mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
747 lines
32 KiB
747 lines
32 KiB
/* |
|
* DCA XLL extension |
|
* |
|
* Copyright (C) 2012 Paul B Mahol |
|
* Copyright (C) 2014 Niels Möller |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/attributes.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/internal.h" |
|
|
|
#include "avcodec.h" |
|
#include "dca.h" |
|
#include "dcadata.h" |
|
#include "get_bits.h" |
|
#include "unary.h" |
|
|
|
/* Sign as bit 0 */ |
|
static inline int get_bits_sm(GetBitContext *s, unsigned n) |
|
{ |
|
int x = get_bits(s, n); |
|
if (x & 1) |
|
return -(x >> 1) - 1; |
|
else |
|
return x >> 1; |
|
} |
|
|
|
/* Return -1 on error. */ |
|
static int32_t get_dmix_coeff(DCAContext *s, int inverse) |
|
{ |
|
unsigned code = get_bits(&s->gb, 9); |
|
int32_t sign = (int32_t) (code >> 8) - 1; |
|
unsigned idx = code & 0xff; |
|
int inv_offset = FF_DCA_DMIXTABLE_SIZE -FF_DCA_INV_DMIXTABLE_SIZE; |
|
if (idx >= FF_DCA_DMIXTABLE_SIZE) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"XLL: Invalid channel set downmix code %x\n", code); |
|
return -1; |
|
} else if (!inverse) { |
|
return (ff_dca_dmixtable[idx] ^ sign) - sign; |
|
} else if (idx < inv_offset) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"XLL: Invalid channel set inverse downmix code %x\n", code); |
|
return -1; |
|
} else { |
|
return (ff_dca_inv_dmixtable[idx - inv_offset] ^ sign) - sign; |
|
} |
|
} |
|
|
|
static int32_t dca_get_dmix_coeff(DCAContext *s) |
|
{ |
|
return get_dmix_coeff(s, 0); |
|
} |
|
|
|
static int32_t dca_get_inv_dmix_coeff(DCAContext *s) |
|
{ |
|
return get_dmix_coeff(s, 1); |
|
} |
|
|
|
/* parse XLL header */ |
|
int ff_dca_xll_decode_header(DCAContext *s) |
|
{ |
|
int hdr_pos, hdr_size; |
|
av_unused int version, frame_size; |
|
int i, chset_index; |
|
|
|
/* get bit position of sync header */ |
|
hdr_pos = get_bits_count(&s->gb) - 32; |
|
|
|
version = get_bits(&s->gb, 4) + 1; |
|
hdr_size = get_bits(&s->gb, 8) + 1; |
|
|
|
frame_size = get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1) + 1; |
|
|
|
s->xll_channels = |
|
s->xll_residual_channels = 0; |
|
s->xll_nch_sets = get_bits(&s->gb, 4) + 1; |
|
s->xll_segments = 1 << get_bits(&s->gb, 4); |
|
s->xll_log_smpl_in_seg = get_bits(&s->gb, 4); |
|
s->xll_smpl_in_seg = 1 << s->xll_log_smpl_in_seg; |
|
s->xll_bits4seg_size = get_bits(&s->gb, 5) + 1; |
|
s->xll_banddata_crc = get_bits(&s->gb, 2); |
|
s->xll_scalable_lsb = get_bits1(&s->gb); |
|
s->xll_bits4ch_mask = get_bits(&s->gb, 5) + 1; |
|
|
|
if (s->xll_scalable_lsb) { |
|
s->xll_fixed_lsb_width = get_bits(&s->gb, 4); |
|
if (s->xll_fixed_lsb_width) |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"XLL: fixed lsb width = %d, non-zero not supported.\n", |
|
s->xll_fixed_lsb_width); |
|
} |
|
/* skip to the end of the common header */ |
|
i = get_bits_count(&s->gb); |
|
if (hdr_pos + hdr_size * 8 > i) |
|
skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i); |
|
|
|
for (chset_index = 0; chset_index < s->xll_nch_sets; chset_index++) { |
|
XllChSetSubHeader *chset = &s->xll_chsets[chset_index]; |
|
hdr_pos = get_bits_count(&s->gb); |
|
