mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
229 lines
5.8 KiB
229 lines
5.8 KiB
/* |
|
* MDCT/IMDCT transforms |
|
* Copyright (c) 2002 Fabrice Bellard |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/mathematics.h" |
|
#include "fft.h" |
|
|
|
/** |
|
* @file libavcodec/mdct.c |
|
* MDCT/IMDCT transforms. |
|
*/ |
|
|
|
// Generate a Kaiser-Bessel Derived Window. |
|
#define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation |
|
av_cold void ff_kbd_window_init(float *window, float alpha, int n) |
|
{ |
|
int i, j; |
|
double sum = 0.0, bessel, tmp; |
|
double local_window[n]; |
|
double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n); |
|
|
|
for (i = 0; i < n; i++) { |
|
tmp = i * (n - i) * alpha2; |
|
bessel = 1.0; |
|
for (j = BESSEL_I0_ITER; j > 0; j--) |
|
bessel = bessel * tmp / (j * j) + 1; |
|
sum += bessel; |
|
local_window[i] = sum; |
|
} |
|
|
|
sum++; |
|
for (i = 0; i < n; i++) |
|
window[i] = sqrt(local_window[i] / sum); |
|
} |
|
|
|
#include "mdct_tablegen.h" |
|
|
|
/** |
|
* init MDCT or IMDCT computation. |
|
*/ |
|
av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale) |
|
{ |
|
int n, n4, i; |
|
double alpha, theta; |
|
int tstep; |
|
|
|
memset(s, 0, sizeof(*s)); |
|
n = 1 << nbits; |
|
s->mdct_bits = nbits; |
|
s->mdct_size = n; |
|
n4 = n >> 2; |
|
s->permutation = FF_MDCT_PERM_NONE; |
|
|
|
if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0) |
|
goto fail; |
|
|
|
s->tcos = av_malloc(n/2 * sizeof(FFTSample)); |
|
if (!s->tcos) |
|
goto fail; |
|
|
|
switch (s->permutation) { |
|
case FF_MDCT_PERM_NONE: |
|
s->tsin = s->tcos + n4; |
|
tstep = 1; |
|
break; |
|
case FF_MDCT_PERM_INTERLEAVE: |
|
s->tsin = s->tcos + 1; |
|
tstep = 2; |
|
break; |
|
default: |
|
goto fail; |
|
} |
|
|
|
theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0); |
|
scale = sqrt(fabs(scale)); |
|
for(i=0;i<n4;i++) { |
|
alpha = 2 * M_PI * (i + theta) / n; |
|
s->tcos[i*tstep] = -cos(alpha) * scale; |
|
s->tsin[i*tstep] = -sin(alpha) * scale; |
|
} |
|
return 0; |
|
fail: |
|
ff_mdct_end(s); |
|
return -1; |
|
} |
|
|
|
/* complex multiplication: p = a * b */ |
|
#define CMUL(pre, pim, are, aim, bre, bim) \ |
|
{\ |
|
FFTSample _are = (are);\ |
|
FFTSample _aim = (aim);\ |
|
FFTSample _bre = (bre);\ |
|
FFTSample _bim = (bim);\ |
|
(pre) = _are * _bre - _aim * _bim;\ |
|
(pim) = _are * _bim + _aim * _bre;\ |
|
} |
|
|
|
/** |
|
* Compute the middle half of the inverse MDCT of size N = 2^nbits, |
|
* thus excluding the parts that can be derived by symmetry |
|
* @param output N/2 samples |
|
* @param input N/2 samples |
|
*/ |
|
void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input) |
|
{ |
|
int k, n8, n4, n2, n, j; |
|
const uint16_t *revtab = s->revtab; |
|
const FFTSample *tcos = s->tcos; |
|
const FFTSample *tsin = s->tsin; |
|
const FFTSample *in1, *in2; |
|
FFTComplex *z = (FFTComplex *)output; |
|
|
|
n = 1 << s->mdct_bits; |
|
n2 = n >> 1; |
|
n4 = n >> 2; |
|
n8 = n >> 3; |
|
|
|
/* pre rotation */ |
|
in1 = input; |
|
in2 = input + n2 - 1; |
|
for(k = 0; k < n4; k++) { |
|
j=revtab[k]; |
|
CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]); |
|
in1 += 2; |
|
in2 -= 2; |
|
} |
|
ff_fft_calc(s, z); |
|
|
|
/* post rotation + reordering */ |
|
for(k = 0; k < n8; k++) { |
|
FFTSample r0, i0, r1, i1; |
|
CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]); |
|
CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]); |
|
z[n8-k-1].re = r0; |
|
z[n8-k-1].im = i0; |
|
z[n8+k ].re = r1; |
|
z[n8+k ].im = i1; |
|
} |
|
} |
|
|
|
/** |
|
* Compute inverse MDCT of size N = 2^nbits |
|
* @param output N samples |
|
* @param input N/2 samples |
|
*/ |
|
void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input) |
|
{ |
|
int k; |
|
int n = 1 << s->mdct_bits; |
|
int n2 = n >> 1; |
|
int n4 = n >> 2; |
|
|
|
ff_imdct_half_c(s, output+n4, input); |
|
|
|
for(k = 0; k < n4; k++) { |
|
output[k] = -output[n2-k-1]; |
|
output[n-k-1] = output[n2+k]; |
|
} |
|
} |
|
|
|
/** |
|
* Compute MDCT of size N = 2^nbits |
|
* @param input N samples |
|
* @param out N/2 samples |
|
*/ |
|
void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input) |
|
{ |
|
int i, j, n, n8, n4, n2, n3; |
|
FFTSample re, im; |
|
const uint16_t *revtab = s->revtab; |
|
const FFTSample *tcos = s->tcos; |
|
const FFTSample *tsin = s->tsin; |
|
FFTComplex *x = (FFTComplex *)out; |
|
|
|
n = 1 << s->mdct_bits; |
|
n2 = n >> 1; |
|
n4 = n >> 2; |
|
n8 = n >> 3; |
|
n3 = 3 * n4; |
|
|
|
/* pre rotation */ |
|
for(i=0;i<n8;i++) { |
|
re = -input[2*i+3*n4] - input[n3-1-2*i]; |
|
im = -input[n4+2*i] + input[n4-1-2*i]; |
|
j = revtab[i]; |
|
CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]); |
|
|
|
re = input[2*i] - input[n2-1-2*i]; |
|
im = -(input[n2+2*i] + input[n-1-2*i]); |
|
j = revtab[n8 + i]; |
|
CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]); |
|
} |
|
|
|
ff_fft_calc(s, x); |
|
|
|
/* post rotation */ |
|
for(i=0;i<n8;i++) { |
|
FFTSample r0, i0, r1, i1; |
|
CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]); |
|
CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]); |
|
x[n8-i-1].re = r0; |
|
x[n8-i-1].im = i0; |
|
x[n8+i ].re = r1; |
|
x[n8+i ].im = i1; |
|
} |
|
} |
|
|
|
av_cold void ff_mdct_end(FFTContext *s) |
|
{ |
|
av_freep(&s->tcos); |
|
ff_fft_end(s); |
|
}
|
|
|