parent
112a5d8f41
commit
8e16a15174
4 changed files with 5 additions and 518 deletions
@ -1,135 +0,0 @@ |
||||
//
|
||||
// Created by ubuntu on 1/8/23.
|
||||
//
|
||||
|
||||
#ifndef YOLOV8_TENSORRT_CSRC_DETECT_CONFIG_H |
||||
#define YOLOV8_TENSORRT_CSRC_DETECT_CONFIG_H |
||||
#include "NvInfer.h" |
||||
#include "iostream" |
||||
#include "string" |
||||
#include <sys/stat.h> |
||||
#include <unistd.h> |
||||
#include <assert.h> |
||||
|
||||
#define CHECK(call) \ |
||||
do \
|
||||
{ \
|
||||
const cudaError_t error_code = call; \
|
||||
if (error_code != cudaSuccess) \
|
||||
{ \
|
||||
printf("CUDA Error:\n"); \
|
||||
printf(" File: %s\n", __FILE__); \
|
||||
printf(" Line: %d\n", __LINE__); \
|
||||
printf(" Error code: %d\n", error_code); \
|
||||
printf(" Error text: %s\n", \
|
||||
cudaGetErrorString(error_code)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0) |
||||
|
||||
const int DEVICE = 0; |
||||
|
||||
class Logger : public nvinfer1::ILogger |
||||
{ |
||||
public: |
||||
nvinfer1::ILogger::Severity reportableSeverity; |
||||
|
||||
explicit Logger(nvinfer1::ILogger::Severity severity = nvinfer1::ILogger::Severity::kINFO) : |
||||
reportableSeverity(severity) |
||||
{ |
||||
} |
||||
|
||||
void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override |
||||
{ |
||||
if (severity > reportableSeverity) |
||||
{ |
||||
return; |
||||
} |
||||
switch (severity) |
||||
{ |
||||
case nvinfer1::ILogger::Severity::kINTERNAL_ERROR: |
||||
std::cerr << "INTERNAL_ERROR: "; |
||||
break; |
||||
case nvinfer1::ILogger::Severity::kERROR: |
||||
std::cerr << "ERROR: "; |
||||
break; |
||||
case nvinfer1::ILogger::Severity::kWARNING: |
||||
std::cerr << "WARNING: "; |
||||
break; |
||||
case nvinfer1::ILogger::Severity::kINFO: |
||||
std::cerr << "INFO: "; |
||||
break; |
||||
default: |
||||
std::cerr << "VERBOSE: "; |
||||
break; |
||||
} |
||||
std::cerr << msg << std::endl; |
||||
} |
||||
}; |
||||
|
||||
inline int get_size_by_dims(const nvinfer1::Dims& dims) |
||||
{ |
||||
int size = 1; |
||||
for (int i = 0; i < dims.nbDims; i++) |
||||
{ |
||||
size *= dims.d[i]; |
||||
} |
||||
return size; |
||||
} |
||||
|
||||
inline int DataTypeToSize(const nvinfer1::DataType& dataType) |
||||
{ |
||||
switch (dataType) |
||||
{ |
||||
case nvinfer1::DataType::kFLOAT: |
||||
return sizeof(float); |
||||
case nvinfer1::DataType::kHALF: |
||||
return 2; |
||||
case nvinfer1::DataType::kINT8: |
||||
return sizeof(int8_t); |
||||
case nvinfer1::DataType::kINT32: |
||||
return sizeof(int32_t); |
||||
case nvinfer1::DataType::kBOOL: |
||||
return sizeof(bool); |
||||
default: |
||||
return sizeof(float); |
||||
} |
||||
} |
||||
|
||||
inline float clamp(const float val, const float minVal = 0.f, const float maxVal = 1280.f) |
||||
{ |
||||
assert(minVal <= maxVal); |
||||
return std::min(maxVal, std::max(minVal, val)); |
||||
} |
||||
|
||||
inline bool IsPathExist(const std::string& path) |
||||
{ |
||||
if (access(path.c_str(), 0) == F_OK) |
||||
{ |
||||
return true; |
||||
} |
||||
return false; |
||||
} |
||||
|
||||
inline bool IsFile(const std::string& path) |
||||
{ |
||||
if (!IsPathExist(path)) |
||||
{ |
||||
printf("%s:%d %s not exist\n", __FILE__, __LINE__, path.c_str()); |
||||
return false; |
||||
} |
||||
struct stat buffer; |
||||
return (stat(path.c_str(), &buffer) == 0 && S_ISREG(buffer.st_mode)); |
||||
} |
||||
|
||||
inline bool IsFolder(const std::string& path) |
||||
{ |
||||
if (!IsPathExist(path)) |
||||
{ |
||||
return false; |
||||
} |
||||
struct stat buffer; |
||||
return (stat(path.c_str(), &buffer) == 0 && S_ISDIR(buffer.st_mode)); |
||||
} |
||||
|
||||
#endif //YOLOV8_TENSORRT_CSRC_DETECT_CONFIG_H
|
@ -1,381 +0,0 @@ |
||||
//
|
||||
// Created by ubuntu on 1/8/23.
