You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

77 lines
2.3 KiB

from models import TRTModule # isort:skip
import argparse
from pathlib import Path
import cv2
import torch
from config import CLASSES_CLS
from models.utils import blob, path_to_list
def main(args: argparse.Namespace) -> None:
device = torch.device(args.device)
Engine = TRTModule(args.engine, device)
H, W = Engine.inp_info[0].shape[-2:]
images = path_to_list(args.imgs)
save_path = Path(args.out_dir)
if not args.show and not save_path.exists():
save_path.mkdir(parents=True, exist_ok=True)
for image in images:
save_image = save_path / image.name
bgr = cv2.imread(str(image))
draw = bgr.copy()
bgr = cv2.resize(bgr, (W, H))
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
tensor = blob(rgb, return_seg=False)
tensor = torch.asarray(tensor, device=device)
# inference
data = Engine(tensor)
score, cls_id = data[0].max(0)
score = float(score)
cls_id = int(cls_id)
cls = CLASSES_CLS[cls_id]
text = f'{cls}:{score:.3f}'
(_w, _h), _bl = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 1)
_y1 = min(10, draw.shape[0])
cv2.rectangle(draw, (10, _y1), (10 + _w, _y1 + _h + _bl), (0, 0, 255),
-1)
cv2.putText(draw, text, (10, _y1 + _h), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
(255, 255, 255), 2)
if args.show:
cv2.imshow('result', draw)
cv2.waitKey(0)
else:
cv2.imwrite(str(save_image), draw)
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--engine', type=str, help='Engine file')
parser.add_argument('--imgs', type=str, help='Images file')
parser.add_argument('--show',
action='store_true',
help='Show the detection results')
parser.add_argument('--out-dir',
type=str,
default='./output',
help='Path to output file')
parser.add_argument('--device',
type=str,
default='cuda:0',
help='TensorRT infer device')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)