deepstream support

pull/6/head
triple-Mu 2 years ago
parent 10b01dd5f5
commit 22395f96c9
  1. 75
      csrc/deepstream/config_yoloV8.txt
  2. 113
      csrc/deepstream/custom_bbox_parser/nvdsparsebbox_yoloV8.cpp
  3. 116
      csrc/deepstream/deepstream_app_config.txt
  4. 80
      csrc/deepstream/labels.txt

@ -0,0 +1,75 @@
################################################################################
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################
# Following properties are mandatory when engine files are not specified:
# int8-calib-file(Only in INT8), model-file-format
# Caffemodel mandatory properties: model-file, proto-file, output-blob-names
# UFF: uff-file, input-dims, uff-input-blob-name, output-blob-names
# ONNX: onnx-file
#
# Mandatory properties for detectors:
# num-detected-classes
#
# Optional properties for detectors:
# enable-dbscan(Default=false), interval(Primary mode only, Default=0)
# custom-lib-path
# parse-bbox-func-name
#
# Mandatory properties for classifiers:
# classifier-threshold, is-classifier
#
# Optional properties for classifiers:
# classifier-async-mode(Secondary mode only, Default=false)
#
# Optional properties in secondary mode:
# operate-on-gie-id(Default=0), operate-on-class-ids(Defaults to all classes),
# input-object-min-width, input-object-min-height, input-object-max-width,
# input-object-max-height
#
# Following properties are always recommended:
# batch-size(Default=1)
#
# Other optional properties:
# net-scale-factor(Default=1), network-mode(Default=0 i.e FP32),
# model-color-format(Default=0 i.e. RGB) model-engine-file, labelfile-path,
# mean-file, gie-unique-id(Default=0), offsets, gie-mode (Default=1 i.e. primary),
# custom-lib-path, network-mode(Default=0 i.e FP32)
#
# The values in the config file are overridden by values set through GObject
# properties.
[property]
net-scale-factor=0.0039215697906911373
gpu-id=0
#0=RGB, 1=BGR
model-color-format=0
model-engine-file=./yolov8s.engine
labelfile-path=./labels.txt
## 0=FP32, 1=INT8, 2=FP16 mode
network-mode=2
num-detected-classes=80
gie-unique-id=1
is-classifier=0
maintain-aspect-ratio=1
output-blob-names=num_dets;bboxes;scores;labels
parse-bbox-func-name=NvDsInferParseCustomYoloV8
custom-lib-path=./build/libnvdsinfer_custom_bbox_yoloV8.so

@ -0,0 +1,113 @@
#include "nvdsinfer_custom_impl.h"
#include <cassert>
#include <iostream>
/**
* Function expected by DeepStream for decoding the TinyYOLOv2 output.
*
* C-linkage [extern "C"] was written to prevent name-mangling. This function must return true after
* adding all bounding boxes to the objectList vector.
*
* @param [outputLayersInfo] std::vector of NvDsInferLayerInfo objects with information about the output layer.
* @param [networkInfo] NvDsInferNetworkInfo object with information about the TinyYOLOv2 network.
* @param [detectionParams] NvDsInferParseDetectionParams with information about some config params.
* @param [objectList] std::vector of NvDsInferParseObjectInfo objects to which bounding box information must
* be stored.
*
* @return true
*/
// This is just the function prototype. The definition is written at the end of the file.
extern "C" bool NvDsInferParseCustomYoloV8(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList);
static __inline__ float bbox_clip(const float& val, const float& minVal = 0.f, const float& maxVal = 1280.f)
{
assert(minVal <= maxVal);
return std::max(std::min(val, (maxVal - 1)), minVal);
}
static std::vector<NvDsInferParseObjectInfo> decodeYoloV8Tensor(
const int* num_dets,
const float* bboxes,
const float* scores,
const int* labels,
const unsigned int& img_w,
const unsigned int& img_h
)
{
std::vector<NvDsInferParseObjectInfo> bboxInfo;
size_t nums = num_dets[0];
for (size_t i = 0; i < nums; i++)
{
float x0 = (bboxes[i * 4]);
float y0 = (bboxes[i * 4 + 1]);
float x1 = (bboxes[i * 4 + 2]);
float y1 = (bboxes[i * 4 + 3]);
x0 = bbox_clip(x0, 0.f, img_w);
y0 = bbox_clip(y0, 0.f, img_h);
x1 = bbox_clip(x1, 0.f, img_w);
y1 = bbox_clip(y1, 0.f, img_h);
NvDsInferParseObjectInfo obj;
obj.left = x0;
obj.top = y0;
obj.width = x1 - x0;
obj.height = y1 - y0;
obj.detectionConfidence = scores[i];
obj.classId = labels[i];
bboxInfo.push_back(obj);
}
return bboxInfo;
}
/* C-linkage to prevent name-mangling */
extern "C" bool NvDsInferParseCustomYoloV8(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
{
// Some assertions and error checking.
if (outputLayersInfo.empty() || outputLayersInfo.size() != 4)
{
std::cerr << "Could not find output layer in bbox parsing" << std::endl;
return false;
}
// Obtaining the output layer.
const NvDsInferLayerInfo& num_dets = outputLayersInfo[0];
const NvDsInferLayerInfo& bboxes = outputLayersInfo[1];
const NvDsInferLayerInfo& scores = outputLayersInfo[2];
const NvDsInferLayerInfo& labels = outputLayersInfo[3];
// num_dets(int) bboxes(float) scores(float) labels(int)
assert (num_dets.dims.numDims == 2);
assert (bboxes.dims.numDims == 3);
assert (scores.dims.numDims == 2);
assert (labels.dims.numDims == 2);
// Decoding the output tensor of YOLOv8 to the NvDsInferParseObjectInfo format.
std::vector<NvDsInferParseObjectInfo> objects =
decodeYoloV8Tensor(
(const int*)(num_dets.buffer),
(const float*)(bboxes.buffer),
(const float*)(scores.buffer),
(const int*)(labels.buffer),
networkInfo.width,
networkInfo.height
);
objectList.clear();
objectList = objects;
return true;
}
/* Check that the custom function has been defined correctly */
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseCustomYoloV8);