|
||||
//
|
||||
#include "detect_config.hpp" |
||||
#include <fstream> |
||||
#include <opencv2/opencv.hpp> |
||||
#include "NvInferPlugin.h" |
||||
|
||||
static const int INPUT_W = 640; |
||||
static const int INPUT_H = 640; |
||||
static const int NUM_INPUT = 1; |
||||
static const int NUM_OUTPUT = 4; |
||||
|
||||
static const int NUM_BINDINGS = NUM_INPUT + NUM_OUTPUT; |
||||
const cv::Scalar PAD_COLOR = { 114, 114, 114 }; |
||||
const cv::Scalar RECT_COLOR = cv::Scalar(0, 0, 255); |
||||
const cv::Scalar TXT_COLOR = cv::Scalar(255, 255, 255); |
||||
|
||||
const char* INPUT = "images"; |
||||
const char* NUM_DETS = "num_dets"; |
||||
const char* BBOXES = "bboxes"; |
||||
const char* SCORES = "scores"; |
||||
const char* LABELS = "labels"; |
||||
|
||||
const char* CLASS_NAMES[] = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", |
||||
"traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", |
||||
"dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", |
||||
"umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", |
||||
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", |
||||
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", |
||||
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", |
||||
"couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", |
||||
"remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", |
||||
"refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", |
||||
"toothbrush" }; |
||||
|
||||
const unsigned int COLORS[80][3] = { |
||||
{ 0, 114, 189 }, |
||||
{ 217, 83, 25 }, |
||||
{ 237, 177, 32 }, |
||||
{ 126, 47, 142 }, |
||||
{ 119, 172, 48 }, |
||||
{ 77, 190, 238 }, |
||||
{ 162, 20, 47 }, |
||||
{ 76, 76, 76 }, |
||||
{ 153, 153, 153 }, |
||||
{ 255, 0, 0 }, |
||||
{ 255, 128, 0 }, |
||||
{ 191, 191, 0 }, |
||||
{ 0, 255, 0 }, |
||||
{ 0, 0, 255 }, |
||||
{ 170, 0, 255 }, |
||||
{ 85, 85, 0 }, |
||||
{ 85, 170, 0 }, |
||||
{ 85, 255, 0 }, |
||||
{ 170, 85, 0 }, |
||||
{ 170, 170, 0 }, |
||||
{ 170, 255, 0 }, |
||||
{ 255, 85, 0 }, |
||||
{ 255, 170, 0 }, |
||||
{ 255, 255, 0 }, |
||||
{ 0, 85, 128 }, |
||||
{ 0, 170, 128 }, |
||||
{ 0, 255, 128 }, |
||||
{ 85, 0, 128 }, |
||||
{ 85, 85, 128 }, |
||||
{ 85, 170, 128 }, |
||||
{ 85, 255, 128 }, |
||||
{ 170, 0, 128 }, |
||||
{ 170, 85, 128 }, |
||||
{ 170, 170, 128 }, |
||||
{ 170, 255, 128 }, |
||||
{ 255, 0, 128 }, |
||||
{ 255, 85, 128 }, |
||||
{ 255, 170, 128 }, |
||||
{ 255, 255, 128 }, |
||||
{ 0, 85, 255 }, |
||||
{ 0, 170, 255 }, |
||||
{ 0, 255, 255 }, |
||||
{ 85, 0, 255 }, |
||||
{ 85, 85, 255 }, |
||||
{ 85, 170, 255 }, |
||||
{ 85, 255, 255 }, |
||||
{ 170, 0, 255 }, |
||||
{ 170, 85, 255 }, |
||||
{ 170, 170, 255 }, |
||||
{ 170, 255, 255 }, |
||||
{ 255, 0, 255 }, |
||||
{ 255, 85, 255 }, |
||||
{ 255, 170, 255 }, |
||||
{ 85, 0, 0 }, |
||||
{ 128, 0, 0 }, |
||||
{ 170, 0, 0 }, |
||||
{ 212, 0, 0 }, |
||||
{ 255, 0, 0 }, |
||||
{ 0, 43, 0 }, |
||||
{ 0, 85, 0 }, |
||||
{ 0, 128, 0 }, |
||||
{ 0, 170, 0 }, |
||||
{ 0, 212, 0 }, |
||||
{ 0, 255, 0 }, |
||||
