|
|
|
# YOLOv8 on Jetson
|
|
|
|
|
|
|
|
Only test on `Jetson-NX 4GB`
|
|
|
|
|
|
|
|
ENVS:
|
|
|
|
- Jetpack 4.6.3
|
|
|
|
- CUDA-10.2
|
|
|
|
- CUDNN-8.2.1
|
|
|
|
- TensorRT-8.2.1
|
|
|
|
- DeepStream-6.0.1
|
|
|
|
- OpenCV-4.1.1
|
|
|
|
- CMake-3.10.2
|
|
|
|
|
|
|
|
If you have other environment-related issues, please discuss in issue.
|
|
|
|
|
|
|
|
## End2End Detection
|
|
|
|
|
|
|
|
### 1. Export Detection End2End ONNX
|
|
|
|
|
|
|
|
`yolov8s.pt` is your trained pytorch model, or the official pre-trained model.
|
|
|
|
|
|
|
|
Do not use any model other than pytorch model.
|
|
|
|
Do not use [`build.py`](../build.py) to export engine if you don't know how to install pytorch and other environments on jetson.
|
|
|
|
|
|
|
|
***!!! Please use the PC to execute the following script !!!***
|
|
|
|
|
|
|
|
```shell
|
|
|
|
# Export yolov8s.pt to yolov8s.onnx
|
|
|
|
python3 export-det.py --weights yolov8s.pt --sim
|
|
|
|
```
|
|
|
|
|
|
|
|
***!!! Please use the Jetson to execute the following script !!!***
|
|
|
|
|
|
|
|
```shell
|
|
|
|
# Using trtexec tools for export engine
|
|
|
|
/usr/src/tensorrt/bin/trtexec \
|
|
|
|
--onnx=yolov8s.onnx \
|
|
|
|
--saveEngine=yolov8s.engine
|
|
|
|
```
|
|
|
|
|
|
|
|
After executing the above command, you will get an engine named `yolov8s.engine` .
|
|
|
|
|
|
|
|
### 2. Inference with c++
|
|
|
|
|
|
|
|
It is highly recommended to use C++ inference on Jetson.
|
|
|
|
Here is a demo: [`csrc/jetson/detect`](../csrc/jetson/detect) .
|
|
|
|
|
|
|
|
#### Build:
|
|
|
|
|
|
|
|
Please modify `CLASS_NAMES` and `COLORS` in [`main.cpp`](../csrc/jetson/detect/main.cpp) for yourself.
|
|
|
|
|
|
|
|
And build:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
export root=${PWD}
|
|
|
|
cd src/jetson/detect
|
|
|
|
mkdir build
|
|
|
|
cmake ..
|
|
|
|
make
|
|
|
|
mv yolov8 ${root}
|
|
|
|
cd ${root}
|
|
|
|
```
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
# infer image
|
|
|
|
./yolov8 yolov8s.engine data/bus.jpg
|
|
|
|
# infer images
|
|
|
|
./yolov8 yolov8s.engine data
|
|
|
|
# infer video
|
|
|
|
./yolov8 yolov8s.engine data/test.mp4 # the video path
|
|
|
|
```
|
|
|
|
|
|
|
|
## Speedup Segmention
|
|
|
|
|
|
|
|
### 1. Export Segmention Speedup ONNX
|
|
|
|
|
|
|
|
`yolov8s-seg.pt` is your trained pytorch model, or the official pre-trained model.
|
|
|
|
|
|
|
|
Do not use any model other than pytorch model.
|
|
|
|
Do not use [`build.py`](../build.py) to export engine if you don't know how to install pytorch and other environments on jetson.
|
|
|
|
|
|
|
|
***!!! Please use the PC to execute the following script !!!***
|
|
|
|
|
|
|
|
```shell
|
|
|
|
# Export yolov8s-seg.pt to yolov8s-seg.onnx
|
|
|
|
python3 export-seg.py --weights yolov8s-seg.pt --sim
|
|
|
|
```
|
|
|
|
|
|
|
|
***!!! Please use the Jetson to execute the following script !!!***
|
|
|
|
|
|
|
|
```shell
|
|
|
|
# Using trtexec tools for export engine
|
|
|
|
/usr/src/tensorrt/bin/trtexec \
|
|
|
|
--onnx=yolov8s-seg.onnx \
|
|
|
|
--saveEngine=yolov8s-seg.engine
|
|
|
|
```
|
|
|
|
|
|
|
|
After executing the above command, you will get an engine named `yolov8s-seg.engine` .
