mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1024 lines
41 KiB
1024 lines
41 KiB
/* |
|
* Copyright (c) Lynne |
|
* |
|
* Power of two FFT: |
|
* Copyright (c) Lynne |
|
* Copyright (c) 2008 Loren Merritt |
|
* Copyright (c) 2002 Fabrice Bellard |
|
* Partly based on libdjbfft by D. J. Bernstein |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/* All costabs for a type are defined here */ |
|
COSTABLE(16); |
|
COSTABLE(32); |
|
COSTABLE(64); |
|
COSTABLE(128); |
|
COSTABLE(256); |
|
COSTABLE(512); |
|
COSTABLE(1024); |
|
COSTABLE(2048); |
|
COSTABLE(4096); |
|
COSTABLE(8192); |
|
COSTABLE(16384); |
|
COSTABLE(32768); |
|
COSTABLE(65536); |
|
COSTABLE(131072); |
|
DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_53))[4]; |
|
DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_7))[3]; |
|
DECLARE_ALIGNED(32, FFTComplex, TX_NAME(ff_cos_9))[4]; |
|
|
|
static FFTSample * const cos_tabs[18] = { |
|
NULL, |
|
NULL, |
|
NULL, |
|
NULL, |
|
TX_NAME(ff_cos_16), |
|
TX_NAME(ff_cos_32), |
|
TX_NAME(ff_cos_64), |
|
TX_NAME(ff_cos_128), |
|
TX_NAME(ff_cos_256), |
|
TX_NAME(ff_cos_512), |
|
TX_NAME(ff_cos_1024), |
|
TX_NAME(ff_cos_2048), |
|
TX_NAME(ff_cos_4096), |
|
TX_NAME(ff_cos_8192), |
|
TX_NAME(ff_cos_16384), |
|
TX_NAME(ff_cos_32768), |
|
TX_NAME(ff_cos_65536), |
|
TX_NAME(ff_cos_131072), |
|
}; |
|
|
|
static av_always_inline void init_cos_tabs_idx(int index) |
|
{ |
|
int m = 1 << index; |
|
double freq = 2*M_PI/m; |
|
FFTSample *tab = cos_tabs[index]; |
|
|
|
for (int i = 0; i < m/4; i++) |
|
*tab++ = RESCALE(cos(i*freq)); |
|
|
|
*tab = 0; |
|
} |
|
|
|
#define INIT_FF_COS_TABS_FUNC(index, size) \ |
|
static av_cold void init_cos_tabs_ ## size (void) \ |
|
{ \ |
|
init_cos_tabs_idx(index); \ |
|
} |
|
|
|
INIT_FF_COS_TABS_FUNC(4, 16) |
|
INIT_FF_COS_TABS_FUNC(5, 32) |
|
INIT_FF_COS_TABS_FUNC(6, 64) |
|
INIT_FF_COS_TABS_FUNC(7, 128) |
|
INIT_FF_COS_TABS_FUNC(8, 256) |
|
INIT_FF_COS_TABS_FUNC(9, 512) |
|
INIT_FF_COS_TABS_FUNC(10, 1024) |
|
INIT_FF_COS_TABS_FUNC(11, 2048) |
|
INIT_FF_COS_TABS_FUNC(12, 4096) |
|
INIT_FF_COS_TABS_FUNC(13, 8192) |
|
INIT_FF_COS_TABS_FUNC(14, 16384) |
|
INIT_FF_COS_TABS_FUNC(15, 32768) |
|
INIT_FF_COS_TABS_FUNC(16, 65536) |
|
INIT_FF_COS_TABS_FUNC(17, 131072) |
|
|
|
static av_cold void ff_init_53_tabs(void) |
|
{ |
|
TX_NAME(ff_cos_53)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 12)), RESCALE(cos(2 * M_PI / 12)) }; |
|
TX_NAME(ff_cos_53)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 6)), RESCALE(cos(2 * M_PI / 6)) }; |
|
TX_NAME(ff_cos_53)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 5)), RESCALE(sin(2 * M_PI / 5)) }; |
|
TX_NAME(ff_cos_53)[3] = (FFTComplex){ RESCALE(cos(2 * M_PI / 10)), RESCALE(sin(2 * M_PI / 10)) }; |
|
} |
|
|
|
static av_cold void ff_init_7_tabs(void) |
|
{ |
|
TX_NAME(ff_cos_7)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 7)), RESCALE(sin(2 * M_PI / 7)) }; |
|
TX_NAME(ff_cos_7)[1] = (FFTComplex){ RESCALE(sin(2 * M_PI / 28)), RESCALE(cos(2 * M_PI / 28)) }; |
|
TX_NAME(ff_cos_7)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 14)), RESCALE(sin(2 * M_PI / 14)) }; |
|
} |
|
|
|
static av_cold void ff_init_9_tabs(void) |
|
{ |
|
TX_NAME(ff_cos_9)[0] = (FFTComplex){ RESCALE(cos(2 * M_PI / 3)), RESCALE( sin(2 * M_PI / 3)) }; |
|
TX_NAME(ff_cos_9)[1] = (FFTComplex){ RESCALE(cos(2 * M_PI / 9)), RESCALE( sin(2 * M_PI / 9)) }; |
|
TX_NAME(ff_cos_9)[2] = (FFTComplex){ RESCALE(cos(2 * M_PI / 36)), RESCALE( sin(2 * M_PI / 36)) }; |
|
TX_NAME(ff_cos_9)[3] = (FFTComplex){ TX_NAME(ff_cos_9)[1].re + TX_NAME(ff_cos_9)[2].im, |
|
TX_NAME(ff_cos_9)[1].im - TX_NAME(ff_cos_9)[2].re }; |
|
} |
|
|
|
static CosTabsInitOnce cos_tabs_init_once[] = { |
|
{ ff_init_53_tabs, AV_ONCE_INIT }, |
|
{ ff_init_7_tabs, AV_ONCE_INIT }, |
|
{ ff_init_9_tabs, AV_ONCE_INIT }, |
|
{ NULL }, |
|
{ init_cos_tabs_16, AV_ONCE_INIT }, |
|
{ init_cos_tabs_32, AV_ONCE_INIT }, |
|
{ init_cos_tabs_64, AV_ONCE_INIT }, |
|
{ init_cos_tabs_128, AV_ONCE_INIT }, |
|
{ init_cos_tabs_256, AV_ONCE_INIT }, |
|
{ init_cos_tabs_512, AV_ONCE_INIT }, |
|
{ init_cos_tabs_1024, AV_ONCE_INIT }, |
|
{ init_cos_tabs_2048, AV_ONCE_INIT }, |
|
{ init_cos_tabs_4096, AV_ONCE_INIT }, |
|
{ init_cos_tabs_8192, AV_ONCE_INIT }, |
|
{ init_cos_tabs_16384, AV_ONCE_INIT }, |
|
{ init_cos_tabs_32768, AV_ONCE_INIT }, |
