Update Readme

pull/6/head
triple-Mu 2 years ago
parent b8ff311507
commit 06c1b07a67
  1. 32
      README.md

@ -30,9 +30,39 @@
# Build TensorRT engine by ONNX
## Export ONNX by `ultralytics` API
You can export your onnx model by `ultralytics` API
and add postprocess into model at the same time.
``` shell
python export.py \
--weights yolov8s.pt \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The PyTorch model you trained.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--opset` : ONNX opset version, default is 11.
- `--sim` : Whether to simplify your onnx model.
- `--input-shape` : Input shape for you model, should be 4 dimensions.
- `--device` : The CUDA deivce you export engine .
You will get an onnx model whose prefix is the same as input weights.
## Preprocessed ONNX model
You can dowload the onnx model which are exported by `YOLOv8` package and modified by me.
If you just want to taste first, you can dowload the onnx model which are exported by `YOLOv8` package and modified by me.
[**YOLOv8-n**](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8n_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1772936700&Signature=r6HgJTTcCSAxQxD9bKO9qBTtigQ%3D)

Loading…
Cancel
Save