|
|
|
# YOLOv8-obb Model with TensorRT
|
|
|
|
|
|
|
|
The yolov8-obb model conversion route is :
|
|
|
|
YOLOv8 PyTorch model -> ONNX -> TensorRT Engine
|
|
|
|
|
|
|
|
***Notice !!!*** We don't support TensorRT API building !!!
|
|
|
|
|
|
|
|
# Export Orin ONNX model by ultralytics
|
|
|
|
|
|
|
|
You can leave this repo and use the original `ultralytics` repo for onnx export.
|
|
|
|
|
|
|
|
### 1. ONNX -> TensorRT
|
|
|
|
|
|
|
|
You can export your onnx model by `ultralytics` API.
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
yolo export model=yolov8s-obb.pt format=onnx opset=11 simplify=True
|
|
|
|
```
|
|
|
|
|
|
|
|
or run this python script:
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8s-obb.pt") # load a pretrained model (recommended for training)
|
|
|
|
success = model.export(format="onnx", opset=11, simplify=True) # export the model to onnx format
|
|
|
|
assert success
|
|
|
|
```
|
|
|
|
|
|
|
|
Then build engine by Trtexec Tools.
|
|
|
|
|
|
|
|
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools.
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
/usr/src/tensorrt/bin/trtexec \
|
|
|
|
--onnx=yolov8s-obb.onnx \
|
|
|
|
--saveEngine=yolov8s-obb.engine \
|
|
|
|
--fp16
|
|
|
|
```
|
|
|
|
|
|
|
|
### 2. Direct to TensorRT (NOT RECOMMAND!!)
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
```shell
|
|
|
|
yolo export model=yolov8s-obb.pt format=engine device=0
|
|
|
|
```
|
|
|
|
|
|
|
|
or run python script:
|
|
|
|
|
|
|
|
```python
|
|
|
|
from ultralytics import YOLO
|
|
|
|
|
|
|
|
# Load a model
|
|
|
|
model = YOLO("yolov8s-obb.pt") # load a pretrained model (recommended for training)
|
|
|
|
success = model.export(format="engine", device=0) # export the model to engine format
|
|
|
|
assert success
|
|
|
|
```
|
|
|
|
|
|
|
|
After executing the above script, you will get an engine named `yolov8s-obb.engine` .
|
|
|
|
|
|
|
|
# Inference
|
|
|
|
|
|
|
|
## Infer with python script
|
|
|
|
|
|
|
|
You can infer images with the engine by [`infer-obb.py`](../infer-obb.py) .
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
python3 infer-obb.py \
|
|
|
|
--engine yolov8s-obb.engine \
|
|
|
|
--imgs data \
|
|
|
|
--show \
|
|
|
|
--out-dir outputs \
|
|
|
|
--device cuda:0
|
|
|
|
```
|
|
|
|
|
|
|
|
#### Description of all arguments
|
|
|
|
|
|
|
|
- `--engine` : The Engine you export.
|
|
|
|
- `--imgs` : The images path you want to detect.
|
|
|
|
- `--show` : Whether to show detection results.
|
|
|
|
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
|
|
|
|
- `--device` : The CUDA deivce you use.
|
|
|
|
|
|
|
|
## Inference with c++
|
|
|
|
|
|
|
|
You can infer with c++ in [`csrc/obb/normal`](../csrc/obb/normal) .
|
|
|
|
|
|
|
|
### Build:
|
|
|
|
|
|
|
|
Please set you own librarys in [`CMakeLists.txt`](../csrc/obb/normal/CMakeLists.txt) and modify `CLASS_NAMES`
|
|
|
|
and `COLORS` in [`main.cpp`](../csrc/obb/normal/main.cpp).
|
|
|
|
|
|
|
|
Besides, you can modify the postprocess parameters such as `num_labels` and `score_thres` and `iou_thres` and `topk`
|
|
|
|
|
|
|
|
And build:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
export root=${PWD}
|
|
|
|
cd src/obb/normal
|
|
|
|
mkdir build
|
|
|
|
cmake ..
|
|
|
|
make
|
|
|
|
mv yolov8-obb ${root}
|
|
|
|
cd ${root}
|
|
|
|
```
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
# infer image
|
|
|
|
./yolov8-obb yolov8s-obb.engine data/bus.jpg
|
|
|
|
# infer images
|
|
|
|
./yolov8-obb yolov8s-obb.engine data
|
|
|
|
# infer video
|
|
|
|
./yolov8-obb yolov8s-obb.engine data/test.mp4 # the video path
|
|
|
|
```
|