|
{ init_cos_tabs_65536, AV_ONCE_INIT }, |
|
{ init_cos_tabs_131072, AV_ONCE_INIT }, |
|
}; |
|
|
|
static av_cold void init_cos_tabs(int index) |
|
{ |
|
ff_thread_once(&cos_tabs_init_once[index].control, |
|
cos_tabs_init_once[index].func); |
|
} |
|
|
|
static av_always_inline void fft3(FFTComplex *out, FFTComplex *in, |
|
ptrdiff_t stride) |
|
{ |
|
FFTComplex tmp[2]; |
|
#ifdef TX_INT32 |
|
int64_t mtmp[4]; |
|
#endif |
|
|
|
BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im); |
|
BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re); |
|
|
|
out[0*stride].re = in[0].re + tmp[1].re; |
|
out[0*stride].im = in[0].im + tmp[1].im; |
|
|
|
#ifdef TX_INT32 |
|
mtmp[0] = (int64_t)TX_NAME(ff_cos_53)[0].re * tmp[0].re; |
|
mtmp[1] = (int64_t)TX_NAME(ff_cos_53)[0].im * tmp[0].im; |
|
mtmp[2] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].re; |
|
mtmp[3] = (int64_t)TX_NAME(ff_cos_53)[1].re * tmp[1].im; |
|
out[1*stride].re = in[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31); |
|
out[1*stride].im = in[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31); |
|
out[2*stride].re = in[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31); |
|
out[2*stride].im = in[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31); |
|
#else |
|
tmp[0].re = TX_NAME(ff_cos_53)[0].re * tmp[0].re; |
|
tmp[0].im = TX_NAME(ff_cos_53)[0].im * tmp[0].im; |
|
tmp[1].re = TX_NAME(ff_cos_53)[1].re * tmp[1].re; |
|
tmp[1].im = TX_NAME(ff_cos_53)[1].re * tmp[1].im; |
|
out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re; |
|
out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im; |
|
out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re; |
|
out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im; |
|
#endif |
|
} |
|
|
|
#define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \ |
|
static av_always_inline void NAME(FFTComplex *out, FFTComplex *in, \ |
|
ptrdiff_t stride) \ |
|
{ \ |
|
FFTComplex z0[4], t[6]; \ |
|
\ |
|
BF(t[1].im, t[0].re, in[1].re, in[4].re); \ |
|
BF(t[1].re, t[0].im, in[1].im, in[4].im); \ |
|
BF(t[3].im, t[2].re, in[2].re, in[3].re); \ |
|
BF(t[3].re, t[2].im, in[2].im, in[3].im); \ |
|
\ |
|
out[D0*stride].re = in[0].re + t[0].re + t[2].re; \ |
|
out[D0*stride].im = in[0].im + t[0].im + t[2].im; \ |
|
\ |
|
SMUL(t[4].re, t[0].re, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].re, t[0].re); \ |
|
SMUL(t[4].im, t[0].im, TX_NAME(ff_cos_53)[2].re, TX_NAME(ff_cos_53)[3].re, t[2].im, t[0].im); \ |
|
CMUL(t[5].re, t[1].re, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].re, t[1].re); \ |
|
CMUL(t[5].im, t[1].im, TX_NAME(ff_cos_53)[2].im, TX_NAME(ff_cos_53)[3].im, t[3].im, t[1].im); \ |
|
\ |
|
BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \ |
|
BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \ |
|
BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \ |
|
BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \ |
|
\ |
|
out[D1*stride].re = in[0].re + z0[3].re; \ |
|
out[D1*stride].im = in[0].im + z0[0].im; \ |
|
out[D2*stride].re = in[0].re + z0[2].re; \ |
|
out[D2*stride].im = in[0].im + z0[1].im; \ |
|
out[D3*stride].re = in[0].re + z0[1].re; \ |
|
out[D3*stride].im = in[0].im + z0[2].im; \ |
|
out[D4*stride].re = in[0].re + z0[0].re; \ |
|
out[D4*stride].im = in[0].im + z0[3].im; \ |
|
} |
|
|
|
DECL_FFT5(fft5, 0, 1, 2, 3, 4) |
|
DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9) |
|
DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4) |
|
DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14) |
|
|
|
static av_always_inline void fft7(FFTComplex *out, FFTComplex *in, |
|
ptrdiff_t stride) |
|
{ |
|
FFTComplex t[6], z[3]; |
|
const FFTComplex *tab = TX_NAME(ff_cos_7); |
|
#ifdef TX_INT32 |
|
int64_t mtmp[12]; |
|
#endif |
|
|
|
BF(t[1].re, t[0].re, in[1].re, in[6].re); |
|
BF(t[1].im, t[0].im, in[1].im, in[6].im); |
|
BF(t[3].re, t[2].re, in[2].re, in[5].re); |
|
BF(t[3].im, t[2].im, in[2].im, in[5].im); |
|
BF(t[5].re, t[4].re, in[3].re, in[4].re); |
|
BF(t[5].im, t[4].im, in[3].im, in[4].im); |
|
|
|
out[0*stride].re = in[0].re + t[0].re + t[2].re + t[4].re; |
|
out[0*stride].im = in[0].im + t[0].im + t[2].im + t[4].im; |
|
|
|
#ifdef TX_INT32 /* NOTE: it's possible to do this with 16 mults but 72 adds */ |
|