{ 0, 0, 43 }, |
||||
{ 0, 0, 85 }, |
||||
{ 0, 0, 128 }, |
||||
{ 0, 0, 170 }, |
||||
{ 0, 0, 212 }, |
||||
{ 0, 0, 255 }, |
||||
{ 0, 0, 0 }, |
||||
{ 36, 36, 36 }, |
||||
{ 73, 73, 73 }, |
||||
{ 109, 109, 109 }, |
||||
{ 146, 146, 146 }, |
||||
{ 182, 182, 182 }, |
||||
{ 219, 219, 219 }, |
||||
{ 0, 114, 189 }, |
||||
{ 80, 183, 189 }, |
||||
{ 128, 128, 0 } |
||||
}; |
||||
|
||||
struct Object |
||||
{ |
||||
cv::Rect_<float> rect; |
||||
int label = 0; |
||||
float prob = 0.0; |
||||
}; |
||||
|
||||
class YOLOv8 |
||||
{ |
||||
public: |
||||
explicit YOLOv8(const std::string& engine_file_path); |
||||
~YOLOv8(); |
||||
|
||||
void make_pipe(bool warmup = true); |
||||
void copy_from_Mat(const cv::Mat& image); |
||||
void infer(); |
||||
void postprocess(std::vector<Object>& objs); |
||||
|
||||
size_t in_size = 1 * 3 * INPUT_W * INPUT_H; |
||||
float w = INPUT_W; |
||||
float h = INPUT_H; |
||||
float ratio = 1.0f; |
||||
float dw = 0.f; |
||||
float dh = 0.f; |
||||
std::array<std::pair<int, int>, NUM_OUTPUT> out_sizes{}; |
||||
std::array<void*, NUM_OUTPUT> outputs{}; |
||||
private: |
||||
nvinfer1::ICudaEngine* engine = nullptr; |
||||
nvinfer1::IRuntime* runtime = nullptr; |
||||
nvinfer1::IExecutionContext* context = nullptr; |
||||
cudaStream_t stream = nullptr; |
||||
std::array<void*, NUM_BINDINGS> buffs{}; |
||||
Logger gLogger{ nvinfer1::ILogger::Severity::kERROR }; |
||||
|
||||
}; |
||||
|
||||
YOLOv8::YOLOv8(const std::string& engine_file_path) |
||||
{ |
||||
std::ifstream file(engine_file_path, std::ios::binary); |
||||
assert(file.good()); |
||||
file.seekg(0, std::ios::end); |
||||
auto size = file.tellg(); |
||||
std::ostringstream fmt; |
||||
|
||||
file.seekg(0, std::ios::beg); |
||||
char* trtModelStream = new char[size]; |
||||
assert(trtModelStream); |
||||
file.read(trtModelStream, size); |
||||
file.close(); |
||||
initLibNvInferPlugins(&this->gLogger, ""); |
||||
this->runtime = nvinfer1::createInferRuntime(this->gLogger); |
||||
assert(this->runtime != nullptr); |
||||
|
||||
this->engine = this->runtime->deserializeCudaEngine(trtModelStream, size); |
||||
assert(this->engine != nullptr); |
||||
|
||||
this->context = this->engine->createExecutionContext(); |
||||
|
||||
assert(this->context != nullptr); |
||||
cudaStreamCreate(&this->stream); |
||||
|
||||
} |
||||
|
||||
YOLOv8::~YOLOv8() |
||||
{ |
||||
this->context->destroy(); |
||||
this->engine->destroy(); |
||||
this->runtime->destroy(); |
||||
cudaStreamDestroy(this->stream); |
||||
for (auto& ptr : this->buffs) |
||||
{ |
||||
CHECK(cudaFree(ptr)); |
||||
} |
||||
|
||||
for (auto& ptr : this->outputs) |
||||
{ |
||||
CHECK(cudaFreeHost(ptr)); |
||||
} |
||||
|
||||
} |
||||
void YOLOv8::make_pipe(bool warmup) |
||||
{ |
||||
const nvinfer1::Dims input_dims = this->engine->getBindingDimensions( |
||||
this->engine->getBindingIndex(INPUT) |
||||
); |
||||
this->in_size = get_size_by_dims(input_dims); |
||||
CHECK(cudaMalloc(&this->buffs[0], this->in_size * sizeof(float))); |
||||
|
||||
