|
|
|
from models import TRTModule # isort:skip
|
|
|
|
import argparse
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from config import ALPHA, CLASSES_SEG, COLORS, MASK_COLORS
|
|
|
|
from models.torch_utils import seg_postprocess
|
|
|
|
from models.utils import blob, letterbox, path_to_list
|
|
|
|
|
|
|
|
|
|
|
|
def main(args: argparse.Namespace) -> None:
|
|
|
|
device = torch.device(args.device)
|
|
|
|
Engine = TRTModule(args.engine, device)
|
|
|
|
H, W = Engine.inp_info[0].shape[-2:]
|
|
|
|
|
|
|
|
# set desired output names order
|
|
|
|
Engine.set_desired(['outputs', 'proto'])
|
|
|
|
|
|
|
|
images = path_to_list(args.imgs)
|
|
|
|
save_path = Path(args.out_dir)
|
|
|
|
|
|
|
|
if not args.show and not save_path.exists():
|
|
|
|
save_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
for image in images:
|
|
|
|
save_image = save_path / image.name
|
|
|
|
bgr = cv2.imread(str(image))
|
|
|
|
draw = bgr.copy()
|
|
|
|
bgr, ratio, dwdh = letterbox(bgr, (W, H))
|
|
|
|
dw, dh = int(dwdh[0]), int(dwdh[1])
|
|
|
|
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
|
|
|
|
tensor, seg_img = blob(rgb, return_seg=True)
|
|
|
|
dwdh = torch.asarray(dwdh * 2, dtype=torch.float32, device=device)
|
|
|
|
tensor = torch.asarray(tensor, device=device)
|
|
|
|
# inference
|
|
|
|
data = Engine(tensor)
|
|
|
|
|
|
|
|
seg_img = torch.asarray(seg_img[dh:H - dh, dw:W - dw, [2, 1, 0]],
|
|
|
|
device=device)
|
|
|
|
bboxes, scores, labels, masks = seg_postprocess(
|
|
|
|
data, bgr.shape[:2], args.conf_thres, args.iou_thres)
|
|
|
|
if bboxes.numel() == 0:
|
|
|
|
# if no bounding box
|
|
|
|
print(f'{image}: no object!')
|
|
|
|
continue
|
|
|
|
masks = masks[:, dh:H - dh, dw:W - dw, :]
|
|
|
|
indices = (labels % len(MASK_COLORS)).long()
|
|
|
|
mask_colors = torch.asarray(MASK_COLORS, device=device)[indices]
|
|
|
|
mask_colors = mask_colors.view(-1, 1, 1, 3) * ALPHA
|
|
|
|
mask_colors = masks @ mask_colors
|
|
|
|
inv_alph_masks = (1 - masks * 0.5).cumprod(0)
|
|
|
|
mcs = (mask_colors * inv_alph_masks).sum(0) * 2
|
|
|
|
seg_img = (seg_img * inv_alph_masks[-1] + mcs) * 255
|
|
|
|
draw = cv2.resize(seg_img.cpu().numpy().astype(np.uint8),
|
|
|
|
draw.shape[:2][::-1])
|
|
|
|
|
|
|
|
bboxes -= dwdh
|
|
|
|
bboxes /= ratio
|
|
|
|
|
|
|
|
for (bbox, score, label) in zip(bboxes, scores, labels):
|
|
|
|
bbox = bbox.round().int().tolist()
|
|
|
|
cls_id = int(label)
|
|
|
|
cls = CLASSES_SEG[cls_id]
|
|
|
|
color = COLORS[cls]
|
|
|
|
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2)
|
|
|
|
cv2.putText(draw,
|
|
|
|
f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2),
|
|
|
|
cv2.FONT_HERSHEY_SIMPLEX,
|
|
|
|
0.75, [225, 255, 255],
|
|
|
|
thickness=2)
|
|
|
|
if args.show:
|
|
|
|
cv2.imshow('result', draw)
|
|
|
|
cv2.waitKey(0)
|
|
|
|
else:
|
|
|
|
cv2.imwrite(str(save_image), draw)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--engine', type=str, help='Engine file')
|
|
|
|
parser.add_argument('--imgs', type=str, help='Images file')
|
|
|
|
parser.add_argument('--show',
|
|
|
|
action='store_true',
|
|
|
|
help='Show the detection results')
|
|
|
|
parser.add_argument('--out-dir',
|
|
|
|
type=str,
|
|
|
|
default='./output',
|
|
|
|
help='Path to output file')
|
|
|
|
parser.add_argument('--conf-thres',
|
|
|
|
type=float,
|
|
|
|
default=0.25,
|
|
|
|
help='Confidence threshold')
|
|
|
|
parser.add_argument('--iou-thres',
|
|
|
|
type=float,
|
|
|
|
default=0.65,
|
|
|
|
help='Confidence threshold')
|
|
|
|
parser.add_argument('--device',
|
|
|
|
type=str,
|
|
|
|
default='cuda:0',
|
|
|
|
help='TensorRT infer device')
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
args = parse_args()
|
|
|
|
main(args)
|