@ -0,0 +1,116 @@
[application]
enable-perf-measurement=1
perf-measurement-interval-sec=5
#gie-kitti-output-dir=streamscl
[tiled-display]
enable=1
rows=1
columns=1
# show
width=1920
height=1080
gpu-id=0
#(0): nvbuf-mem-default - Default memory allocated, specific to particular platform
#(1): nvbuf-mem-cuda-pinned - Allocate Pinned/Host cuda memory, applicable for Tesla
#(2): nvbuf-mem-cuda-device - Allocate Device cuda memory, applicable for Tesla
#(3): nvbuf-mem-cuda-unified - Allocate Unified cuda memory, applicable for Tesla
#(4): nvbuf-mem-surface-array - Allocate Surface Array memory, applicable for Jetson
nvbuf-memory-type=0
[source0]
enable=1
#Type - 1=CameraV4L2 2=URI 3=MultiURI
type=3
uri=file://./sample_1080p_h264.mp4
num-sources=1
drop-frame-interval=1
gpu-id=0
# (0): memtype_device - Memory type Device
# (1): memtype_pinned - Memory type Host Pinned
# (2): memtype_unified - Memory type Unified
cudadec-memtype=0
[sink0]
enable=1
#Type - 1=FakeSink 2=EglSink 3=File
type=2
sync=0
source-id=0
gpu-id=0
nvbuf-memory-type=0
#[sink1]
#enable=1
#Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming
#type=4
##1=h264 2=h265
#codec=1
#sync=0
#bitrate=4000000
## set below properties in case of RTSPStreaming
#rtsp-port=8554
#udp-port=5400
#[sink2]
#enable=1
##Type - 1=FakeSink 2=EglSink 3=File 4=RTSPStreaming
#type=3
##1=h264 2=h265
#codec=1
#sync=0
#bitrate=4000000
#container=1
#output-file=./output.mp4
[osd]
enable=1
gpu-id=0
border-width=1
text-size=15
text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1
font=Serif
show-clock=0
clock-x-offset=800
clock-y-offset=820
clock-text-size=12
clock-color=1;0;0;1
nvbuf-memory-type=0
[streammux]
gpu-id=0
##Boolean property to inform muxer that sources are live
live-source=0
batch-size=1
##time out in usec, to wait after the first buffer is available
##to push the batch even if the complete batch is not formed
batched-push-timeout=40000
## Set muxer output width and height
width=1920
height=1080
##Enable to maintain aspect ratio wrt source, and allow black borders, works
##along with width, height properties
enable-padding=0
nvbuf-memory-type=0
# config-file property is mandatory for any gie section.
# Other properties are optional and if set will override the properties set in
# the infer config file.
[primary-gie]
enable=1
gpu-id=0
model-engine-file=yolov8s.engine
labelfile-path=./labels.txt
batch-size=1
#Required by the app for OSD, not a plugin property
bbox-border-color0=1;0;0;1
bbox-border-color1=0;1;1;1
bbox-border-color2=0;0;1;1
bbox-border-color3=0;1;0;1
gie-unique-id=1
nvbuf-memory-type=0
config-file=config_yoloV8.txt
[tests]
file-loop=0

@ -0,0 +1,80 @@
person
bicycle
car
motorbike
aeroplane
bus
train
truck
boat
traffic light
fire hydrant
stop sign
parking meter
bench
bird
cat
dog
horse
sheep
cow
elephant
bear
zebra
giraffe
backpack
umbrella
handbag
tie
suitcase
frisbee
skis
snowboard
sports ball
kite
baseball bat
baseball glove
skateboard
surfboard
tennis racket
bottle
wine glass
cup
fork
knife
spoon
bowl
banana
apple
sandwich
orange
broccoli
carrot
hot dog
pizza
donut
cake
chair
sofa
pottedplant
bed
diningtable
toilet
tvmonitor
laptop
mouse
remote
keyboard
cell phone
microwave
oven
toaster
sink
refrigerator
book
clock
vase
scissors
teddy bear
hair drier
toothbrush
Loading…
Cancel
Save