You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
101 lines
3.4 KiB
101 lines
3.4 KiB
2 years ago
|
import argparse
|
||
|
from pathlib import Path
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
|
||
|
from config import CLASSES, COLORS
|
||
|
from models.utils import blob, letterbox, path_to_list, seg_postprocess
|
||
|
|
||
|
|
||
|
def main(args: argparse.Namespace) -> None:
|
||
|
if args.method == 'cudart':
|
||
|
from models.cudart_api import TRTEngine
|
||
|
elif args.method == 'pycuda':
|
||
|
from models.pycuda_api import TRTEngine
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
Engine = TRTEngine(args.engine)
|
||
|
H, W = Engine.inp_info[0].shape[-2:]
|
||
|
|
||
|
images = path_to_list(args.imgs)
|
||
|
save_path = Path(args.out_dir)
|
||
|
|
||
|
if not args.show and not save_path.exists():
|
||
|
save_path.mkdir(parents=True, exist_ok=True)
|
||
|
|
||
|
for image in images:
|
||
|
save_image = save_path / image.name
|
||
|
bgr = cv2.imread(str(image))
|
||
|
draw = bgr.copy()
|
||
|
bgr, ratio, dwdh = letterbox(bgr, (W, H))
|
||
|
dw, dh = int(dwdh[0]), int(dwdh[1])
|
||
|
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
|
||
|
tensor, seg_img = blob(rgb, return_seg=True)
|
||
|
dwdh = np.array(dwdh * 2, dtype=np.float32)
|
||
|
tensor = np.ascontiguousarray(tensor)
|
||
|
# inference
|
||
|
data = Engine(tensor)
|
||
|
|
||
|
seg_img = seg_img[dh:H - dh, dw:W - dw, [2, 1, 0]]
|
||
|
bboxes, scores, labels, masks = seg_postprocess(
|
||
|
data, bgr.shape[:2], args.conf_thres, args.iou_thres)
|
||
|
mask, mask_color = [m[:, dh:H - dh, dw:W - dw, :] for m in masks]
|
||
|
inv_alph_masks = (1 - mask * 0.5).cumprod(0)
|
||
|
mcs = (mask_color * inv_alph_masks).sum(0) * 2
|
||
|
seg_img = (seg_img * inv_alph_masks[-1] + mcs) * 255
|
||
|
draw = cv2.resize(seg_img.astype(np.uint8), draw.shape[:2][::-1])
|
||
|
|
||
|
bboxes -= dwdh
|
||
|
bboxes /= ratio
|
||
|
|
||
|
for (bbox, score, label) in zip(bboxes, scores, labels):
|
||
|
bbox = bbox.round().astype(np.int32).tolist()
|
||
|
cls_id = int(label)
|
||
|
cls = CLASSES[cls_id]
|
||
|
color = COLORS[cls]
|
||
|
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2)
|
||
|
cv2.putText(draw,
|
||
|
f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2),
|
||
|
cv2.FONT_HERSHEY_SIMPLEX,
|
||
|
0.75, [225, 255, 255],
|
||
|
thickness=2)
|
||
|
if args.show:
|
||
|
cv2.imshow('result', draw)
|
||
|
cv2.waitKey(0)
|
||
|
else:
|
||
|
cv2.imwrite(str(save_image), draw)
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--engine', type=str, help='Engine file')
|
||
|
parser.add_argument('--imgs', type=str, help='Images file')
|
||
|
parser.add_argument('--show',
|
||
|
action='store_true',
|
||
|
help='Show the detection results')
|
||
|
parser.add_argument('--out-dir',
|
||
|
type=str,
|
||
|
default='./output',
|
||
|
help='Path to output file')
|
||
|
parser.add_argument('--conf-thres',
|
||
|
type=float,
|
||
|
default=0.25,
|
||
|
help='Confidence threshold')
|
||
|
parser.add_argument('--iou-thres',
|
||
|
type=float,
|
||
|
default=0.65,
|
||
|
help='Confidence threshold')
|
||
|
parser.add_argument('--method',
|
||
|
type=str,
|
||
|
default='cudart',
|
||
|
help='CUDART pipeline')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = parse_args()
|
||
|
main(args)
|