hdr_size = get_bits(&s->gb, 10) + 1; |
|
|
|
chset->channels = get_bits(&s->gb, 4) + 1; |
|
chset->residual_encode = get_bits(&s->gb, chset->channels); |
|
chset->bit_resolution = get_bits(&s->gb, 5) + 1; |
|
chset->bit_width = get_bits(&s->gb, 5) + 1; |
|
chset->sampling_frequency = ff_dca_sampling_freqs[get_bits(&s->gb, 4)]; |
|
chset->samp_freq_interp = get_bits(&s->gb, 2); |
|
chset->replacement_set = get_bits(&s->gb, 2); |
|
if (chset->replacement_set) |
|
chset->active_replace_set = get_bits(&s->gb, 1); |
|
|
|
if (s->one2one_map_chtospkr) { |
|
chset->primary_ch_set = get_bits(&s->gb, 1); |
|
chset->downmix_coeff_code_embedded = get_bits(&s->gb, 1); |
|
if (chset->downmix_coeff_code_embedded) { |
|
chset->downmix_embedded = get_bits(&s->gb, 1); |
|
if (chset->primary_ch_set) { |
|
chset->downmix_type = get_bits(&s->gb, 3); |
|
if (chset->downmix_type > 6) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"XLL: Invalid channel set downmix type\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
} |
|
chset->hier_chset = get_bits(&s->gb, 1); |
|
|
|
if (chset->downmix_coeff_code_embedded) { |
|
/* nDownmixCoeffs is specified as N * M. For a primary |
|
* channel set, it appears that N = number of |
|
* channels, and M is the number of downmix channels. |
|
* |
|
* For a non-primary channel set, N is specified as |
|
* number of channels + 1, and M is derived from the |
|
* channel set hierarchy, and at least in simple cases |
|
* M is the number of channels in preceding channel |
|
* sets. */ |
|
if (chset->primary_ch_set) { |
|
static const char dmix_table[7] = { 1, 2, 2, 3, 3, 4, 4 }; |
|
chset->downmix_ncoeffs = chset->channels * dmix_table[chset->downmix_type]; |
|
} else |
|
chset->downmix_ncoeffs = (chset->channels + 1) * s->xll_channels; |
|
|
|
if (chset->downmix_ncoeffs > DCA_XLL_DMIX_NCOEFFS_MAX) { |
|
avpriv_request_sample(s->avctx, |
|
"XLL: More than %d downmix coefficients", |
|
DCA_XLL_DMIX_NCOEFFS_MAX); |
|
return AVERROR_PATCHWELCOME; |
|
} else if (chset->primary_ch_set) { |
|
for (i = 0; i < chset->downmix_ncoeffs; i++) |
|
if ((chset->downmix_coeffs[i] = dca_get_dmix_coeff(s)) == -1) |
|
return AVERROR_INVALIDDATA; |
|
} else { |
|
unsigned c, r; |
|
for (c = 0, i = 0; c < s->xll_channels; c++, i += chset->channels + 1) { |
|
if ((chset->downmix_coeffs[i] = dca_get_inv_dmix_coeff(s)) == -1) |
|
return AVERROR_INVALIDDATA; |
|
for (r = 1; r <= chset->channels; r++) { |
|
int32_t coeff = dca_get_dmix_coeff(s); |
|
if (coeff == -1) |
|
return AVERROR_INVALIDDATA; |
|
chset->downmix_coeffs[i + r] = |
|
(chset->downmix_coeffs[i] * (int64_t) coeff + (1 << 15)) >> 16; |
|
} |
|
} |
|
} |
|
} |
|
chset->ch_mask_enabled = get_bits(&s->gb, 1); |
|
if (chset->ch_mask_enabled) |
|
chset->ch_mask = get_bits(&s->gb, s->xll_bits4ch_mask); |
|
else |
|
/* Skip speaker configuration bits */ |
|
skip_bits_long(&s->gb, 25 * chset->channels); |
|
} else { |
|
chset->primary_ch_set = 1; |
|
chset->downmix_coeff_code_embedded = 0; |
|
/* Spec: NumChHierChSet = 0, NumDwnMixCodeCoeffs = 0, whatever that means. */ |
|
chset->mapping_coeffs_present = get_bits(&s->gb, 1); |
|
if (chset->mapping_coeffs_present) { |
|