mtmp[ 0] = ((int64_t)tab[0].re)*t[0].re - ((int64_t)tab[2].re)*t[4].re; |
|
mtmp[ 1] = ((int64_t)tab[0].re)*t[4].re - ((int64_t)tab[1].re)*t[0].re; |
|
mtmp[ 2] = ((int64_t)tab[0].re)*t[2].re - ((int64_t)tab[2].re)*t[0].re; |
|
mtmp[ 3] = ((int64_t)tab[0].re)*t[0].im - ((int64_t)tab[1].re)*t[2].im; |
|
mtmp[ 4] = ((int64_t)tab[0].re)*t[4].im - ((int64_t)tab[1].re)*t[0].im; |
|
mtmp[ 5] = ((int64_t)tab[0].re)*t[2].im - ((int64_t)tab[2].re)*t[0].im; |
|
|
|
mtmp[ 6] = ((int64_t)tab[2].im)*t[1].im + ((int64_t)tab[1].im)*t[5].im; |
|
mtmp[ 7] = ((int64_t)tab[0].im)*t[5].im + ((int64_t)tab[2].im)*t[3].im; |
|
mtmp[ 8] = ((int64_t)tab[2].im)*t[5].im + ((int64_t)tab[1].im)*t[3].im; |
|
mtmp[ 9] = ((int64_t)tab[0].im)*t[1].re + ((int64_t)tab[1].im)*t[3].re; |
|
mtmp[10] = ((int64_t)tab[2].im)*t[3].re + ((int64_t)tab[0].im)*t[5].re; |
|
mtmp[11] = ((int64_t)tab[2].im)*t[1].re + ((int64_t)tab[1].im)*t[5].re; |
|
|
|
z[0].re = (int32_t)(mtmp[ 0] - ((int64_t)tab[1].re)*t[2].re + 0x40000000 >> 31); |
|
z[1].re = (int32_t)(mtmp[ 1] - ((int64_t)tab[2].re)*t[2].re + 0x40000000 >> 31); |
|
z[2].re = (int32_t)(mtmp[ 2] - ((int64_t)tab[1].re)*t[4].re + 0x40000000 >> 31); |
|
z[0].im = (int32_t)(mtmp[ 3] - ((int64_t)tab[2].re)*t[4].im + 0x40000000 >> 31); |
|
z[1].im = (int32_t)(mtmp[ 4] - ((int64_t)tab[2].re)*t[2].im + 0x40000000 >> 31); |
|
z[2].im = (int32_t)(mtmp[ 5] - ((int64_t)tab[1].re)*t[4].im + 0x40000000 >> 31); |
|
|
|
t[0].re = (int32_t)(mtmp[ 6] - ((int64_t)tab[0].im)*t[3].im + 0x40000000 >> 31); |
|
t[2].re = (int32_t)(mtmp[ 7] - ((int64_t)tab[1].im)*t[1].im + 0x40000000 >> 31); |
|
t[4].re = (int32_t)(mtmp[ 8] + ((int64_t)tab[0].im)*t[1].im + 0x40000000 >> 31); |
|
t[0].im = (int32_t)(mtmp[ 9] + ((int64_t)tab[2].im)*t[5].re + 0x40000000 >> 31); |
|
t[2].im = (int32_t)(mtmp[10] - ((int64_t)tab[1].im)*t[1].re + 0x40000000 >> 31); |
|
t[4].im = (int32_t)(mtmp[11] - ((int64_t)tab[0].im)*t[3].re + 0x40000000 >> 31); |
|
#else |
|
z[0].re = tab[0].re*t[0].re - tab[2].re*t[4].re - tab[1].re*t[2].re; |
|
z[1].re = tab[0].re*t[4].re - tab[1].re*t[0].re - tab[2].re*t[2].re; |
|
z[2].re = tab[0].re*t[2].re - tab[2].re*t[0].re - tab[1].re*t[4].re; |
|
z[0].im = tab[0].re*t[0].im - tab[1].re*t[2].im - tab[2].re*t[4].im; |
|
z[1].im = tab[0].re*t[4].im - tab[1].re*t[0].im - tab[2].re*t[2].im; |
|
z[2].im = tab[0].re*t[2].im - tab[2].re*t[0].im - tab[1].re*t[4].im; |
|
|
|
/* It's possible to do t[4].re and t[0].im with 2 multiplies only by |
|
* multiplying the sum of all with the average of the twiddles */ |
|
|
|
t[0].re = tab[2].im*t[1].im + tab[1].im*t[5].im - tab[0].im*t[3].im; |
|
t[2].re = tab[0].im*t[5].im + tab[2].im*t[3].im - tab[1].im*t[1].im; |
|
t[4].re = tab[2].im*t[5].im + tab[1].im*t[3].im + tab[0].im*t[1].im; |
|
t[0].im = tab[0].im*t[1].re + tab[1].im*t[3].re + tab[2].im*t[5].re; |
|
t[2].im = tab[2].im*t[3].re + tab[0].im*t[5].re - tab[1].im*t[1].re; |
|
t[4].im = tab[2].im*t[1].re + tab[1].im*t[5].re - tab[0].im*t[3].re; |
|
#endif |
|
|
|
BF(t[1].re, z[0].re, z[0].re, t[4].re); |
|
BF(t[3].re, z[1].re, z[1].re, t[2].re); |
|
BF(t[5].re, z[2].re, z[2].re, t[0].re); |
|
BF(t[1].im, z[0].im, z[0].im, t[0].im); |
|
BF(t[3].im, z[1].im, z[1].im, t[2].im); |
|
BF(t[5].im, z[2].im, z[2].im, t[4].im); |
|
|
|
out[1*stride].re = in[0].re + z[0].re; |
|
out[1*stride].im = in[0].im + t[1].im; |
|
out[2*stride].re = in[0].re + t[3].re; |
|
out[2*stride].im = in[0].im + z[1].im; |
|
out[3*stride].re = in[0].re + z[2].re; |
|
out[3*stride].im = in[0].im + t[5].im; |
|
out[4*stride].re = in[0].re + t[5].re; |
|
out[4*stride].im = in[0].im + z[2].im; |
|
out[5*stride].re = in[0].re + z[1].re; |
|
out[5*stride].im = in[0].im + t[3].im; |
|
out[6*stride].re = in[0].re + t[1].re; |
|
out[6*stride].im = in[0].im + z[0].im; |
|
} |
|
|
|
static av_always_inline void fft9(FFTComplex *out, FFTComplex *in, |
|
ptrdiff_t stride) |
|
{ |
|
const FFTComplex *tab = TX_NAME(ff_cos_9); |
|
FFTComplex t[16], w[4], x[5], y[5], z[2]; |
|
#ifdef TX_INT32 |
|
int64_t mtmp[12]; |
|
#endif |
|
|
|
BF(t[1].re, t[0].re, in[1].re, in[8].re); |
|
BF(t[1].im, t[0].im, in[1].im, in[8].im); |
|
BF(t[3].re, t[2].re, in[2].re, in[7].re); |
|
BF(t[3].im, t[2].im, in[2].im, in[7].im); |
|
BF(t[5].re, t[4].re, in[3].re, in[6].re); |
|
BF(t[5].im, t[4].im, in[3].im, in[6].im); |
|
BF(t[7].re, t[6].re, in[4].re, in[5].re); |