this->context->setBindingDimensions(0, input_dims); |
||||
const int32_t num_dets_idx = this->engine->getBindingIndex(NUM_DETS); |
||||
const nvinfer1::Dims num_dets_dims = this->context->getBindingDimensions(num_dets_idx); |
||||
this->out_sizes[num_dets_idx - NUM_INPUT].first = get_size_by_dims(num_dets_dims); |
||||
this->out_sizes[num_dets_idx - NUM_INPUT].second = DataTypeToSize( |
||||
this->engine->getBindingDataType(num_dets_idx)); |
||||
|
||||
const int32_t bboxes_idx = this->engine->getBindingIndex(BBOXES); |
||||
const nvinfer1::Dims bboxes_dims = this->context->getBindingDimensions(bboxes_idx); |
||||
|
||||
this->out_sizes[bboxes_idx - NUM_INPUT].first = get_size_by_dims(bboxes_dims); |
||||
this->out_sizes[bboxes_idx - NUM_INPUT].second = DataTypeToSize( |
||||
this->engine->getBindingDataType(bboxes_idx)); |
||||
|
||||
const int32_t scores_idx = this->engine->getBindingIndex(SCORES); |
||||
const nvinfer1::Dims scores_dims = this->context->getBindingDimensions(scores_idx); |
||||
this->out_sizes[scores_idx - NUM_INPUT].first = get_size_by_dims(scores_dims); |
||||
this->out_sizes[scores_idx - NUM_INPUT].second = DataTypeToSize( |
||||
this->engine->getBindingDataType(scores_idx)); |
||||
|
||||
const int32_t labels_idx = this->engine->getBindingIndex(LABELS); |
||||
const nvinfer1::Dims labels_dims = this->context->getBindingDimensions(labels_idx); |
||||
this->out_sizes[labels_idx - NUM_INPUT].first = get_size_by_dims(labels_dims); |
||||
this->out_sizes[labels_idx - NUM_INPUT].second = DataTypeToSize( |
||||
this->engine->getBindingDataType(labels_idx)); |
||||
|
||||
for (int i = 0; i < NUM_OUTPUT; i++) |
||||
{ |
||||
const int osize = this->out_sizes[i].first * out_sizes[i].second; |
||||
CHECK(cudaHostAlloc(&this->outputs[i], osize, 0)); |
||||
CHECK(cudaMalloc(&this->buffs[NUM_INPUT + i], osize)); |
||||
} |
||||
if (warmup) |
||||
{ |
||||
for (int i = 0; i < 10; i++) |
||||
{ |
||||
size_t isize = this->in_size * sizeof(float); |
||||
auto* tmp = new float[isize]; |
||||
|
||||
CHECK(cudaMemcpyAsync(this->buffs[0], |
||||
tmp, |
||||
isize, |
||||
cudaMemcpyHostToDevice, |
||||
this->stream)); |
||||
this->infer(); |
||||
} |
||||
printf("model warmup 10 times\n"); |
||||
|
||||
} |
||||
} |
||||
|
||||
void YOLOv8::copy_from_Mat(const cv::Mat& image) |
||||
{ |
||||
float height = (float)image.rows; |
||||
float width = (float)image.cols; |
||||
|
||||
float r = std::min(INPUT_H / height, INPUT_W / width); |
||||
|
||||
int padw = (int)std::round(width * r); |
||||
int padh = (int)std::round(height * r); |
||||
|
||||
cv::Mat tmp; |
||||
if ((int)width != padw || (int)height != padh) |
||||
{ |
||||
cv::resize(image, tmp, cv::Size(padw, padh)); |
||||
} |
||||
else |
||||
{ |
||||
tmp = image.clone(); |
||||
} |
||||
|
||||
float _dw = INPUT_W - padw; |
||||
float _dh = INPUT_H - padh; |
||||
|
||||
_dw /= 2.0f; |
||||
_dh /= 2.0f; |
||||
int top = int(std::round(_dh - 0.1f)); |
||||
int bottom = int(std::round(_dh + 0.1f)); |
||||
int left = int(std::round(_dw - 0.1f)); |
||||