avpriv_report_missing_feature(s->avctx, "XLL: mapping coefficients"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
} |
|
if (chset->sampling_frequency > 96000) |
|
chset->num_freq_bands = 2 * (1 + get_bits(&s->gb, 1)); |
|
else |
|
chset->num_freq_bands = 1; |
|
|
|
if (chset->num_freq_bands > 1) { |
|
avpriv_report_missing_feature(s->avctx, "XLL: num_freq_bands > 1"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (get_bits(&s->gb, 1)) { /* pw_ch_decor_enabled */ |
|
int bits = av_ceil_log2(chset->channels); |
|
for (i = 0; i < chset->channels; i++) { |
|
unsigned j = get_bits(&s->gb, bits); |
|
if (j >= chset->channels) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Original channel order value %u too large, only %d channels.\n", |
|
j, chset->channels); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
chset->orig_chan_order[0][i] = j; |
|
chset->orig_chan_order_inv[0][j] = i; |
|
} |
|
for (i = 0; i < chset->channels / 2; i++) { |
|
if (get_bits(&s->gb, 1)) /* bChPFlag */ |
|
chset->pw_ch_pairs_coeffs[0][i] = get_bits_sm(&s->gb, 7); |
|
else |
|
chset->pw_ch_pairs_coeffs[0][i] = 0; |
|
} |
|
} else { |
|
for (i = 0; i < chset->channels; i++) |
|
chset->orig_chan_order[0][i] = |
|
chset->orig_chan_order_inv[0][i] = i; |
|
for (i = 0; i < chset->channels / 2; i++) |
|
chset->pw_ch_pairs_coeffs[0][i] = 0; |
|
} |
|
/* Adaptive prediction order */ |
|
chset->adapt_order_max[0] = 0; |
|
for (i = 0; i < chset->channels; i++) { |
|
chset->adapt_order[0][i] = get_bits(&s->gb, 4); |
|
if (chset->adapt_order_max[0] < chset->adapt_order[0][i]) |
|
chset->adapt_order_max[0] = chset->adapt_order[0][i]; |
|
} |
|
/* Fixed prediction order, used in case the adaptive order |
|
* above is zero */ |
|
for (i = 0; i < chset->channels; i++) |
|
chset->fixed_order[0][i] = |
|
chset->adapt_order[0][i] ? 0 : get_bits(&s->gb, 2); |
|
|
|
for (i = 0; i < chset->channels; i++) { |
|
unsigned j; |
|
for (j = 0; j < chset->adapt_order[0][i]; j++) |
|
chset->lpc_refl_coeffs_q_ind[0][i][j] = get_bits(&s->gb, 8); |
|
} |
|
|
|
if (s->xll_scalable_lsb) { |
|
chset->lsb_fsize[0] = get_bits(&s->gb, s->xll_bits4seg_size); |
|
|
|
for (i = 0; i < chset->channels; i++) |
|
chset->scalable_lsbs[0][i] = get_bits(&s->gb, 4); |
|
for (i = 0; i < chset->channels; i++) |
|
chset->bit_width_adj_per_ch[0][i] = get_bits(&s->gb, 4); |
|
} else { |
|
memset(chset->scalable_lsbs[0], 0, |
|
chset->channels * sizeof(chset->scalable_lsbs[0][0])); |
|
memset(chset->bit_width_adj_per_ch[0], 0, |
|
chset->channels * sizeof(chset->bit_width_adj_per_ch[0][0])); |
|
} |
|
|
|
s->xll_channels += chset->channels; |
|
s->xll_residual_channels += chset->channels - |
|
av_popcount(chset->residual_encode); |
|
|
|
/* FIXME: Parse header data for extra frequency bands. */ |
|
|
|
/* Skip to end of channel set sub header. */ |
|
i = get_bits_count(&s->gb); |
|
if (hdr_pos + 8 * hdr_size < i) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"chset header too large, %d bits, should be <= %d bits\n", |
|
i - hdr_pos, 8 * hdr_size); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (hdr_pos + 8 * hdr_size > i) |
|
skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i); |
