# YOLOv8-TensorRT
`YOLOv8` using TensorRT accelerate !
# Prepare the environment
1. Install TensorRT follow [`TensorRT offical website` ](https://developer.nvidia.com/nvidia-tensorrt-8x-download )
2. Install python requirement.
``` shell
pip install -r requirement.txt
```
3. (optional) Install [`ultralytics` ](https://github.com/ultralytics/ultralytics ) package for TensorRT API building.
``` shell
pip install ultralytics
```
You can download pretrained pytorch model by:
``` shell
wget https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8n.pt
wget https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8s.pt
wget https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8m.pt
wget https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8l.pt
wget https://github.com/ultralytics/ultralytics/releases/download/v8.0.0/yolov8x.pt
```
# Build TensorRT engine by ONNX
## Export ONNX by `ultralytics` API
You can export your onnx model by `ultralytics` API
and add postprocess into model at the same time.
``` shell
python export.py \
--weights yolov8s.pt \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--opset 11 \
--sim \
--input-shape 1 3 640 640 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The PyTorch model you trained.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--opset` : ONNX opset version, default is 11.
- `--sim` : Whether to simplify your onnx model.
- `--input-shape` : Input shape for you model, should be 4 dimensions.
- `--device` : The CUDA deivce you export engine .
You will get an onnx model whose prefix is the same as input weights.
## Preprocessed ONNX model
If you just want to taste first, you can dowload the onnx model which are exported by `YOLOv8` package and modified by me.
[**YOLOv8-n** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8n_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1772936700&Signature=r6HgJTTcCSAxQxD9bKO9qBTtigQ%3D )
[**YOLOv8-s** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8s_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936722&Signature=JjxQFx1YElcVdsCaMoj81KJ4a5s%3D )
[**YOLOv8-m** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8m_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936739&Signature=IRKBELdVFemD7diixxxgzMYqsWg%3D )
[**YOLOv8-l** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8l_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1682936763&Signature=RGkJ4G2XJ4J%2BNiki5cJi3oBkDnA%3D )
[**YOLOv8-x** ](https://triplemu.oss-cn-beijing.aliyuncs.com/YOLOv8/ONNX/yolov8x_nms.onnx?OSSAccessKeyId=LTAI5tN1dgmZD4PF8AJUXp3J&Expires=1673936778&Signature=3o%2F7QKhiZg1dW3I6sDrY4ug6MQU%3D )
## 1. By TensorRT ONNX Python api
You can export TensorRT engine from ONNX by [`build.py` ](build.py ).
Usage:
``` shell
python build.py \
--weights yolov8s_nms.onnx \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--fp16 \
--device cuda:0
```
#### Description of all arguments
- `--weights` : The ONNX model you download.
- `--iou-thres` : IOU threshold for NMS plugin.
- `--conf-thres` : Confidence threshold for NMS plugin.
- `--topk` : Max number of detection bboxes.
- `--fp16` : Whether to export half-precision engine.
- `--device` : The CUDA deivce you export engine .
You can modify `iou-thres` `conf-thres` `topk` by yourself.
## 2. By trtexec tools
You can export TensorRT engine by [`trtexec` ](https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec ) tools.
Usage:
``` shell
/usr/src/tensorrt/bin/trtexec --onnx=yolov8s_nms.onnx --saveEngine=yolov8s_nms.engine --fp16
```
**If you installed TensorRT by a debian package, then the installation path of `trtexec`
is `/usr/src/tensorrt/bin/trtexec` **
**If you installed TensorRT by a tar package, then the installation path of `trtexec` is under the `bin` folder in the path you decompressed**
# Build TensorRT engine by API
When you want to build engine by api. You should generate the pickle weights parameters first.
``` shell
python gen_pkl.py -w yolov8s.pt -o yolov8s.pkl
```
You will get a `yolov8s.pkl` which contain the operators' parameters. And you can rebuild `yolov8s` model in TensorRT api.
```
python build.py \
--weights yolov8s.pkl \
--iou-thres 0.65 \
--conf-thres 0.25 \
--topk 100 \
--fp16 \
--input-shape 1 3 640 640 \
--device cuda:0
```
***Notice !!!*** Now we only support static input shape model build by TensorRT api. You'd best give the legal`input-shape`.
# Infer images by the engine which you export or build
## 1. Python infer
You can infer images with the engine by [`infer.py` ](infer.py ) .
Usage:
``` shell
python3 infer.py --engine yolov8s_nms.engine --imgs data --show --out-dir outputs --device cuda:0
```
#### Description of all arguments
- `--engine` : The Engine you export.
- `--imgs` : The images path you want to detect.
- `--show` : Whether to show detection results.
- `--out-dir` : Where to save detection results images. It will not work when use `--show` flag.
- `--device` : The CUDA deivce you use.
- `--profile` : Profile the TensorRT engine.
## 2. C++ infer
You can infer with c++ in [`csrc/end2end` ](csrc/end2end ) .
Build:
Please set you own librarys in [`CMakeLists.txt` ](csrc/end2end/CMakeLists.txt ) and modify you own config in [`config.h` ](csrc/end2end/include/config.h ) such as `CLASS_NAMES` and `COLORS` .
``` shell
export root=${PWD}
cd src/end2end
mkdir build
cmake ..
make
mv yolov8 ${root}
cd ${root}
```
Usage:
``` shell
# infer image
./yolov8 yolov8s_nms.engine data/bus.jpg
# infer images
./yolov8 yolov8s_nms.engine data
# infer video
./yolov8 yolov8s_nms.engine data/test.mp4 # the video path
```
# Profile you engine
If you want to profile the TensorRT engine:
Usage:
``` shell
python3 infer.py --engine yolov8s_nms.engine --profile
```