int right = int(std::round(_dw + 0.1f)); |
||||
cv::copyMakeBorder(tmp, tmp, top, bottom, left, right, cv::BORDER_CONSTANT, PAD_COLOR); |
||||
cv::dnn::blobFromImage(tmp, |
||||
tmp, |
||||
1 / 255.f, |
||||
cv::Size(), |
||||
cv::Scalar(0, 0, 0), |
||||
true, |
||||
false, |
||||
CV_32F); |
||||
CHECK(cudaMemcpyAsync(this->buffs[0], |
||||
tmp.ptr<float>(), |
||||
this->in_size * sizeof(float), |
||||
cudaMemcpyHostToDevice, |
||||
this->stream)); |
||||
|
||||
this->ratio = 1 / r; |
||||
this->dw = _dw; |
||||
this->dh = _dh; |
||||
this->w = width; |
||||
this->h = height; |
||||
} |
||||
|
||||
void YOLOv8::infer() |
||||
{ |
||||
this->context->enqueueV2(buffs.data(), this->stream, nullptr); |
||||
for (int i = 0; i < NUM_OUTPUT; i++) |
||||
{ |
||||
const int osize = this->out_sizes[i].first * out_sizes[i].second; |
||||
CHECK(cudaMemcpyAsync(this->outputs[i], |
||||
this->buffs[NUM_INPUT + i], |
||||
osize, |
||||
cudaMemcpyDeviceToHost, |
||||
this->stream)); |
||||
} |
||||
cudaStreamSynchronize(this->stream); |
||||
|
||||
} |
||||
|
||||
void YOLOv8::postprocess(std::vector<Object>& objs) |
||||
{ |
||||
int* num_dets = static_cast<int*>(this->outputs[0]); |
||||
auto* boxes = static_cast<float*>(this->outputs[1]); |
||||
auto* scores = static_cast<float*>(this->outputs[2]); |
||||
int* labels = static_cast<int*>(this->outputs[3]); |
||||
for (int i = 0; i < num_dets[0]; i++) |
||||
{ |
||||
Object obj; |
||||
float x0 = (boxes[i * 4]) - this->dw; |
||||
float y0 = (boxes[i * 4 + 1]) - this->dh; |
||||
float x1 = (boxes[i * 4 + 2]) - this->dw; |
||||
float y1 = (boxes[i * 4 + 3]) - this->dh; |
||||
|
||||
x0 = clamp(x0 * this->ratio, 0.f, this->w); |
||||
y0 = clamp(y0 * this->ratio, 0.f, this->h); |
||||
x1 = clamp(x1 * this->ratio, 0.f, this->w); |
||||
y1 = clamp(y1 * this->ratio, 0.f, this->h); |
||||
obj.rect.x = x0; |
||||
obj.rect.y = y0; |
||||
obj.rect.width = x1 - x0; |
||||
obj.rect.height = y1 - y0; |
||||
obj.prob = scores[i]; |
||||
obj.label = labels[i]; |
||||
|
||||
objs.push_back(obj); |
||||
|
||||
} |
||||
} |
||||
|
||||
static void draw_objects(const cv::Mat& image, cv::Mat& res, const std::vector<Object>& objs) |
||||
{ |
||||
res = image.clone(); |
||||
for (auto& obj : objs) |
||||
{ |
||||
cv::Scalar color = cv::Scalar(COLORS[obj.label][0], COLORS[obj.label][1], COLORS[obj.label][2]); |
||||
cv::rectangle(res, obj.rect, color, 2); |
||||
|
||||
char text[256]; |
||||
sprintf(text, "%s %.1f%%", CLASS_NAMES[obj.label], obj.prob * 100); |
||||
|
||||
int baseLine = 0; |
||||
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.4, 1, &baseLine); |
||||
|
||||
int x = (int)obj.rect.x; |
||||
int y = (int)obj.rect.y + 1; |
||||
|
||||
if (y > res.rows) |
||||
y = res.rows; |
||||
|
||||
cv::rectangle(res, cv::Rect(x, y, label_size.width, label_size.height + baseLine), RECT_COLOR, -1); |
||||
|
||||
cv::putText(res, text, cv::Point(x, y + label_size.height), |
||||
cv::FONT_HERSHEY_SIMPLEX, 0.4, TXT_COLOR, 1); |
||||
} |
||||
} |
Loading…
Reference in new issue