|
} |
|
return 0; |
|
} |
|
|
|
/* parse XLL navigation table */ |
|
int ff_dca_xll_decode_navi(DCAContext *s, int asset_end) |
|
{ |
|
int nbands, band, chset, seg, data_start; |
|
|
|
/* FIXME: Supports only a single frequency band */ |
|
nbands = 1; |
|
|
|
for (band = 0; band < nbands; band++) { |
|
s->xll_navi.band_size[band] = 0; |
|
for (seg = 0; seg < s->xll_segments; seg++) { |
|
/* Note: The spec, ETSI TS 102 114 V1.4.1 (2012-09), says |
|
* we should read a base value for segment_size from the |
|
* stream, before reading the sizes of the channel sets. |
|
* But that's apparently incorrect. */ |
|
s->xll_navi.segment_size[band][seg] = 0; |
|
|
|
for (chset = 0; chset < s->xll_nch_sets; chset++) |
|
if (band < s->xll_chsets[chset].num_freq_bands) { |
|
s->xll_navi.chset_size[band][seg][chset] = |
|
get_bits(&s->gb, s->xll_bits4seg_size) + 1; |
|
s->xll_navi.segment_size[band][seg] += |
|
s->xll_navi.chset_size[band][seg][chset]; |
|
} |
|
s->xll_navi.band_size[band] += s->xll_navi.segment_size[band][seg]; |
|
} |
|
} |
|
/* Align to 8 bits and skip 16-bit CRC. */ |
|
skip_bits_long(&s->gb, 16 + ((-get_bits_count(&s->gb)) & 7)); |
|
|
|
data_start = get_bits_count(&s->gb); |
|
if (data_start + 8 * s->xll_navi.band_size[0] > asset_end) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"XLL: Data in NAVI table exceeds containing asset\n" |
|
"start: %d (bit), size %u (bytes), end %d (bit), error %u\n", |
|
data_start, s->xll_navi.band_size[0], asset_end, |
|
data_start + 8 * s->xll_navi.band_size[0] - asset_end); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
init_get_bits(&s->xll_navi.gb, s->gb.buffer + data_start / 8, |
|
8 * s->xll_navi.band_size[0]); |
|
return 0; |
|
} |
|
|
|
static void dca_xll_inv_adapt_pred(int *samples, int nsamples, unsigned order, |
|
const int *prev, const uint8_t *q_ind) |
|
{ |
|
static const uint16_t table[0x81] = { |
|
0, 3070, 5110, 7140, 9156, 11154, 13132, 15085, |
|
17010, 18904, 20764, 22588, 24373, 26117, 27818, 29474, |
|
31085, 32648, 34164, 35631, 37049, 38418, 39738, 41008, |
|
42230, 43404, 44530, 45609, 46642, 47630, 48575, 49477, |
|
50337, 51157, 51937, 52681, 53387, 54059, 54697, 55302, |
|
55876, 56421, 56937, 57426, 57888, 58326, 58741, 59132, |
|
59502, 59852, 60182, 60494, 60789, 61066, 61328, 61576, |
|
61809, 62029, 62236, 62431, 62615, 62788, 62951, 63105, |
|
63250, 63386, 63514, 63635, 63749, 63855, 63956, 64051, |
|
64140, 64224, 64302, 64376, 64446, 64512, 64573, 64631, |
|
64686, 64737, 64785, 64830, 64873, 64913, 64950, 64986, |
|
65019, 65050, 65079, 65107, 65133, 65157, 65180, 65202, |
|
65222, 65241, 65259, 65275, 65291, 65306, 65320, 65333, |
|
65345, 65357, 65368, 65378, 65387, 65396, 65405, 65413, |
|
65420, 65427, 65434, 65440, 65446, 65451, 65456, 65461, |
|
65466, 65470, 65474, 65478, 65481, 65485, 65488, 65491, |
|
65535, /* Final value is for the -128 corner case, see below. */ |
|
}; |
|
int c[DCA_XLL_AORDER_MAX]; |
|
int64_t s; |
|
unsigned i, j; |
|
|
|
for (i = 0; i < order; i++) { |
|
if (q_ind[i] & 1) |
|
/* The index value 0xff corresponds to a lookup of entry 0x80 in |
|