|
BF(t[7].im, t[6].im, in[4].im, in[5].im); |
|
|
|
w[0].re = t[0].re - t[6].re; |
|
w[0].im = t[0].im - t[6].im; |
|
w[1].re = t[2].re - t[6].re; |
|
w[1].im = t[2].im - t[6].im; |
|
w[2].re = t[1].re - t[7].re; |
|
w[2].im = t[1].im - t[7].im; |
|
w[3].re = t[3].re + t[7].re; |
|
w[3].im = t[3].im + t[7].im; |
|
|
|
z[0].re = in[0].re + t[4].re; |
|
z[0].im = in[0].im + t[4].im; |
|
|
|
z[1].re = t[0].re + t[2].re + t[6].re; |
|
z[1].im = t[0].im + t[2].im + t[6].im; |
|
|
|
out[0*stride].re = z[0].re + z[1].re; |
|
out[0*stride].im = z[0].im + z[1].im; |
|
|
|
#ifdef TX_INT32 |
|
mtmp[0] = t[1].re - t[3].re + t[7].re; |
|
mtmp[1] = t[1].im - t[3].im + t[7].im; |
|
|
|
y[3].re = (int32_t)(((int64_t)tab[0].im)*mtmp[0] + 0x40000000 >> 31); |
|
y[3].im = (int32_t)(((int64_t)tab[0].im)*mtmp[1] + 0x40000000 >> 31); |
|
|
|
mtmp[0] = (int32_t)(((int64_t)tab[0].re)*z[1].re + 0x40000000 >> 31); |
|
mtmp[1] = (int32_t)(((int64_t)tab[0].re)*z[1].im + 0x40000000 >> 31); |
|
mtmp[2] = (int32_t)(((int64_t)tab[0].re)*t[4].re + 0x40000000 >> 31); |
|
mtmp[3] = (int32_t)(((int64_t)tab[0].re)*t[4].im + 0x40000000 >> 31); |
|
|
|
x[3].re = z[0].re + (int32_t)mtmp[0]; |
|
x[3].im = z[0].im + (int32_t)mtmp[1]; |
|
z[0].re = in[0].re + (int32_t)mtmp[2]; |
|
z[0].im = in[0].im + (int32_t)mtmp[3]; |
|
|
|
mtmp[0] = ((int64_t)tab[1].re)*w[0].re; |
|
mtmp[1] = ((int64_t)tab[1].re)*w[0].im; |
|
mtmp[2] = ((int64_t)tab[2].im)*w[0].re; |
|
mtmp[3] = ((int64_t)tab[2].im)*w[0].im; |
|
mtmp[4] = ((int64_t)tab[1].im)*w[2].re; |
|
mtmp[5] = ((int64_t)tab[1].im)*w[2].im; |
|
mtmp[6] = ((int64_t)tab[2].re)*w[2].re; |
|
mtmp[7] = ((int64_t)tab[2].re)*w[2].im; |
|
|
|
x[1].re = (int32_t)(mtmp[0] + ((int64_t)tab[2].im)*w[1].re + 0x40000000 >> 31); |
|
x[1].im = (int32_t)(mtmp[1] + ((int64_t)tab[2].im)*w[1].im + 0x40000000 >> 31); |
|
x[2].re = (int32_t)(mtmp[2] - ((int64_t)tab[3].re)*w[1].re + 0x40000000 >> 31); |
|
x[2].im = (int32_t)(mtmp[3] - ((int64_t)tab[3].re)*w[1].im + 0x40000000 >> 31); |
|
y[1].re = (int32_t)(mtmp[4] + ((int64_t)tab[2].re)*w[3].re + 0x40000000 >> 31); |
|
y[1].im = (int32_t)(mtmp[5] + ((int64_t)tab[2].re)*w[3].im + 0x40000000 >> 31); |
|
y[2].re = (int32_t)(mtmp[6] - ((int64_t)tab[3].im)*w[3].re + 0x40000000 >> 31); |
|
y[2].im = (int32_t)(mtmp[7] - ((int64_t)tab[3].im)*w[3].im + 0x40000000 >> 31); |
|
|
|
y[0].re = (int32_t)(((int64_t)tab[0].im)*t[5].re + 0x40000000 >> 31); |
|
y[0].im = (int32_t)(((int64_t)tab[0].im)*t[5].im + 0x40000000 >> 31); |
|
|
|
#else |
|
y[3].re = tab[0].im*(t[1].re - t[3].re + t[7].re); |
|
y[3].im = tab[0].im*(t[1].im - t[3].im + t[7].im); |
|
|
|
x[3].re = z[0].re + tab[0].re*z[1].re; |
|
x[3].im = z[0].im + tab[0].re*z[1].im; |
|
z[0].re = in[0].re + tab[0].re*t[4].re; |
|
z[0].im = in[0].im + tab[0].re*t[4].im; |
|
|
|
x[1].re = tab[1].re*w[0].re + tab[2].im*w[1].re; |
|
x[1].im = tab[1].re*w[0].im + tab[2].im*w[1].im; |
|
x[2].re = tab[2].im*w[0].re - tab[3].re*w[1].re; |
|
x[2].im = tab[2].im*w[0].im - tab[3].re*w[1].im; |
|
y[1].re = tab[1].im*w[2].re + tab[2].re*w[3].re; |
|
y[1].im = tab[1].im*w[2].im + tab[2].re*w[3].im; |
|
y[2].re = tab[2].re*w[2].re - tab[3].im*w[3].re; |
|
y[2].im = tab[2].re*w[2].im - tab[3].im*w[3].im; |
|
|
|
y[0].re = tab[0].im*t[5].re; |
|
y[0].im = tab[0].im*t[5].im; |
|
#endif |
|
|
|
x[4].re = x[1].re + x[2].re; |
|
x[4].im = x[1].im + x[2].im; |
|
|
|
y[4].re = y[1].re - y[2].re; |
|
y[4].im = y[1].im - y[2].im; |
|
x[1].re = z[0].re + x[1].re; |
|
x[1].im = z[0].im + x[1].im; |
|
y[1].re = y[0].re + y[1].re; |
|
y[1].im = y[0].im + y[1].im; |
|
x[2].re = z[0].re + x[2].re; |
|
x[2].im = z[0].im + x[2].im; |
|
y[2].re = y[2].re - y[0].re; |
|
y[2].im = y[2].im - y[0].im; |
|
x[4].re = z[0].re - x[4].re; |
|
x[4].im = z[0].im - x[4].im; |
|
y[4].re = y[0].re - y[4].re; |
|
y[4].im = y[0].im - y[4].im; |
|
|
|
out[1*stride] = (FFTComplex){ x[1].re + y[1].im, x[1].im - y[1].re }; |
|
out[2*stride] = (FFTComplex){ x[2].re + y[2].im, x[2].im - y[2].re }; |
|
out[3*stride] = (FFTComplex){ x[3].re + y[3].im, x[3].im - y[3].re }; |
|
out[4*stride] = (FFTComplex){ x[4].re + y[4].im, x[4].im - y[4].re }; |
|
out[5*stride] = (FFTComplex){ x[4].re - y[4].im, x[4].im + y[4].re }; |
|
out[6*stride] = (FFTComplex){ x[3].re - y[3].im, x[3].im + y[3].re }; |
|
