You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
2.9 KiB
130 lines
2.9 KiB
7 months ago
|
# YOLOv8-cls Model with TensorRT
|
||
|
|
||
|
The yolov8-cls model conversion route is :
|
||
|
YOLOv8 PyTorch model -> ONNX -> TensorRT Engine
|
||
|
|
||
|
***Notice !!!*** We don't support TensorRT API building !!!
|
||
|
|
||
|
# Export Orin ONNX model by ultralytics
|
||
|
|
||
|
You can leave this repo and use the original `ultralytics` repo for onnx export.
|
||
|
|
||
|
### 1. ONNX -> TensorRT
|
||
|
|
||
|
You can export your onnx model by `ultralytics` API.
|
||
|
|
||
|
``` shell
|
||
|
yolo export model=yolov8s-cls.pt format=onnx opset=11 simplify=True
|
||
|
```
|
||
|
|
||
|
or run this python script:
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
# Load a model
|
||
|
model = YOLO("yolov8s-cls.pt") # load a pretrained model (recommended for training)
|
||
|
success = model.export(format="onnx", opset=11, simplify=True) # export the model to onnx format
|
||
|
assert success
|
||
|
```
|
||
|
|
||
|
Then build engine by Trtexec Tools.
|
||
|
|
||
|
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools.
|
||
|
|
||
|
Usage:
|
||
|
|
||
|
``` shell
|
||
|
/usr/src/tensorrt/bin/trtexec \
|
||
|
--onnx=yolov8s-cls.onnx \
|
||
|
--saveEngine=yolov8s-cls.engine \
|
||
|
--fp16
|
||
|
```
|
||
|
|
||
|
### 2. Direct to TensorRT (NOT RECOMMAND!!)
|
||
|
|
||
|
Usage:
|
||
|
|
||
|
```shell
|
||
|
yolo export model=yolov8s-cls.pt format=engine device=0
|
||
|
```
|
||
|
|
||
|
or run python script:
|
||
|
|
||
|
```python
|
||
|
from ultralytics import YOLO
|
||
|
|
||
|
# Load a model
|
||
|
model = YOLO("yolov8s-cls.pt") # load a pretrained model (recommended for training)
|
||
|
success = model.export(format="engine", device=0) # export the model to engine format
|
||
|
assert success
|
||
|
```
|
||
|
|
||
|
After executing the above script, you will get an engine named `yolov8s-cls.engine` .
|
||
|
|
||
|
# Inference
|
||
|
|
||
|
## Infer with python script
|
||
|
|
||
|
You can infer images with the engine by [`infer-cls.py`](../infer-cls.py) .
|
||
|
|
||
|
Usage:
|
||
|
|
||
|
``` shell
|
||
|
python3 infer-cls.py \
|
||
|
--engine yolov8s-cls.engine \
|
||
|
--imgs data \
|
||
|
--show \
|
||
|
--out-dir outputs \
|
||
|
--device cuda:0
|
||
|
```
|
||
|
|
||
|
#### Description of all arguments
|
||
|
|
||
|
- `--engine` : The Engine you export.
|
||
|
- `--imgs` : The images path you want to detect.
|
||
|
- `--show` : Whether to show detection results.
|
||
|
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
|
||
|
- `--device` : The CUDA deivce you use.
|
||
|
|
||
|
## Inference with c++
|
||
|
|
||
|
You can infer with c++ in [`csrc/cls/normal`](../csrc/cls/normal) .
|
||
|
|
||
|
### Build:
|
||
|
|
||
|
Please set you own librarys in [`CMakeLists.txt`](../csrc/cls/normal/CMakeLists.txt) and modify `KPS_COLORS`
|
||
|
and `SKELETON` and `LIMB_COLORS` in [`main.cpp`](../csrc/cls/normal/main.cpp).
|
||
|
|
||
|
Besides, you can modify the postprocess parameters such as `score_thres` and `iou_thres` and `topk`
|
||
|
in [`main.cpp`](../csrc/cls/normal/main.cpp).
|
||
|
|
||
|
```c++
|
||
|
int topk = 100;
|
||
|
float score_thres = 0.25f;
|
||
|
float iou_thres = 0.65f;
|
||
|
```
|
||
|
|
||
|
And build:
|
||
|
|
||
|
``` shell
|
||
|
export root=${PWD}
|
||
|
cd src/cls/normal
|
||
|
mkdir build
|
||
|
cmake ..
|
||
|
make
|
||
|
mv yolov8-cls ${root}
|
||
|
cd ${root}
|
||
|
```
|
||
|
|
||
|
Usage:
|
||
|
|
||
|
``` shell
|
||
|
# infer image
|
||
|
./yolov8-cls yolov8s-cls.engine data/bus.jpg
|
||
|
# infer images
|
||
|
./yolov8-cls yolov8s-cls.engine data
|
||
|
# infer video
|
||
|
./yolov8-cls yolov8s-cls.engine data/test.mp4 # the video path
|
||
|
```
|