* the table, and no value is provided in the specification. */ |
|
c[i] = -table[(q_ind[i] >> 1) + 1]; |
|
else |
|
c[i] = table[q_ind[i] >> 1]; |
|
} |
|
/* The description in the spec is a bit convoluted. We can convert |
|
* the reflected values to direct values in place, using a |
|
* sequence of reflections operating on two values. */ |
|
for (i = 1; i < order; i++) { |
|
/* i = 1: scale c[0] |
|
* i = 2: reflect c[0] <-> c[1] |
|
* i = 3: scale c[1], reflect c[0] <-> c[2] |
|
* i = 4: reflect c[0] <-> c[3] reflect c[1] <-> c[2] |
|
* ... */ |
|
if (i & 1) |
|
c[i / 2] += ((int64_t) c[i] * c[i / 2] + 0x8000) >> 16; |
|
for (j = 0; j < i / 2; j++) { |
|
int r0 = c[j]; |
|
int r1 = c[i - j - 1]; |
|
c[j] += ((int64_t) c[i] * r1 + 0x8000) >> 16; |
|
c[i - j - 1] += ((int64_t) c[i] * r0 + 0x8000) >> 16; |
|
} |
|
} |
|
/* Apply predictor. */ |
|
/* NOTE: Processing samples in this order means that the |
|
* predictor is applied to the newly reconstructed samples. */ |
|
if (prev) { |
|
for (i = 0; i < order; i++) { |
|
for (j = s = 0; j < i; j++) |
|
s += (int64_t) c[j] * samples[i - 1 - j]; |
|
for (; j < order; j++) |
|
s += (int64_t) c[j] * prev[DCA_XLL_AORDER_MAX + i - 1 - j]; |
|
|
|
samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff); |
|
} |
|
} |
|
for (i = order; i < nsamples; i++) { |
|
for (j = s = 0; j < order; j++) |
|
s += (int64_t) c[j] * samples[i - 1 - j]; |
|
|
|
/* NOTE: Equations seem to imply addition, while the |
|
* pseudocode seems to use subtraction.*/ |
|
samples[i] -= av_clip((s + 0x8000) >> 16, -0x1000000, 0xffffff); |
|
} |
|
} |
|
|
|
int ff_dca_xll_decode_audio(DCAContext *s, AVFrame *frame) |
|
{ |
|
/* FIXME: Decodes only the first frequency band. */ |
|
int seg, chset_i; |
|
|
|
/* Coding parameters for each channel set. */ |
|
struct coding_params { |
|
int seg_type; |
|
int rice_code_flag[16]; |
|
int pancAuxABIT[16]; |
|
int pancABIT0[16]; /* Not sure what this is */ |
|
int pancABIT[16]; /* Not sure what this is */ |
|
int nSamplPart0[16]; |
|
} param_state[16]; |
|
|
|
GetBitContext *gb = &s->xll_navi.gb; |
|
int *history; |
|
|
|
/* Layout: First the sample buffer for one segment per channel, |
|
* followed by history buffers of DCA_XLL_AORDER_MAX samples for |
|
* each channel. */ |
|
av_fast_malloc(&s->xll_sample_buf, &s->xll_sample_buf_size, |
|
(s->xll_smpl_in_seg + DCA_XLL_AORDER_MAX) * |
|
s->xll_channels * sizeof(*s->xll_sample_buf)); |
|
if (!s->xll_sample_buf) |
|
return AVERROR(ENOMEM); |
|
|
|
history = s->xll_sample_buf + s->xll_smpl_in_seg * s->xll_channels; |
|
|
|
for (seg = 0; seg < s->xll_segments; seg++) { |
|
unsigned in_channel; |
|
|
|
for (chset_i = in_channel = 0; chset_i < s->xll_nch_sets; chset_i++) { |
|
/* The spec isn't very explicit, but I think the NAVI sizes are in bytes. */ |
|
int end_pos = get_bits_count(gb) + |
|
8 * s->xll_navi.chset_size[0][seg][chset_i]; |
|
int i, j; |
|
struct coding_params *params = ¶m_state[chset_i]; |
|
/* I think this flag means that we should keep seg_type and |
|
* other parameters from the previous segment. */ |
|
int use_seg_state_code_param; |
|
XllChSetSubHeader *chset = &s->xll_chsets[chset_i]; |
|