out[7*stride] = (FFTComplex){ x[2].re - y[2].im, x[2].im + y[2].re }; |
|
out[8*stride] = (FFTComplex){ x[1].re - y[1].im, x[1].im + y[1].re }; |
|
} |
|
|
|
static av_always_inline void fft15(FFTComplex *out, FFTComplex *in, |
|
ptrdiff_t stride) |
|
{ |
|
FFTComplex tmp[15]; |
|
|
|
for (int i = 0; i < 5; i++) |
|
fft3(tmp + i, in + i*3, 5); |
|
|
|
fft5_m1(out, tmp + 0, stride); |
|
fft5_m2(out, tmp + 5, stride); |
|
fft5_m3(out, tmp + 10, stride); |
|
} |
|
|
|
#define BUTTERFLIES(a0,a1,a2,a3) \ |
|
do { \ |
|
r0=a0.re; \ |
|
i0=a0.im; \ |
|
r1=a1.re; \ |
|
i1=a1.im; \ |
|
BF(t3, t5, t5, t1); \ |
|
BF(a2.re, a0.re, r0, t5); \ |
|
BF(a3.im, a1.im, i1, t3); \ |
|
BF(t4, t6, t2, t6); \ |
|
BF(a3.re, a1.re, r1, t4); \ |
|
BF(a2.im, a0.im, i0, t6); \ |
|
} while (0) |
|
|
|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) \ |
|
do { \ |
|
CMUL(t1, t2, a2.re, a2.im, wre, -wim); \ |
|
CMUL(t5, t6, a3.re, a3.im, wre, wim); \ |
|
BUTTERFLIES(a0, a1, a2, a3); \ |
|
} while (0) |
|
|
|
/* z[0...8n-1], w[1...2n-1] */ |
|
static void split_radix_combine(FFTComplex *z, const FFTSample *cos, int n) |
|
{ |
|
int o1 = 2*n; |
|
int o2 = 4*n; |
|
int o3 = 6*n; |
|
const FFTSample *wim = cos + o1 - 7; |
|
FFTSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; |
|
|
|
for (int i = 0; i < n; i += 4) { |
|
TRANSFORM(z[0], z[o1 + 0], z[o2 + 0], z[o3 + 0], cos[0], wim[7]); |
|
TRANSFORM(z[2], z[o1 + 2], z[o2 + 2], z[o3 + 2], cos[2], wim[5]); |
|
TRANSFORM(z[4], z[o1 + 4], z[o2 + 4], z[o3 + 4], cos[4], wim[3]); |
|
TRANSFORM(z[6], z[o1 + 6], z[o2 + 6], z[o3 + 6], cos[6], wim[1]); |
|
|
|
TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], cos[1], wim[6]); |
|
TRANSFORM(z[3], z[o1 + 3], z[o2 + 3], z[o3 + 3], cos[3], wim[4]); |
|
TRANSFORM(z[5], z[o1 + 5], z[o2 + 5], z[o3 + 5], cos[5], wim[2]); |
|
TRANSFORM(z[7], z[o1 + 7], z[o2 + 7], z[o3 + 7], cos[7], wim[0]); |
|
|
|
z += 2*4; |
|
cos += 2*4; |
|
wim -= 2*4; |
|
} |
|
} |
|
|
|
#define DECL_FFT(n, n2, n4) \ |
|
static void fft##n(FFTComplex *z) \ |
|
{ \ |
|
fft##n2(z); \ |
|
fft##n4(z + n4*2); \ |
|
fft##n4(z + n4*3); \ |
|
split_radix_combine(z, TX_NAME(ff_cos_##n), n4/2); \ |
|
} |
|
|
|
static void fft2(FFTComplex *z) |
|
{ |
|
FFTComplex tmp; |
|
BF(tmp.re, z[0].re, z[0].re, z[1].re); |
|
BF(tmp.im, z[0].im, z[0].im, z[1].im); |
|
z[1] = tmp; |
|
} |
|
|
|
static void fft4(FFTComplex *z) |
|
{ |
|
FFTSample t1, t2, t3, t4, t5, t6, t7, t8; |
|
|
|
BF(t3, t1, z[0].re, z[1].re); |
|
BF(t8, t6, z[3].re, z[2].re); |
|
BF(z[2].re, z[0].re, t1, t6); |
|
BF(t4, t2, z[0].im, z[1].im); |
|
BF(t7, t5, z[2].im, z[3].im); |
|
BF(z[3].im, z[1].im, t4, t8); |
|
BF(z[3].re, z[1].re, t3, t7); |
|
BF(z[2].im, z[0].im, t2, t5); |
|
} |
|
|
|
static void fft8(FFTComplex *z) |
|
{ |
|
FFTSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; |
|
|
|
fft4(z); |
|
|
|
BF(t1, z[5].re, z[4].re, -z[5].re); |
|
BF(t2, z[5].im, z[4].im, -z[5].im); |
|
BF(t5, z[7].re, z[6].re, -z[7].re); |
|
BF(t6, z[7].im, z[6].im, -z[7].im); |
|
|
|
BUTTERFLIES(z[0], z[2], z[4], z[6]); |
|
TRANSFORM(z[1], z[3], z[5], z[7], RESCALE(M_SQRT1_2), RESCALE(M_SQRT1_2)); |
|
} |
|
|
|
static void fft16(FFTComplex *z) |
|
{ |
|
FFTSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; |
|
FFTSample cos_16_1 = TX_NAME(ff_cos_16)[1]; |
|
FFTSample cos_16_2 = TX_NAME(ff_cos_16)[2]; |
|
FFTSample cos_16_3 = TX_NAME(ff_cos_16)[3]; |
|
|
|
fft8(z + 0); |
|
fft4(z + 8); |
|
fft4(z + 12); |
|
|
|
t1 = z[ 8].re; |
|
t2 = z[ 8].im; |
|
t5 = z[12].re; |
|
t6 = z[12].im; |
|
BUTTERFLIES(z[0], z[4], z[8], z[12]); |
|
|
|
TRANSFORM(z[ 2], z[ 6], z[10], z[14], cos_16_2, cos_16_2); |
|
TRANSFORM(z[ 1], z[ 5], z[ 9], z[13], cos_16_1, cos_16_3); |
|
TRANSFORM(z[ 3], z[ 7], z[11], z[15], cos_16_3, cos_16_1); |
|
} |
|
|
|
DECL_FFT(32,16,8) |
|
DECL_FFT(64,32,16) |
|
DECL_FFT(128,64,32) |
|
DECL_FFT(256,128,64) |
|
DECL_FFT(512,256,128) |
|
DECL_FFT(1024,512,256) |
|
DECL_FFT(2048,1024,512) |
|
DECL_FFT(4096,2048,1024) |
|
DECL_FFT(8192,4096,2048) |
|
DECL_FFT(16384,8192,4096) |
|
DECL_FFT(32768,16384,8192) |
|
DECL_FFT(65536,32768,16384) |
|
DECL_FFT(131072,65536,32768) |
|
|
|
static void (* const fft_dispatch[])(FFTComplex*) = { |
|
NULL, fft2, fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, |
|
fft1024, fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072 |
