|
|
|
@ -61,118 +61,6 @@ def sigmoid(x: ndarray) -> ndarray: |
|
|
|
|
return 1. / (1. + np.exp(-x)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def bbox_iou(boxes1: ndarray, boxes2: ndarray) -> ndarray: |
|
|
|
|
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * \ |
|
|
|
|
(boxes1[..., 3] - boxes1[..., 1]) |
|
|
|
|
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * \ |
|
|
|
|
(boxes2[..., 3] - boxes2[..., 1]) |
|
|
|
|
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2]) |
|
|
|
|
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:]) |
|
|
|
|
inter_section = np.maximum(right_down - left_up, 0.0) |
|
|
|
|
inter_area = inter_section[..., 0] * inter_section[..., 1] |
|
|
|
|
union_area = boxes1_area + boxes2_area - inter_area |
|
|
|
|
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps) |
|
|
|
|
|
|
|
|
|
return ious |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def batched_nms(boxes: ndarray, |
|
|
|
|
scores: ndarray, |
|
|
|
|
iou_thres: float = 0.65, |
|
|
|
|
conf_thres: float = 0.25): |
|
|
|
|
labels = np.argmax(scores, axis=-1) |
|
|
|
|
scores = np.max(scores, axis=-1) |
|
|
|
|
|
|
|
|
|
cand = scores > conf_thres |
|
|
|
|
boxes = boxes[cand] |
|
|
|
|
scores = scores[cand] |
|
|
|
|
labels = labels[cand] |
|
|
|
|
|
|
|
|
|
keep_boxes = [] |
|
|
|
|
keep_scores = [] |
|
|
|
|
keep_labels = [] |
|
|
|
|
|
|
|
|
|
for cls in np.unique(labels): |
|
|
|
|
cls_mask = labels == cls |
|
|
|
|
cls_boxes = boxes[cls_mask] |
|
|
|
|
cls_scores = scores[cls_mask] |
|
|
|
|
|
|
|
|
|
while cls_boxes.shape[0] > 0: |
|
|
|
|
max_idx = np.argmax(cls_scores) |
|
|
|
|
max_box = cls_boxes[max_idx:max_idx + 1] |
|
|
|
|
max_score = cls_scores[max_idx:max_idx + 1] |
|
|
|
|
max_label = np.array([cls], dtype=np.int32) |
|
|
|
|
keep_boxes.append(max_box) |
|
|
|
|
keep_scores.append(max_score) |
|
|
|
|
keep_labels.append(max_label) |
|
|
|
|
other_boxes = np.delete(cls_boxes, max_idx, axis=0) |
|
|
|
|
other_scores = np.delete(cls_scores, max_idx, axis=0) |
|
|
|
|
ious = bbox_iou(max_box, other_boxes) |
|
|
|
|
iou_mask = ious < iou_thres |
|
|
|
|
if not iou_mask.any(): |
|
|
|
|
break |
|
|
|
|
cls_boxes = other_boxes[iou_mask] |
|
|
|
|
cls_scores = other_scores[iou_mask] |
|
|
|
|
|
|
|
|
|
if len(keep_boxes) == 0: |
|
|
|
|
keep_boxes = np.empty((0, 4), dtype=np.float32) |
|
|
|
|
keep_scores = np.empty((0, ), dtype=np.float32) |
|
|
|
|
keep_labels = np.empty((0, ), dtype=np.float32) |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
keep_boxes = np.concatenate(keep_boxes, axis=0) |
|
|
|
|
keep_scores = np.concatenate(keep_scores, axis=0) |
|
|
|
|
keep_labels = np.concatenate(keep_labels, axis=0) |
|
|
|
|
|
|
|
|
|
return keep_boxes, keep_scores, keep_labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def nms(boxes: ndarray, |
|
|
|
|
scores: ndarray, |
|
|
|
|
iou_thres: float = 0.65, |
|
|
|
|
conf_thres: float = 0.25): |
|
|
|
|
labels = np.argmax(scores, axis=-1) |
|
|
|
|
scores = np.max(scores, axis=-1) |
|
|
|
|
|
|
|
|
|
cand = scores > conf_thres |
|
|
|
|
boxes = boxes[cand] |
|
|
|
|
scores = scores[cand] |
|
|
|
|
labels = labels[cand] |
|
|
|
|
|
|
|
|
|
keep_boxes = [] |
|
|
|
|
keep_scores = [] |
|
|
|
|
keep_labels = [] |
|
|
|
|
|
|
|
|
|
idxs = scores.argsort() |
|
|
|
|
while idxs.size > 0: |
|
|
|
|
max_score_index = idxs[-1] |
|
|
|
|
max_box = boxes[max_score_index:max_score_index + 1] |
|
|
|
|
max_score = scores[max_score_index:max_score_index + 1] |
|
|
|
|
max_label = np.array([labels[max_score_index]], dtype=np.int32) |
|
|
|
|