if (in_channel >= s->avctx->channels) |
|
/* FIXME: Could go directly to next segment */ |
|
goto next_chset; |
|
|
|
if (s->avctx->sample_rate != chset->sampling_frequency) { |
|
av_log(s->avctx, AV_LOG_WARNING, |
|
"XLL: unexpected chset sample rate %d, expected %d\n", |
|
chset->sampling_frequency, s->avctx->sample_rate); |
|
goto next_chset; |
|
} |
|
if (seg != 0) |
|
use_seg_state_code_param = get_bits(gb, 1); |
|
else |
|
use_seg_state_code_param = 0; |
|
|
|
if (!use_seg_state_code_param) { |
|
int num_param_sets, i; |
|
unsigned bits4ABIT; |
|
|
|
params->seg_type = get_bits(gb, 1); |
|
num_param_sets = params->seg_type ? 1 : chset->channels; |
|
|
|
if (chset->bit_width > 16) { |
|
bits4ABIT = 5; |
|
} else { |
|
if (chset->bit_width > 8) |
|
bits4ABIT = 4; |
|
else |
|
bits4ABIT = 3; |
|
if (s->xll_nch_sets > 1) |
|
bits4ABIT++; |
|
} |
|
|
|
for (i = 0; i < num_param_sets; i++) { |
|
params->rice_code_flag[i] = get_bits(gb, 1); |
|
if (!params->seg_type && params->rice_code_flag[i] && get_bits(gb, 1)) |
|
params->pancAuxABIT[i] = get_bits(gb, bits4ABIT) + 1; |
|
else |
|
params->pancAuxABIT[i] = 0; |
|
} |
|
|
|
for (i = 0; i < num_param_sets; i++) { |
|
if (!seg) { |
|
/* Parameters for part 1 */ |
|
params->pancABIT0[i] = get_bits(gb, bits4ABIT); |
|
if (params->rice_code_flag[i] == 0 && params->pancABIT0[i] > 0) |
|
/* For linear code */ |
|
params->pancABIT0[i]++; |
|
|
|
/* NOTE: In the spec, not indexed by band??? */ |
|
if (params->seg_type == 0) |
|
params->nSamplPart0[i] = chset->adapt_order[0][i]; |
|
else |
|
params->nSamplPart0[i] = chset->adapt_order_max[0]; |
|
} else |
|
params->nSamplPart0[i] = 0; |
|
|
|
/* Parameters for part 2 */ |
|
params->pancABIT[i] = get_bits(gb, bits4ABIT); |
|
if (params->rice_code_flag[i] == 0 && params->pancABIT[i] > 0) |
|
/* For linear code */ |
|
params->pancABIT[i]++; |
|
} |
|
} |
|
for (i = 0; i < chset->channels; i++) { |
|
int param_index = params->seg_type ? 0 : i; |
|
int part0 = params->nSamplPart0[param_index]; |
|
int bits = part0 ? params->pancABIT0[param_index] : 0; |
|
int *sample_buf = s->xll_sample_buf + |
|
(in_channel + i) * s->xll_smpl_in_seg; |
|
|
|
if (!params->rice_code_flag[param_index]) { |
|
/* Linear code */ |
|
if (bits) |
|
for (j = 0; j < part0; j++) |
|
sample_buf[j] = get_bits_sm(gb, bits); |
|
else |
|
memset(sample_buf, 0, part0 * sizeof(sample_buf[0])); |
|
|
|
/* Second part */ |
|
bits = params->pancABIT[param_index]; |
|
if (bits) |
|
for (j = part0; j < s->xll_smpl_in_seg; j++) |
|
sample_buf[j] = get_bits_sm(gb, bits); |
|
else |
|
memset(sample_buf + part0, 0, |
|
(s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0])); |
|
} else { |
|
int aux_bits = params->pancAuxABIT[param_index]; |
|
|
|
for (j = 0; j < part0; j++) { |
|
/* FIXME: Is this identical to Golomb code? */ |
|
int t = get_unary(gb, 1, 33) << bits; |
|
/* FIXME: Could move this test outside of the loop, for efficiency. */ |
|
if (bits) |
|
t |= get_bits(gb, bits); |
|
sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1); |
|
} |
|
|
|
/* Second part */ |
|
bits = params->pancABIT[param_index]; |
|
|
|
/* Follow the spec's suggestion of using the |
