You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

122 lines
4.8 KiB

2 years ago
from models import TRTModule
from pathlib import Path
import cv2
import argparse
import numpy as np
import torch
import random
random.seed(0)
SUFFIXS = ('.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff', '.webp', '.pfm')
CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush')
COLORS = {cls: [random.randint(0, 255) for _ in range(3)] for i, cls in enumerate(CLASSES)}
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114)):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, np.array([r, r, r, r], dtype=np.float32), np.array([dw, dh, dw, dh], dtype=np.float32)
def blob(im):
im = im.transpose(2, 0, 1)
im = im[np.newaxis, ...]
im = np.ascontiguousarray(im).astype(np.float32) / 255
return im
def main(args):
device = torch.device(args.device)
Engine = TRTModule(args.engine, device)
images_path = Path(args.imgs)
assert images_path.exists()
save_path = Path(args.out_dir)
if images_path.is_dir():
images = [i.absolute() for i in images_path.iterdir() if i.suffix in SUFFIXS]
else:
assert images_path.suffix in SUFFIXS
images = [images_path.absolute()]
if not args.show and not save_path.exists():
save_path.mkdir(parents=True, exist_ok=True)
for image in images:
save_image = save_path / image.name
bgr = cv2.imread(str(image))
draw = bgr.copy()
bgr, ratio, dwdh = letterbox(bgr)
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
tensor = blob(rgb)
ratio = torch.asarray(ratio, dtype=torch.float32, device=device)
dwdh = torch.asarray(dwdh, dtype=torch.float32, device=device)
tensor = torch.asarray(tensor, device=device)
num_dets, bboxes, scores, labels = Engine(tensor)
bboxes = bboxes[0, :num_dets.item()]
scores = scores[0, :num_dets.item()]
labels = labels[0, :num_dets.item()]
bboxes -= dwdh
bboxes /= ratio
for (bbox, score, label) in zip(bboxes, scores, labels):
bbox = bbox.round().int().tolist()
cls_id = int(label)
cls = CLASSES[cls_id]
color = COLORS[cls]
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2)
cv2.putText(draw, f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX, 0.75,
[225, 255, 255], thickness=2)
if args.show:
cv2.imshow('result', draw)
cv2.waitKey(0)
else:
cv2.imwrite(str(save_image), draw)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--engine', type=str, help='Engine file')
parser.add_argument('--imgs', type=str, help='Images file')
parser.add_argument(
'--show', action='store_true', help='Show the detection results')
parser.add_argument(
'--out-dir', type=str, default='./output', help='Path to output file')
parser.add_argument(
'--device', type=str, default='cuda:0', help='TensorRT infer device')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)