You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

205 lines
5.8 KiB

/**
* LPC utility code
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/lls.h"
#include "dsputil.h"
#include "lpc.h"
/**
* Levinson-Durbin recursion.
* Produces LPC coefficients from autocorrelation data.
*/
static void compute_lpc_coefs(const double *autoc, int max_order,
double lpc[][MAX_LPC_ORDER], double *ref)
{
int i, j, i2;
double r, err, tmp;
double lpc_tmp[MAX_LPC_ORDER];
for(i=0; i<max_order; i++) lpc_tmp[i] = 0;
err = autoc[0];
for(i=0; i<max_order; i++) {
r = -autoc[i+1];
for(j=0; j<i; j++) {
r -= lpc_tmp[j] * autoc[i-j];
}
r /= err;
ref[i] = fabs(r);
err *= 1.0 - (r * r);
i2 = (i >> 1);
lpc_tmp[i] = r;
for(j=0; j<i2; j++) {
tmp = lpc_tmp[j];
lpc_tmp[j] += r * lpc_tmp[i-1-j];
lpc_tmp[i-1-j] += r * tmp;
}
if(i & 1) {
lpc_tmp[j] += lpc_tmp[j] * r;
}
for(j=0; j<=i; j++) {
lpc[i][j] = -lpc_tmp[j];
}
}
}
/**
* Quantize LPC coefficients
*/
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
{
int i;
double cmax, error;
int32_t qmax;
int sh;
/* define maximum levels */
qmax = (1 << (precision - 1)) - 1;
/* find maximum coefficient value */
cmax = 0.0;
for(i=0; i<order; i++) {
cmax= FFMAX(cmax, fabs(lpc_in[i]));
}
/* if maximum value quantizes to zero, return all zeros */
if(cmax * (1 << max_shift) < 1.0) {
*shift = zero_shift;
memset(lpc_out, 0, sizeof(int32_t) * order);
return;
}
/* calculate level shift which scales max coeff to available bits */
sh = max_shift;
while((cmax * (1 << sh) > qmax) && (sh > 0)) {
sh--;
}
/* since negative shift values are unsupported in decoder, scale down
coefficients instead */
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
/* output quantized coefficients and level shift */
error=0;
for(i=0; i<order; i++) {
error += lpc_in[i] * (1 << sh);
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
error -= lpc_out[i];
}
*shift = sh;
}
static int estimate_best_order(double *ref, int min_order, int max_order)
{
int i, est;
est = min_order;
for(i=max_order-1; i>=min_order-1; i--) {
if(ref[i] > 0.10) {
est = i+1;
break;
}
}
return est;
}
/**
* Calculate LPC coefficients for multiple orders
*/
int ff_lpc_calc_coefs(DSPContext *s,
const int32_t *samples, int blocksize, int min_order,
int max_order, int precision,
int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc,
int omethod, int max_shift, int zero_shift)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER];
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i, j, pass;
int opt_order;
assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER);
if(use_lpc == 1){
s->flac_compute_autocorr(samples, blocksize, max_order, autoc);
compute_lpc_coefs(autoc, max_order, lpc, ref);
}else{
LLSModel m[2];
double var[MAX_LPC_ORDER+1], weight;
for(pass=0; pass<use_lpc-1; pass++){
av_init_lls(&m[pass&1], max_order);
weight=0;
for(i=max_order; i<blocksize; i++){
for(j=0; j<=max_order; j++)
var[j]= samples[i-j];
if(pass){
double eval, inv, rinv;
eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
eval= (512>>pass) + fabs(eval - var[0]);
inv = 1/eval;
rinv = sqrt(inv);
for(j=0; j<=max_order; j++)
var[j] *= rinv;
weight += inv;
}else
weight++;
av_update_lls(&m[pass&1], var, 1.0);
}
av_solve_lls(&m[pass&1], 0.001, 0);
}
for(i=0; i<max_order; i++){
for(j=0; j<max_order; j++)
lpc[i][j]= m[(pass-1)&1].coeff[i][j];
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
}
for(i=max_order-1; i>0; i--)
ref[i] = ref[i-1] - ref[i];
}
opt_order = max_order;
if(omethod == ORDER_METHOD_EST) {
opt_order = estimate_best_order(ref, min_order, max_order);
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
} else {
for(i=min_order-1; i<max_order; i++) {
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
}
}
return opt_order;
}