bl = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1) |
||||
_y1 = min(y1 + 1, draw.shape[0]) |
||||
|
||||
cv2.rectangle(draw, (x1, y1), (x2, y2), color, 2) |
||||
cv2.rectangle(draw, (x1, _y1), (x1 + _w, _y1 + _h + _bl), (0, 0, 255), -1) |
||||
cv2.putText(draw, text, (x1, _y1 + _h), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (255, 255, 255), 2) |
||||
|
||||
if args.show: |
||||
cv2.imshow('result', draw) |
||||
cv2.waitKey(0) |
||||
else: |
||||
cv2.imwrite(str(save_image), draw) |
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace: |
||||
def parse_args(): |
||||
parser = argparse.ArgumentParser() |
||||
parser.add_argument('--engine', type=str, help='Engine file') |
||||
parser.add_argument('--imgs', type=str, help='Images file') |
||||
parser.add_argument('--show', |
||||
action='store_true', |
||||
help='Show the detection results') |
||||
parser.add_argument('--out-dir', |
||||
parser.add_argument('-w', |
||||
'--weights', |
||||
type=str, |
||||
default='./output', |
||||
help='Path to output file') |
||||
required=True, |
||||
help='PyTorch yolov8 weights') |
||||
parser.add_argument('--iou-thres', |
||||
type=float, |
||||
default=0.65, |
||||
help='IOU threshoud for NMS plugin') |
||||
parser.add_argument('--conf-thres', |
||||
type=float, |
||||
default=0.25, |
||||
help='CONF threshoud for NMS plugin') |
||||
parser.add_argument('--topk', |
||||
type=int, |
||||
default=100, |
||||
help='Max number of detection bboxes') |
||||
parser.add_argument('--opset', |
||||
type=int, |
||||
default=11, |
||||
help='ONNX opset version') |
||||
parser.add_argument('--sim', |
||||
action='store_true', |
||||
help='simplify onnx model') |
||||
parser.add_argument('--input-shape', |
||||
nargs='+', |
||||
type=int, |
||||
default=[1, 3, 640, 640], |
||||
help='Model input shape only for api builder') |
||||
parser.add_argument('--device', |
||||
type=str, |
||||
default='cuda:0', |
||||
help='TensorRT infer device') |
||||
default='cpu', |
||||
help='Export ONNX device') |
||||
parser.add_argument('--dynamic', |
||||
action='store_true', |
||||
help='Model input shape will dynamically' |
||||
) |
||||
args = parser.parse_args() |
||||
assert len(args.input_shape) == 4 |
||||
PostDetect.conf_thres = args.conf_thres |
||||
PostDetect.iou_thres = args.iou_thres |
||||
PostDetect.topk = args.topk |
||||
return args |
||||
|
||||
|
||||
def main(args): |
||||
b = args.input_shape[0] |
||||
YOLOv8 = YOLO(args.weights) |
||||
model = YOLOv8.model.fuse().eval() |
||||
for m in model.modules(): |
||||
optim(m) |
||||
m.to(args.device) |
||||
model.to(args.device) |
||||
fake_input = torch.randn(args.input_shape).to(args.device) |
||||
for _ in range(2): |
||||
model(fake_input) |
||||
save_path = args.weights.replace('.pt', '.onnx') |
||||
with BytesIO() as f: |
||||
if args.dynamic: |
||||
torch.onnx.export( |
||||
model, |
||||
fake_input, |
||||
f, |
||||
opset_version=args.opset, |
||||
input_names=['images'], |
||||
output_names=['num_dets', 'bboxes', 'scores', 'labels'], |
||||
dynamic_axes={'images': {0: 'batch_size'}, |
||||
'num_dets': {0: 'batch_size'}, |
||||
'bboxes': {0: 'batch_size'}, |
||||
'scores': {0: 'batch_size'}, |
||||
'labels': {0: 'batch_size'}, |
||||
}) |
||||
else: |
||||
torch.onnx.export( |
||||
model, |
||||
fake_input, |
||||
f, |
||||
opset_version=args.opset, |
||||
input_names=['images'], |
||||
output_names=['num_dets', 'bboxes', 'scores', 'labels']) |
||||
f.seek(0) |
||||
onnx_model = onnx.load(f) |
||||
onnx.checker.check_model(onnx_model) |
||||
shapes = [b, 1, b, args.topk, 4, b, args.topk, b, args.topk] |
||||
if args.dynamic is False: |
||||
for i in onnx_model.graph.output: |
||||
for j in i.type.tensor_type.shape.dim: |
||||
j.dim_param = str(shapes.pop(0)) |
||||
if args.sim: |
||||
try: |
||||
onnx_model, check = onnxsim.simplify(onnx_model) |
||||
assert check, 'assert check failed' |
||||
except Exception as e: |
||||
print(f'Simplifier failure: {e}') |
||||
onnx.save(onnx_model, save_path) |
||||
print(f'ONNX export success, saved as {save_path}') |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
args = parse_args() |
||||
main(args) |
||||
main(parse_args()) |
||||
|
Loading…
Reference in new issue