|
* buffer also to store the hybrid-rice flags. */ |
|
memset(sample_buf + part0, 0, |
|
(s->xll_smpl_in_seg - part0) * sizeof(sample_buf[0])); |
|
|
|
if (aux_bits > 0) { |
|
/* For hybrid rice encoding, some samples are linearly |
|
* coded. According to the spec, "nBits4SamplLoci" bits |
|
* are used for each index, but this value is not |
|
* defined. I guess we should use log2(xll_smpl_in_seg) |
|
* bits. */ |
|
int count = get_bits(gb, s->xll_log_smpl_in_seg); |
|
av_log(s->avctx, AV_LOG_DEBUG, "aux count %d (bits %d)\n", |
|
count, s->xll_log_smpl_in_seg); |
|
|
|
for (j = 0; j < count; j++) |
|
sample_buf[get_bits(gb, s->xll_log_smpl_in_seg)] = 1; |
|
} |
|
for (j = part0; j < s->xll_smpl_in_seg; j++) { |
|
if (!sample_buf[j]) { |
|
int t = get_unary(gb, 1, 33); |
|
if (bits) |
|
t = (t << bits) | get_bits(gb, bits); |
|
sample_buf[j] = (t & 1) ? -(t >> 1) - 1 : (t >> 1); |
|
} else |
|
sample_buf[j] = get_bits_sm(gb, aux_bits); |
|
} |
|
} |
|
} |
|
|
|
for (i = 0; i < chset->channels; i++) { |
|
unsigned adapt_order = chset->adapt_order[0][i]; |
|
int *sample_buf = s->xll_sample_buf + |
|
(in_channel + i) * s->xll_smpl_in_seg; |
|
int *prev = history + (in_channel + i) * DCA_XLL_AORDER_MAX; |
|
|
|
if (!adapt_order) { |
|
unsigned order; |
|
for (order = chset->fixed_order[0][i]; order > 0; order--) { |
|
unsigned j; |
|
for (j = 1; j < s->xll_smpl_in_seg; j++) |
|
sample_buf[j] += sample_buf[j - 1]; |
|
} |
|
} else |
|
/* Inverse adaptive prediction, in place. */ |
|
dca_xll_inv_adapt_pred(sample_buf, s->xll_smpl_in_seg, |
|
adapt_order, seg ? prev : NULL, |
|
chset->lpc_refl_coeffs_q_ind[0][i]); |
|
memcpy(prev, sample_buf + s->xll_smpl_in_seg - DCA_XLL_AORDER_MAX, |
|
DCA_XLL_AORDER_MAX * sizeof(*prev)); |
|
} |
|
for (i = 1; i < chset->channels; i += 2) { |
|
int coeff = chset->pw_ch_pairs_coeffs[0][i / 2]; |
|
if (coeff != 0) { |
|
int *sample_buf = s->xll_sample_buf + |
|
(in_channel + i) * s->xll_smpl_in_seg; |
|
int *prev = sample_buf - s->xll_smpl_in_seg; |
|
unsigned j; |
|
for (j = 0; j < s->xll_smpl_in_seg; j++) |
|
/* Shift is unspecified, but should apparently be 3. */ |
|
sample_buf[j] += ((int64_t) coeff * prev[j] + 4) >> 3; |
|
} |
|
} |
|
|
|
if (s->xll_scalable_lsb) { |
|
int lsb_start = end_pos - 8 * chset->lsb_fsize[0] - |
|
8 * (s->xll_banddata_crc & 2); |
|
int done; |
|
i = get_bits_count(gb); |
|
if (i > lsb_start) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"chset data lsb exceeds NAVI size, end_pos %d, lsb_start %d, pos %d\n", |
|
end_pos, lsb_start, i); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (i < lsb_start) |
|
skip_bits_long(gb, lsb_start - i); |
|
|
|
for (i = done = 0; i < chset->channels; i++) { |
|
int bits = chset->scalable_lsbs[0][i]; |
|
if (bits > 0) { |
|
/* The channel reordering is conceptually done |
|
* before adding the lsb:s, so we need to do |
|
* the inverse permutation here. */ |
|
unsigned pi = chset->orig_chan_order_inv[0][i]; |
|
int *sample_buf = s->xll_sample_buf + |
|
(in_channel + pi) * s->xll_smpl_in_seg; |
|
int adj = chset->bit_width_adj_per_ch[0][i]; |
|
int msb_shift = bits; |
|
unsigned j; |
|
|
|
if (adj > 0) |
|