|
}; |
|
|
|
#define DECL_COMP_FFT(N) \ |
|
static void compound_fft_##N##xM(AVTXContext *s, void *_out, \ |
|
void *_in, ptrdiff_t stride) \ |
|
{ \ |
|
const int m = s->m, *in_map = s->pfatab, *out_map = in_map + N*m; \ |
|
FFTComplex *in = _in; \ |
|
FFTComplex *out = _out; \ |
|
FFTComplex fft##N##in[N]; \ |
|
void (*fftp)(FFTComplex *z) = fft_dispatch[av_log2(m)]; \ |
|
\ |
|
for (int i = 0; i < m; i++) { \ |
|
for (int j = 0; j < N; j++) \ |
|
fft##N##in[j] = in[in_map[i*N + j]]; \ |
|
fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ |
|
} \ |
|
\ |
|
for (int i = 0; i < N; i++) \ |
|
fftp(s->tmp + m*i); \ |
|
\ |
|
for (int i = 0; i < N*m; i++) \ |
|
out[i] = s->tmp[out_map[i]]; \ |
|
} |
|
|
|
DECL_COMP_FFT(3) |
|
DECL_COMP_FFT(5) |
|
DECL_COMP_FFT(7) |
|
DECL_COMP_FFT(9) |
|
DECL_COMP_FFT(15) |
|
|
|
static void split_radix_fft(AVTXContext *s, void *_out, void *_in, |
|
ptrdiff_t stride) |
|
{ |
|
FFTComplex *in = _in; |
|
FFTComplex *out = _out; |
|
int m = s->m, mb = av_log2(m); |
|
|
|
if (s->flags & AV_TX_INPLACE) { |
|
FFTComplex tmp; |
|
int src, dst, *inplace_idx = s->inplace_idx; |
|
|
|
src = *inplace_idx++; |
|
|
|
do { |
|
tmp = out[src]; |
|
dst = s->revtab[src]; |
|
do { |
|
FFSWAP(FFTComplex, tmp, out[dst]); |
|
dst = s->revtab[dst]; |
|
} while (dst != src); /* Can be > as well, but is less predictable */ |
|
out[dst] = tmp; |
|
} while ((src = *inplace_idx++)); |
|
} else { |
|
for (int i = 0; i < m; i++) |
|
out[i] = in[s->revtab[i]]; |
|
} |
|
|
|
fft_dispatch[mb](out); |
|
} |
|
|
|
static void naive_fft(AVTXContext *s, void *_out, void *_in, |
|
ptrdiff_t stride) |
|
{ |
|
FFTComplex *in = _in; |
|
FFTComplex *out = _out; |
|
const int n = s->n; |
|
double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n; |
|
|
|
for(int i = 0; i < n; i++) { |
|
FFTComplex tmp = { 0 }; |
|
for(int j = 0; j < n; j++) { |
|
const double factor = phase*i*j; |
|
const FFTComplex mult = { |
|
RESCALE(cos(factor)), |
|
RESCALE(sin(factor)), |
|
}; |
|
FFTComplex res; |
|
CMUL3(res, in[j], mult); |
|
tmp.re += res.re; |
|
tmp.im += res.im; |
|
} |
|
out[i] = tmp; |
|
} |
|
} |
|
|
|
#define DECL_COMP_IMDCT(N) \ |
|
static void compound_imdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ |
|
ptrdiff_t stride) \ |
|
{ \ |
|
FFTComplex fft##N##in[N]; \ |
|
FFTComplex *z = _dst, *exp = s->exptab; \ |
|
const int m = s->m, len8 = N*m >> 1; \ |
|
const int *in_map = s->pfatab, *out_map = in_map + N*m; \ |
|
const FFTSample *src = _src, *in1, *in2; \ |
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \ |
|
\ |
|
stride /= sizeof(*src); /* To convert it from bytes */ \ |
|
in1 = src; \ |
|
in2 = src + ((N*m*2) - 1) * stride; \ |
|
\ |
|
for (int i = 0; i < m; i++) { \ |
|
for (int j = 0; j < N; j++) { \ |
|
const int k = in_map[i*N + j]; \ |
|
FFTComplex tmp = { in2[-k*stride], in1[k*stride] }; \ |
|
CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \ |
|
} \ |
|
fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ |
|
} \ |
|
\ |
|
for (int i = 0; i < N; i++) \ |
|
fftp(s->tmp + m*i); \ |
|
\ |
|
for (int i = 0; i < len8; i++) { \ |
|
const int i0 = len8 + i, i1 = len8 - i - 1; \ |
|
const int s0 = out_map[i0], s1 = out_map[i1]; \ |
|
FFTComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \ |
|
FFTComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \ |
|
\ |
|
CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \ |
|
CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \ |
|
} \ |
|
} |
|
|
|
DECL_COMP_IMDCT(3) |
|
DECL_COMP_IMDCT(5) |
|
DECL_COMP_IMDCT(7) |
|
DECL_COMP_IMDCT(9) |
|
DECL_COMP_IMDCT(15) |
|
|
|
#define DECL_COMP_MDCT(N) \ |
|
static void compound_mdct_##N##xM(AVTXContext *s, void *_dst, void *_src, \ |
|
ptrdiff_t stride) \ |
|
{ \ |
|
FFTSample *src = _src, *dst = _dst; \ |
|
FFTComplex *exp = s->exptab, tmp, fft##N##in[N]; \ |
|
const int m = s->m, len4 = N*m, len3 = len4 * 3, len8 = len4 >> 1; \ |
|
const int *in_map = s->pfatab, *out_map = in_map + N*m; \ |
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; \ |
|
\ |
|
stride /= sizeof(*dst); \ |
|
\ |
|
for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \ |
|
for (int j = 0; j < N; j++) { \ |
|
const int k = in_map[i*N + j]; \ |
|
if (k < len4) { \ |
|
tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \ |
|
tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \ |
|
} else { \ |
|
tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \ |
|
tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \ |
|
} \ |
|
CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \ |
|
exp[k >> 1].re, exp[k >> 1].im); \ |
|
} \ |
|
fft##N(s->tmp + s->revtab[i], fft##N##in, m); \ |
|
} \ |
|
\ |
|
for (int i = 0; i < N; i++) \ |
|
fftp(s->tmp + m*i); \ |
|
\ |
|
for (int i = 0; i < len8; i++) { \ |
|
const int i0 = len8 + i, i1 = len8 - i - 1; \ |
|
const int s0 = out_map[i0], s1 = out_map[i1]; \ |
|
FFTComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \ |
|
FFTComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \ |
|
\ |
|
CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \ |
|
exp[i0].im, exp[i0].re); \ |
|
CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \ |
|
exp[i1].im, exp[i1].re); \ |
|
} \ |
|
} |
|
|
|
DECL_COMP_MDCT(3) |
|
DECL_COMP_MDCT(5) |
|
DECL_COMP_MDCT(7) |
|
DECL_COMP_MDCT(9) |
|
DECL_COMP_MDCT(15) |
|
|
|
static void monolithic_imdct(AVTXContext *s, void *_dst, void *_src, |
|
ptrdiff_t stride) |
|
{ |
|
FFTComplex *z = _dst, *exp = s->exptab; |
|
const int m = s->m, len8 = m >> 1; |
|
const FFTSample *src = _src, *in1, *in2; |
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; |
|
|
|
stride /= sizeof(*src); |
|
in1 = src; |
|
in2 = src + ((m*2) - 1) * stride; |
|
|
|
for (int i = 0; i < m; i++) { |
|
FFTComplex tmp = { in2[-2*i*stride], in1[2*i*stride] }; |
|
CMUL3(z[s->revtab[i]], tmp, exp[i]); |
|
} |
|
|
|
fftp(z); |
|
|
|
for (int i = 0; i < len8; i++) { |
|
const int i0 = len8 + i, i1 = len8 - i - 1; |
|
FFTComplex src1 = { z[i1].im, z[i1].re }; |
|
FFTComplex src0 = { z[i0].im, z[i0].re }; |
|
|
|
CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); |
|
CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); |
|
} |
|
} |
|
|
|
static void monolithic_mdct(AVTXContext *s, void *_dst, void *_src, |
|
ptrdiff_t stride) |
|
{ |
|
FFTSample *src = _src, *dst = _dst; |
|
FFTComplex *exp = s->exptab, tmp, *z = _dst; |
|
const int m = s->m, len4 = m, len3 = len4 * 3, len8 = len4 >> 1; |
|
void (*fftp)(FFTComplex *) = fft_dispatch[av_log2(m)]; |
|
|
|
stride /= sizeof(*dst); |
|
|
|
for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ |
|
const int k = 2*i; |
|
if (k < len4) { |
|
tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); |
|
tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); |
|
} else { |
|
tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); |
|
tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); |
|
} |
|
CMUL(z[s->revtab[i]].im, z[s->revtab[i]].re, tmp.re, tmp.im, |
|
exp[i].re, exp[i].im); |
|
} |
|
|
|
fftp(z); |
|
|
|
for (int i = 0; i < len8; i++) { |
|
const int i0 = len8 + i, i1 = len8 - i - 1; |
|
FFTComplex src1 = { z[i1].re, z[i1].im }; |
|
FFTComplex src0 = { z[i0].re, z[i0].im }; |
|
|
|
CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, |
|
exp[i0].im, exp[i0].re); |
|
CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, |
|
exp[i1].im, exp[i1].re); |
|
} |
|
} |
|
|
|
static void naive_imdct(AVTXContext *s, void *_dst, void *_src, |
|
ptrdiff_t stride) |
|
{ |
|
int len = s->n; |
|
int len2 = len*2; |
|
FFTSample *src = _src; |
|
FFTSample *dst = _dst; |
|
double scale = s->scale; |
|
const double phase = M_PI/(4.0*len2); |
|
|
|
stride /= sizeof(*src); |
|
|
|
for (int i = 0; i < len; i++) { |
|
double sum_d = 0.0; |
|
double sum_u = 0.0; |
|
double i_d = phase * (4*len - 2*i - 1); |
|
double i_u = phase * (3*len2 + 2*i + 1); |
|
for (int j = 0; j < len2; j++) { |
|
double a = (2 * j + 1); |
|
double a_d = cos(a * i_d); |
|
double a_u = cos(a * i_u); |
|
double val = UNSCALE(src[j*stride]); |
|
sum_d += a_d * val; |
|
sum_u += a_u * val; |
|
} |
|
dst[i + 0] = RESCALE( sum_d*scale); |
|
dst[i + len] = RESCALE(-sum_u*scale); |
|
} |
|
} |
|
|
|
static void naive_mdct(AVTXContext *s, void *_dst, void *_src, |
|
ptrdiff_t stride) |
|
{ |
|
int len = s->n*2; |
|
FFTSample *src = _src; |
|
FFTSample *dst = _dst; |
|
double scale = s->scale; |
|
const double phase = M_PI/(4.0*len); |
|
|
|
stride /= sizeof(*dst); |
|
|
|
for (int i = 0; i < len; i++) { |
|
double sum = 0.0; |
|
for (int j = 0; j < len*2; j++) { |
|
int a = (2*j + 1 + len) * (2*i + 1); |
