|
|
|
@ -2,6 +2,8 @@ |
|
|
|
|
YOLOv8 using TensorRT accelerate ! |
|
|
|
|
|
|
|
|
|
# Preprocessed ONNX model |
|
|
|
|
You can dowload the onnx model which is pretrained by https://github.com/ultralytics . |
|
|
|
|
|
|
|
|
|
[**YOLOv8-n**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8n_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1772936700&Signature=r6HgJTTcCSAxQxD9bKO9qBTtigQ%3D) |
|
|
|
|
|
|
|
|
|
[**YOLOv8-s**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8s_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936722&Signature=JjxQFx1YElcVdsCaMoj81KJ4a5s%3D) |
|
|
|
@ -11,3 +13,60 @@ YOLOv8 using TensorRT accelerate ! |
|
|
|
|
[**YOLOv8-l**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8l_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936763&Signature=RGkJ4G2XJ4J%2BNiki5cJi3oBkDnA%3D) |
|
|
|
|
|
|
|
|
|
[**YOLOv8-x**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8x_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1673936778&Signature=3o%2F7QKhiZg1dW3I6sDrY4ug6MQU%3D) |
|
|
|
|
|
|
|
|
|
# Build TensorRT engine by ONNX |
|
|
|
|
|
|
|
|
|
## 1. By TensorRT Python api |
|
|
|
|
|
|
|
|
|
You can export TensorRT engine by [`build.py` ](build.py). |
|
|
|
|
|
|
|
|
|
Usage: |
|
|
|
|
|
|
|
|
|
``` shell |
|
|
|
|
python3 build.py --onnx yolov8s_nms.onnx --device cuda:0 --fp16 |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
#### Description of all arguments |
|
|
|
|
|
|
|
|
|
- `--onnx` : The ONNX model you download. |
|
|
|
|
- `--device` : The CUDA deivce you export engine . |
|
|
|
|
- `--half` : Whether to export half-precision model. |
|
|
|
|
|
|
|
|
|
## 2. By trtexec tools |
|
|
|
|
|
|
|
|
|
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools. |
|
|
|
|
|
|
|
|
|
Usage: |
|
|
|
|
|
|
|
|
|
``` shell |
|
|
|
|
/usr/src/tensorrt/bin/trtexec --onnx=yolov8s_nms.onnx --saveEngine=yolov8s_nms.engine --fp16 |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
***If you installed TensorRT by a debian package, then the installation path of `trtexec` is `/usr/src/tensorrt/bin/trtexec`*** |
|
|
|
|
|
|
|
|
|
***If you installed TensorRT by a tar package, then the installation path of trtexec is under the `bin` folder in the path you decompressed*** |
|
|
|
|
|
|
|
|
|
# Infer images by the engine which you export |
|
|
|
|
|
|
|
|
|
You can infer images with the engine by [`infer.py`](infer.py) . |
|
|
|
|
|
|
|
|
|
Usage: |
|
|
|
|
|
|
|
|
|
``` shell |
|
|
|
|
python3 infer.py --engine yolov8s_nms.engine --imgs data --show --out-dir outputs --device cuda:0 |
|
|
|
|
``` |
|
|
|
|
|
|
|
|
|
#### Description of all arguments |
|
|
|
|
|
|
|
|
|
- `--engine` : The Engine you export. |
|
|
|
|
|
|
|
|
|
- `--imgs` : The images path you want to detect. |
|
|
|
|
|
|
|
|
|
- `--show` : Whether to show detection results. |
|
|
|
|
|
|
|
|
|
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag. |
|
|
|
|
|
|
|
|
|
- `--device` : The CUDA deivce you use. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|