keep_boxes.append(max_box) |
|
|
|
|
keep_scores.append(max_score) |
|
|
|
|
keep_labels.append(max_label) |
|
|
|
|
if idxs.size == 1: |
|
|
|
|
break |
|
|
|
|
idxs = idxs[:-1] |
|
|
|
|
other_boxes = boxes[idxs] |
|
|
|
|
ious = bbox_iou(max_box, other_boxes) |
|
|
|
|
iou_mask = ious < iou_thres |
|
|
|
|
idxs = idxs[iou_mask] |
|
|
|
|
|
|
|
|
|
if len(keep_boxes) == 0: |
|
|
|
|
keep_boxes = np.empty((0, 4), dtype=np.float32) |
|
|
|
|
keep_scores = np.empty((0, ), dtype=np.float32) |
|
|
|
|
keep_labels = np.empty((0, ), dtype=np.float32) |
|
|
|
|
|
|
|
|
|
else: |
|
|
|
|
keep_boxes = np.concatenate(keep_boxes, axis=0) |
|
|
|
|
keep_scores = np.concatenate(keep_scores, axis=0) |
|
|
|
|
keep_labels = np.concatenate(keep_labels, axis=0) |
|
|
|
|
|
|
|
|
|
return keep_boxes, keep_scores, keep_labels |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def path_to_list(images_path: Union[str, Path]) -> List: |
|
|
|
|
if isinstance(images_path, str): |
|
|
|
|
images_path = Path(images_path) |
|
|
|
@ -197,13 +85,57 @@ def crop_mask(masks: ndarray, bboxes: ndarray) -> ndarray: |
|
|
|
|
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def box_iou(box1: ndarray, box2: ndarray) -> float: |
|
|
|
|
x11, y11, x21, y21 = box1 |
|
|
|
|
x12, y12, x22, y22 = box2 |
|
|
|
|
x1 = max(x11, x12) |
|
|
|
|
y1 = max(y11, y12) |
|
|
|
|
x2 = min(x21, x22) |
|
|
|
|
y2 = min(y21, y22) |
|
|
|
|
inter_area = max(0, x2 - x1) * max(0, y2 - y1) |
|
|
|
|
union_area = (x21 - x11) * (y21 - y11) + (x22 - x12) * (y22 - y12) - inter_area |
|
|
|
|
return max(0, inter_area / union_area) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def NMSBoxes( |
|
|
|
|
boxes: ndarray, |
|
|
|
|
scores: ndarray, |
|
|
|
|
labels: ndarray, |
|
|
|
|
iou_thres: float, |
|
|
|
|
agnostic: bool = False |
|
|
|
|
): |
|
|
|
|
num_boxes = boxes.shape[0] |
|
|
|
|
order = np.argsort(scores)[::-1] |
|
|
|
|
boxes = boxes[order] |
|
|
|
|
labels = labels[order] |
|
|
|
|
|
|
|
|
|
indices = [] |
|
|
|
|
|
|
|
|
|
for i in range(num_boxes): |
|
|
|
|
box_a = boxes[i] |
|
|
|
|
label_a = labels[i] |
|
|
|
|
keep = True |
|
|
|
|
for j in indices: |
|
|
|
|
box_b = boxes[j] |
|
|
|
|
label_b = labels[j] |
|
|
|
|
if not agnostic and label_a != label_b: |
|
|
|
|
continue |
|
|
|
|
if box_iou(box_a, box_b) > iou_thres: |
|
|
|
|
keep = False |
|
|
|
|
if keep: |
|
|
|
|
indices.append(i) |
|
|
|
|
|
|
|
|
|
indices = np.array(indices, dtype=np.int32) |
|
|
|
|
return order[indices] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def det_postprocess(data: Tuple[ndarray, ndarray, ndarray, ndarray]): |
|
|
|
|
assert len(data) == 4 |
|
|
|
|
num_dets, bboxes, scores, labels = (i[0] for i in data) |
|
|
|
|
nums = num_dets.item() |
|
|
|
|
if nums == 0: |
|
|
|
|
return np.empty((0, 4), dtype=np.float32), np.empty( |
|
|
|
|
(0, ), dtype=np.float32), np.empty((0, ), dtype=np.int32) |
|
|
|
|
(0,), dtype=np.float32), np.empty((0,), dtype=np.int32) |
|
|
|
|
# check score negative |
|
|
|
|
scores[scores < 0] = 1 + scores[scores < 0] |
|
|
|
|
bboxes = bboxes[:nums] |
|
|
|
@ -268,7 +200,7 @@ def pose_postprocess( |
|
|
|
|
idx = scores > conf_thres |
|
|
|
|
if not idx.any(): # no bounding boxes or seg were created |
|
|
|
|
return np.empty((0, 4), dtype=np.float32), np.empty( |
|
|
|
|
(0, ), dtype=np.float32), np.empty((0, 0, 0), dtype=np.float32) |
|
|
|
|
(0,), dtype=np.float32), np.empty((0, 0, 0), dtype=np.float32) |
|
|
|
|
bboxes, scores, kpts = bboxes[idx], scores[idx], kpts[idx] |
|
|
|
|
xycenter, wh = np.split(bboxes, [ |
|
|
|
|
2, |
|
|
|
|