|
|
|
|
|
|
|
|
### 2. Inference with c++
|
|
|
|
|
|
|
|
It is highly recommended to use C++ inference on Jetson.
|
|
|
|
Here is a demo: [`csrc/jetson/segment`](../csrc/jetson/segment) .
|
|
|
|
|
|
|
|
#### Build:
|
|
|
|
|
|
|
|
Please modify `CLASS_NAMES` and `COLORS` and postprocess parameters in [`main.cpp`](../csrc/jetson/segment/main.cpp) for yourself.
|
|
|
|
|
|
|
|
```c++
|
|
|
|
int topk = 100;
|
|
|
|
int seg_h = 160; // yolov8 model proto height
|
|
|
|
int seg_w = 160; // yolov8 model proto width
|
|
|
|
int seg_channels = 32; // yolov8 model proto channels
|
|
|
|
float score_thres = 0.25f;
|
|
|
|
float iou_thres = 0.65f;
|
|
|
|
```
|
|
|
|
|
|
|
|
And build:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
export root=${PWD}
|
|
|
|
cd src/jetson/segment
|
|
|
|
mkdir build
|
|
|
|
cmake ..
|
|
|
|
make
|
|
|
|
mv yolov8-seg ${root}
|
|
|
|
cd ${root}
|
|
|
|
```
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
# infer image
|
|
|
|
./yolov8-seg yolov8s-seg.engine data/bus.jpg
|
|
|
|
# infer images
|
|
|
|
./yolov8-seg yolov8s-seg.engine data
|
|
|
|
# infer video
|
|
|
|
./yolov8-seg yolov8s-seg.engine data/test.mp4 # the video path
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## Normal Posture
|
|
|
|
|
|
|
|
### 1. Export Posture Normal ONNX
|
|
|
|
|
|
|
|
`yolov8s-pose.pt` is your trained pytorch model, or the official pre-trained model.
|
|
|
|
|
|
|
|
Do not use any model other than pytorch model.
|
|
|
|
Do not use [`build.py`](../build.py) to export engine if you don't know how to install pytorch and other environments on jetson.
|
|
|
|
|
|
|
|
***!!! Please use the PC to execute the following script !!!***
|
|
|
|
|
|
|
|
```shell
|
|
|
|
# Export yolov8s-pose.pt to yolov8s-pose.onnx
|
|
|
|
yolo export model=yolov8s-pose.pt format=onnx simplify=True
|
|
|
|
```
|
|
|
|
|
|
|
|
***!!! Please use the Jetson to execute the following script !!!***
|
|
|
|
|
|
|
|
```shell
|
|
|
|
# Using trtexec tools for export engine
|
|
|
|
/usr/src/tensorrt/bin/trtexec \
|
|
|
|
--onnx=yolov8s-pose.onnx \
|
|
|
|
--saveEngine=yolov8s-pose.engine
|
|
|
|
```
|
|
|
|
|
|
|
|
After executing the above command, you will get an engine named `yolov8s-pose.engine` .
|
|
|
|
|
|
|
|
### 2. Inference with c++
|
|
|
|
|
|
|
|
It is highly recommended to use C++ inference on Jetson.
|
|
|
|
Here is a demo: [`csrc/jetson/pose`](../csrc/jetson/pose) .
|
|
|
|
|
|
|
|
#### Build:
|
|
|
|
|
|
|
|
Please modify `KPS_COLORS` and `SKELETON` and `LIMB_COLORS` and postprocess parameters in [`main.cpp`](../csrc/jetson/pose/main.cpp) for yourself.
|
|
|
|
|
|
|
|
```c++
|
|
|
|
int topk = 100;
|
|
|
|
float score_thres = 0.25f;
|
|
|
|
float iou_thres = 0.65f;
|
|
|
|
```
|
|
|
|
|
|
|
|
And build:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
export root=${PWD}
|
|
|
|
cd src/jetson/pose
|
|
|
|
mkdir build
|
|
|
|
cmake ..
|
|
|
|
make
|
|
|
|
mv yolov8-pose ${root}
|
|
|
|
cd ${root}
|
|
|
|
```
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
|
|
|
|
``` shell
|
|
|
|
# infer image
|
|
|
|
./yolov8-pose yolov8s-pose.engine data/bus.jpg
|
|
|
|
# infer images
|
|
|
|
./yolov8-pose yolov8s-pose.engine data
|
|
|
|
# infer video
|
|
|
|
./yolov8-pose yolov8s-pose.engine data/test.mp4 # the video path
|
|
|
|
```
|