msb_shift += adj - 1; |
|
|
|
for (j = 0; j < s->xll_smpl_in_seg; j++) |
|
sample_buf[j] = (sample_buf[j] << msb_shift) + |
|
(get_bits(gb, bits) << adj); |
|
|
|
done += bits * s->xll_smpl_in_seg; |
|
} |
|
} |
|
if (done > 8 * chset->lsb_fsize[0]) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"chset lsb exceeds lsb_size\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
/* Store output. */ |
|
for (i = 0; i < chset->channels; i++) { |
|
int *sample_buf = s->xll_sample_buf + |
|
(in_channel + i) * s->xll_smpl_in_seg; |
|
int shift = 1 - chset->bit_resolution; |
|
int out_channel = chset->orig_chan_order[0][i]; |
|
float *out; |
|
|
|
/* XLL uses the channel order C, L, R, and we want L, |
|
* R, C. FIXME: Generalize. */ |
|
if (chset->ch_mask_enabled && |
|
(chset->ch_mask & 7) == 7 && out_channel < 3) |
|
out_channel = out_channel ? out_channel - 1 : 2; |
|
|
|
out_channel += in_channel; |
|
if (out_channel >= s->avctx->channels) |
|
continue; |
|
|
|
out = (float *) frame->extended_data[out_channel]; |
|
out += seg * s->xll_smpl_in_seg; |
|
|
|
/* NOTE: A one bit means residual encoding is *not* used. */ |
|
if ((chset->residual_encode >> i) & 1) { |
|
/* Replace channel samples. |
|
* FIXME: Most likely not the right thing to do. */ |
|
for (j = 0; j < s->xll_smpl_in_seg; j++) |
|
out[j] = ldexpf(sample_buf[j], shift); |
|
} else { |
|
/* Add residual signal to core channel */ |
|
for (j = 0; j < s->xll_smpl_in_seg; j++) |
|
out[j] += ldexpf(sample_buf[j], shift); |
|
} |
|
} |
|
|
|
if (chset->downmix_coeff_code_embedded && |
|
!chset->primary_ch_set && chset->hier_chset) { |
|
/* Undo hierarchical downmix of earlier channels. */ |
|
unsigned mix_channel; |
|
for (mix_channel = 0; mix_channel < in_channel; mix_channel++) { |
|
float *mix_buf; |
|
const int *col; |
|
float coeff; |
|
unsigned row; |
|
/* Similar channel reorder C, L, R vs L, R, C reorder. */ |
|
if (chset->ch_mask_enabled && |
|
(chset->ch_mask & 7) == 7 && mix_channel < 3) |
|
mix_buf = (float *) frame->extended_data[mix_channel ? mix_channel - 1 : 2]; |
|
else |
|
mix_buf = (float *) frame->extended_data[mix_channel]; |
|
|
|
mix_buf += seg * s->xll_smpl_in_seg; |
|
col = &chset->downmix_coeffs[mix_channel * (chset->channels + 1)]; |
|
|
|
/* Scale */ |
|
coeff = ldexpf(col[0], -16); |
|
for (j = 0; j < s->xll_smpl_in_seg; j++) |
|
mix_buf[j] *= coeff; |
|
|
|
for (row = 0; |
|
row < chset->channels && in_channel + row < s->avctx->channels; |
|
row++) |
|
if (col[row + 1]) { |
|
const float *new_channel = |
|
(const float *) frame->extended_data[in_channel + row]; |
|
new_channel += seg * s->xll_smpl_in_seg; |
|
coeff = ldexpf(col[row + 1], -15); |
|
for (j = 0; j < s->xll_smpl_in_seg; j++) |
|
mix_buf[j] -= coeff * new_channel[j]; |
|
} |
|
} |
|
} |
|
|
|
next_chset: |
|
in_channel += chset->channels; |
|
/* Skip to next channel set using the NAVI info. */ |
|
i = get_bits_count(gb); |
|
if (i > end_pos) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"chset data exceeds NAVI size\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (i < end_pos) |
|
skip_bits_long(gb, end_pos - i); |
|
} |
|
} |
|
return 0; |
|
}
|
|
|