You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

210 lines
5.0 KiB

2 years ago
# YOLOv8-seg Model with TensorRT
2 years ago
The yolov8-seg model conversion route is :
2 years ago
YOLOv8 PyTorch model -> ONNX -> TensorRT Engine
***Notice !!!*** We don't support TensorRT API building !!!
2 years ago
# Export Modified ONNX model
2 years ago
2 years ago
You can export your onnx model by `ultralytics` API and the onnx is also modify by this repo.
2 years ago
``` shell
python3 export_seg.py \
--weights yolov8s-seg.pt \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The PyTorch model you trained.
- `--opset` : ONNX opset version, default is 11.
- `--sim` : Whether to simplify your onnx model.
- `--input-shape` : Input shape for you model, should be 4 dimensions.
- `--device` : The CUDA deivce you export engine .
You will get an onnx model whose prefix is the same as input weights.
This onnx model doesn't contain postprocessing.
# Export Engine by TensorRT Python api
You can export TensorRT engine from ONNX by [`build.py` ](../build.py).
Usage:
``` shell
python3 build.py \
--weights yolov8s-seg.onnx \
--fp16 \
--device cuda:0 \
--seg
```
#### Description of all arguments
- `--weights` : The ONNX model you download.
- `--fp16` : Whether to export half-precision engine.
- `--device` : The CUDA deivce you export engine.
- `--seg` : Whether to export seg engine.
# Export Engine by Trtexec Tools
You can export TensorRT engine by [`trtexec`](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec) tools.
Usage:
``` shell
/usr/src/tensorrt/bin/trtexec \
--onnx=yolov8s-seg.onnx \
--saveEngine=yolov8s-seg.engine \
--fp16
```
# Inference
## Infer with python script
You can infer images with the engine by [`infer.py`](../infer.py) .
Usage:
``` shell
python3 infer.py \
--engine yolov8s-seg.engine \
--imgs data \
--show \
--out-dir outputs \
--device cuda:0 \
--seg
```
#### Description of all arguments
- `--engine` : The Engine you export.
- `--imgs` : The images path you want to detect.
- `--show` : Whether to show detection results.
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
- `--device` : The CUDA deivce you use.
- `--profile` : Profile the TensorRT engine.
- `--seg` : Infer with seg model.
## Infer with C++
2 years ago
You can infer segment engine with c++ in [`csrc/segment/simple`](../csrc/segment/simple) .
2 years ago
### Build:
2 years ago
Please set you own librarys in [`CMakeLists.txt`](../csrc/segment/simple/CMakeLists.txt) and modify you own config in [`main.cpp`](../csrc/segment/simple/main.cpp) such as `CLASS_NAMES`, `COLORS`, `MASK_COLORS` and postprocess parameters .
```c++
int topk = 100;
int seg_h = 160; // yolov8 model proto height
int seg_w = 160; // yolov8 model proto width
int seg_channels = 32; // yolov8 model proto channels
float score_thres = 0.25f;
float iou_thres = 0.65f;
```
2 years ago
``` shell
export root=${PWD}
2 years ago
cd src/segment/simple
2 years ago
mkdir build
cmake ..
make
mv yolov8-seg ${root}
cd ${root}
```
2 years ago
***Notice !!!***
2 years ago
2 years ago
If you have build OpenCV(>=4.7.0) by yourself, it provides a new api [`cv::dnn::NMSBoxesBatched`](https://docs.opencv.org/4.x/d6/d0f/group__dnn.html#ga977aae09fbf7c804e003cfea1d4e928c) .
It is a gread api about efficient in-class nms . It will be used by default!
2 years ago
2 years ago
***!!!***
2 years ago
Usage:
``` shell
# infer image
./yolov8-seg yolov8s-seg.engine data/bus.jpg
# infer images
./yolov8-seg yolov8s-seg.engine data
# infer video
./yolov8-seg yolov8s-seg.engine data/test.mp4 # the video path
```
2 years ago
# Export Orin ONNX model by ultralytics
You can leave this repo and use the original `ultralytics` repo for onnx export.
### 1. Python script
Usage:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8s-seg.pt") # load a pretrained model (recommended for training)
success = model.export(format="engine", device=0) # export the model to engine format
assert success
```
After executing the above script, you will get an engine named `yolov8s-seg.engine` .
### 2. CLI tools
Usage:
```shell
yolo export model=yolov8s.pt format=engine device=0
```
After executing the above command, you will get an engine named `yolov8s-seg.engine` too.
## Inference with c++
You can infer with c++ in [`csrc/segment/normal`](../csrc/segment/normal) .
### Build:
Please set you own librarys in [`CMakeLists.txt`](../csrc/segment/normal/CMakeLists.txt) and modify `CLASS_NAMES` and `COLORS` in [`main.cpp`](../csrc/segment/normal/main.cpp).
Besides, you can modify the postprocess parameters such as `num_labels` and `score_thres` and `iou_thres` and `topk` in [`main.cpp`](../csrc/segment/normal/main.cpp).
```c++
int topk = 100;
int seg_h = 160; // yolov8 model proto height
int seg_w = 160; // yolov8 model proto width
int seg_channels = 32; // yolov8 model proto channels
float score_thres = 0.25f;
float iou_thres = 0.65f;
```
And build:
``` shell
export root=${PWD}
cd src/segment/normal
mkdir build
cmake ..
make
mv yolov8-seg ${root}
cd ${root}
```
Usage:
``` shell
# infer image
./yolov8-seg yolov8s-seg.engine data/bus.jpg
# infer images
./yolov8-seg yolov8s-seg.engine data
# infer video
./yolov8-seg yolov8s-seg.engine data/test.mp4 # the video path
```