# YOLOv8-TensorRT
`YOLOv8` using TensorRT accelerate !
---
[![Build Status ](https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fatrox%2Fsync-dotenv%2Fbadge&style=flat )](https://github.com/triple-Mu/YOLOv8-TensorRT)
[![Python Version ](https://img.shields.io/badge/Python-3.8--3.10-FFD43B?logo=python )](https://github.com/triple-Mu/YOLOv8-TensorRT)
[![img ](https://badgen.net/badge/icon/tensorrt?icon=azurepipelines&label )](https://developer.nvidia.com/tensorrt)
[![C++ ](https://img.shields.io/badge/CPP-11%2F14-yellow )](https://github.com/triple-Mu/YOLOv8-TensorRT)
[![img ](https://badgen.net/github/license/triple-Mu/YOLOv8-TensorRT )](https://github.com/triple-Mu/YOLOv8-TensorRT/blob/main/LICENSE)
[![img ](https://badgen.net/github/prs/triple-Mu/YOLOv8-TensorRT )](https://github.com/triple-Mu/YOLOv8-TensorRT/pulls)
[![img ](https://img.shields.io/github/stars/triple-Mu/YOLOv8-TensorRT?color=ccf )](https://github.com/triple-Mu/YOLOv8-TensorRT)
---
# Prepare the environment
1. Install TensorRT follow [`TensorRT official website` ](https://developer.nvidia.com/nvidia-tensorrt-8x-download )
2. Install python requirement.
``` shell
pip install -r requirement.txt
```
3. (optional) Install [`ultralytics` ](https://github.com/ultralytics/ultralytics ) package for ONNX export or TensorRT API building.
``` shell
pip install ultralytics
```
You can download pretrained pytorch model by:
``` shell
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt
```
# Normal Usage
You can export ONNX or Engine using the origin [`ultralytics` ](https://github.com/ultralytics/ultralytics ) repo .
Please see more information in [`Normal.md` ](docs/Normal.md ).
# Build TensorRT Engine by ONNX
## Export ONNX by `ultralytics` API
### Export Your Own ONNX model
You can export your onnx model by `ultralytics` API
and add postprocess into model at the same time.
``` shell
python3 export-det.py \
--weights yolov8s.pt \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The PyTorch model you trained.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--opset` : ONNX opset version, default is 11.
- `--sim` : Whether to simplify your onnx model.
- `--input-shape` : Input shape for you model, should be 4 dimensions.
- `--device` : The CUDA deivce you export engine .
You will get an onnx model whose prefix is the same as input weights.
### Just Taste First
If you just want to taste first, you can download the onnx model which are exported by `YOLOv8` package and modified by me.
[**YOLOv8-n** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8n_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1772936700&Signature=r6HgJTTcCSAxQxD9bKO9qBTtigQ%3D )
[**YOLOv8-s** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8s_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936722&Signature=JjxQFx1YElcVdsCaMoj81KJ4a5s%3D )
[**YOLOv8-m** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8m_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936739&Signature=IRKBELdVFemD7diixxxgzMYqsWg%3D )
[**YOLOv8-l** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8l_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936763&Signature=RGkJ4G2XJ4J%2BNiki5cJi3oBkDnA%3D )
[**YOLOv8-x** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8x_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1673936778&Signature=3o%2F7QKhiZg1dW3I6sDrY4ug6MQU%3D )
## Export TensorRT Engine
### 1. Export Engine by TensorRT ONNX Python api
You can export TensorRT engine from ONNX by [`build.py` ](build.py ).
Usage:
``` shell
python3 build.py \
--weights yolov8s.onnx \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--fp16 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The ONNX model you download.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--fp16` : Whether to export half-precision engine.
- `--device` : The CUDA deivce you export engine .
You can modify `iou-thres` `conf-thres` `topk` by yourself.
### 2. Export Engine by Trtexec Tools
You can export TensorRT engine by [`trtexec` ](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec ) tools.
Usage:
``` shell
/usr/src/tensorrt/bin/trtexec \
--onnx=yolov8s.onnx \
--saveEngine=yolov8s.engine \
--fp16
```
**If you installed TensorRT by a debian package, then the installation path of `trtexec`
is `/usr/src/tensorrt/bin/trtexec` **
**If you installed TensorRT by a tar package, then the installation path of `trtexec` is under the `bin` folder in the path you decompressed**
# Build TensorRT Engine by TensorRT API
Please see more information in [`API-Build.md` ](docs/API-Build.md )
***Notice !!!*** We don't support YOLOv8-seg model now !!!
# Inference
## 1. Infer with python script
You can infer images with the engine by [`infer-det.py` ](infer-det.py ) .
Usage:
``` shell
python3 infer-det.py \
--engine yolov8s.engine \
--imgs data \
--show \
--out-dir outputs \
--device cuda:0
```
#### Description of all arguments
- `--engine` : The Engine you export.
- `--imgs` : The images path you want to detect.
- `--show` : Whether to show detection results.
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
- `--device` : The CUDA deivce you use.
- `--profile` : Profile the TensorRT engine.
## 2. Infer with C++
You can infer with c++ in [`csrc/detect/end2end` ](csrc/detect/end2end ) .
### Build:
Please set you own librarys in [`CMakeLists.txt` ](csrc/detect/end2end/CMakeLists.txt ) and modify `CLASS_NAMES` and `COLORS` in [`main.cpp` ](csrc/detect/end2end/main.cpp ).
``` shell
export root=${PWD}
cd src/detect/end2end
mkdir build
cmake ..
make
mv yolov8 ${root}
cd ${root}
```
Usage:
``` shell
# infer image
./yolov8 yolov8s.engine data/bus.jpg
# infer images
./yolov8 yolov8s.engine data
# infer video
./yolov8 yolov8s.engine data/test.mp4 # the video path
```
# TensorRT Segment Deploy
Please see more information in [`Segment.md` ](docs/Segment.md )
# DeepStream Detection Deploy
See more in [`README.md` ](csrc/deepstream/README.md )
# Profile you engine
If you want to profile the TensorRT engine:
Usage:
``` shell
python3 profile.py --engine yolov8s.engine --device cuda:0
```
# Refuse To Use PyTorch for Model Inference !!!
If you need to break away from pytorch and use tensorrt inference,
you can get more information in [`infer-det-without-torch.py` ](infer-det-without-torch.py ),
the usage is the same as the pytorch version, but its performance is much worse.
You can use `cuda-python` or `pycuda` for inference.
Please install by such command:
```shell
pip install cuda-python
# or
pip install pycuda
```
Usage:
``` shell
python3 infer-det-without-torch.py \
--engine yolov8s.engine \
--imgs data \
--show \
--out-dir outputs \
--method cudart
```
#### Description of all arguments
- `--engine` : The Engine you export.
- `--imgs` : The images path you want to detect.
- `--show` : Whether to show detection results.
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
- `--method` : Choose `cudart` or `pycuda` , default is `cudart` .
- `--profile` : Profile the TensorRT engine.