|
sum += UNSCALE(src[j]) * cos(a * phase); |
|
} |
|
dst[i*stride] = RESCALE(sum*scale); |
|
} |
|
} |
|
|
|
static void full_imdct_wrapper_fn(AVTXContext *s, void *_dst, void *_src, |
|
ptrdiff_t stride) |
|
{ |
|
int len = s->m*s->n*4; |
|
int len2 = len >> 1; |
|
int len4 = len >> 2; |
|
FFTSample *dst = _dst; |
|
|
|
s->top_tx(s, dst + len4, _src, stride); |
|
|
|
stride /= sizeof(*dst); |
|
|
|
for (int i = 0; i < len4; i++) { |
|
dst[ i*stride] = -dst[(len2 - i - 1)*stride]; |
|
dst[(len - i - 1)*stride] = dst[(len2 + i + 0)*stride]; |
|
} |
|
} |
|
|
|
static int gen_mdct_exptab(AVTXContext *s, int len4, double scale) |
|
{ |
|
const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0; |
|
|
|
if (!(s->exptab = av_malloc_array(len4, sizeof(*s->exptab)))) |
|
return AVERROR(ENOMEM); |
|
|
|
scale = sqrt(fabs(scale)); |
|
for (int i = 0; i < len4; i++) { |
|
const double alpha = M_PI_2 * (i + theta) / len4; |
|
s->exptab[i].re = RESCALE(cos(alpha) * scale); |
|
s->exptab[i].im = RESCALE(sin(alpha) * scale); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int TX_NAME(ff_tx_init_mdct_fft)(AVTXContext *s, av_tx_fn *tx, |
|
enum AVTXType type, int inv, int len, |
|
const void *scale, uint64_t flags) |
|
{ |
|
const int is_mdct = ff_tx_type_is_mdct(type); |
|
int err, l, n = 1, m = 1, max_ptwo = 1 << (FF_ARRAY_ELEMS(fft_dispatch) - 1); |
|
|
|
if (is_mdct) |
|
len >>= 1; |
|
|
|
l = len; |
|
|
|
#define CHECK_FACTOR(DST, FACTOR, SRC) \ |
|
if (DST == 1 && !(SRC % FACTOR)) { \ |
|
DST = FACTOR; \ |
|
SRC /= FACTOR; \ |
|
} |
|
CHECK_FACTOR(n, 15, len) |
|
CHECK_FACTOR(n, 9, len) |
|
CHECK_FACTOR(n, 7, len) |
|
CHECK_FACTOR(n, 5, len) |
|
CHECK_FACTOR(n, 3, len) |
|
#undef CHECK_FACTOR |
|
|
|
/* len must be a power of two now */ |
|
if (!(len & (len - 1)) && len >= 2 && len <= max_ptwo) { |
|
m = len; |
|
len = 1; |
|
} |
|
|
|
s->n = n; |
|
s->m = m; |
|
s->inv = inv; |
|
s->type = type; |
|
s->flags = flags; |
|
|
|
/* If we weren't able to split the length into factors we can handle, |
|
* resort to using the naive and slow FT. This also filters out |
|
* direct 3, 5 and 15 transforms as they're too niche. */ |
|
if (len > 1 || m == 1) { |
|
if (is_mdct && (l & 1)) /* Odd (i)MDCTs are not supported yet */ |
|
return AVERROR(ENOSYS); |
|
if (flags & AV_TX_INPLACE) /* Neither are in-place naive transforms */ |
|
return AVERROR(ENOSYS); |
|
s->n = l; |
|
s->m = 1; |
|
*tx = naive_fft; |
|
if (is_mdct) { |
|
s->scale = *((SCALE_TYPE *)scale); |
|
*tx = inv ? naive_imdct : naive_mdct; |
|
if (inv && (flags & AV_TX_FULL_IMDCT)) { |
|
s->top_tx = *tx; |
|
*tx = full_imdct_wrapper_fn; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
if (n > 1 && m > 1) { /* 2D transform case */ |
|
if ((err = ff_tx_gen_compound_mapping(s))) |
|
return err; |
|
if (!(s->tmp = av_malloc(n*m*sizeof(*s->tmp)))) |
|
return AVERROR(ENOMEM); |
|
if (!(m & (m - 1))) { |
|
*tx = n == 3 ? compound_fft_3xM : |
|
n == 5 ? compound_fft_5xM : |
|
n == 7 ? compound_fft_7xM : |
|
n == 9 ? compound_fft_9xM : |
|
compound_fft_15xM; |
|
if (is_mdct) |
|
*tx = n == 3 ? inv ? compound_imdct_3xM : compound_mdct_3xM : |
|
n == 5 ? inv ? compound_imdct_5xM : compound_mdct_5xM : |
|
n == 7 ? inv ? compound_imdct_7xM : compound_mdct_7xM : |
|
n == 9 ? inv ? compound_imdct_9xM : compound_mdct_9xM : |
|
inv ? compound_imdct_15xM : compound_mdct_15xM; |
|
} |
|
} else { /* Direct transform case */ |
|
*tx = split_radix_fft; |
|
if (is_mdct) |
|
*tx = inv ? monolithic_imdct : monolithic_mdct; |
|
} |
|
|
|
if (n == 3 || n == 5 || n == 15) |
|
init_cos_tabs(0); |
|
else if (n == 7) |
|
init_cos_tabs(1); |
|
else if (n == 9) |
|
init_cos_tabs(2); |
|
|
|
if (m != 1 && !(m & (m - 1))) { |
|
if ((err = ff_tx_gen_ptwo_revtab(s, n == 1 && !is_mdct && !(flags & AV_TX_INPLACE)))) |
|
return err; |
|
if (flags & AV_TX_INPLACE) { |
|
if (is_mdct) /* In-place MDCTs are not supported yet */ |
|
return AVERROR(ENOSYS); |
|
if ((err = ff_tx_gen_ptwo_inplace_revtab_idx(s))) |
|
return err; |
|
} |
|
for (int i = 4; i <= av_log2(m); i++) |
|
init_cos_tabs(i); |
|
} |
|
|
|
if (is_mdct) { |
|
if (inv && (flags & AV_TX_FULL_IMDCT)) { |
|
s->top_tx = *tx; |
|
*tx = full_imdct_wrapper_fn; |
|
} |
|
return gen_mdct_exptab(s, n*m, *((SCALE_TYPE *)scale)); |
|
} |
|
|
|
return 0; |
|
}
|
|
|