mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
8.1 KiB
224 lines
8.1 KiB
/* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or modify |
|
* it under the terms of the GNU General Public License as published by |
|
* the Free Software Foundation; either version 2 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
* GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with FFmpeg; if not, write to the Free Software Foundation, Inc., |
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Perlin Noise generator, based on code from: |
|
* https://adrianb.io/2014/08/09/perlinnoise.html |
|
* |
|
* Original article from Ken Perlin: |
|
* http://mrl.nyu.edu/~perlin/paper445.pdf |
|
*/ |
|
|
|
#include <math.h> |
|
|
|
#include "libavutil/lfg.h" |
|
#include "libavutil/random_seed.h" |
|
#include "perlin.h" |
|
|
|
static inline int inc(int num, int period) |
|
{ |
|
num++; |
|
if (period > 0) |
|
num %= period; |
|
return num; |
|
} |
|
|
|
static inline double grad(int hash, double x, double y, double z) |
|
{ |
|
// Take the hashed value and take the first 4 bits of it (15 == 0b1111) |
|
int h = hash & 15; |
|
// If the most significant bit (MSB) of the hash is 0 then set u = x. Otherwise y. |
|
double u = h < 8 /* 0b1000 */ ? x : y; |
|
double v; |
|
|
|
// In Ken Perlin's original implementation this was another |
|
// conditional operator (?:), then expanded for readability. |
|
if (h < 4 /* 0b0100 */) |
|
// If the first and second significant bits are 0 set v = y |
|
v = y; |
|
// If the first and second significant bits are 1 set v = x |
|
else if (h == 12 /* 0b1100 */ || h == 14 /* 0b1110 */) |
|
v = x; |
|
else |
|
// If the first and second significant bits are not equal (0/1, 1/0) set v = z |
|
v = z; |
|
|
|
// Use the last 2 bits to decide if u and v are positive or negative. Then return their addition. |
|
return ((h&1) == 0 ? u : -u)+((h&2) == 0 ? v : -v); |
|
} |
|
|
|
static inline double fade(double t) |
|
{ |
|
// Fade function as defined by Ken Perlin. This eases coordinate values |
|
// so that they will "ease" towards integral values. This ends up smoothing |
|
// the final output. |
|
// use Horner method to compute: 6t^5 - 15t^4 + 10t^3 |
|
return t * t * t * (t * (t * 6 - 15) + 10); |
|
} |
|
|
|
static double lerp(double a, double b, double x) |
|
{ |
|
return a + x * (b - a); |
|
} |
|
|
|
// Hash lookup table as defined by Ken Perlin. This is a randomly |
|
// arranged array of all numbers from 0-255 inclusive. |
|
static uint8_t ken_permutations[] = { |
|
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, |
|
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, |
|
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, |
|
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, |
|
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, |
|
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, |
|
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, |
|
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, |
|
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, |
|
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, |
|
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, |
|
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, |
|
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, |
|
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, |
|
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, |
|
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 |
|
}; |
|
|
|
int ff_perlin_init(FFPerlin *perlin, double period, int octaves, double persistence, |
|
enum FFPerlinRandomMode random_mode, unsigned int random_seed) |
|
{ |
|
int i; |
|
|
|
perlin->period = period; |
|
perlin->octaves = octaves; |
|
perlin->persistence = persistence; |
|
perlin->random_mode = random_mode; |
|
perlin->random_seed = random_seed; |
|
|
|
if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_KEN) { |
|
for (i = 0; i < 512; i++) { |
|
perlin->permutations[i] = ken_permutations[i % 256]; |
|
} |
|
} else { |
|
AVLFG lfg; |
|
uint8_t random_permutations[256]; |
|
|
|
if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_RANDOM) |
|
perlin->random_seed = av_get_random_seed(); |
|
|
|
av_lfg_init(&lfg, perlin->random_seed); |
|
|
|
for (i = 0; i < 256; i++) { |
|
random_permutations[i] = i; |
|
} |
|
|
|
for (i = 0; i < 256; i++) { |
|
unsigned int random_idx = av_lfg_get(&lfg) % (256-i); |
|
uint8_t random_val = random_permutations[random_idx]; |
|
random_permutations[random_idx] = random_permutations[256-i]; |
|
|
|
perlin->permutations[i] = perlin->permutations[i+256] = random_val; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static double perlin_get(FFPerlin *perlin, double x, double y, double z) |
|
{ |
|
int xi, yi, zi; |
|
double xf, yf, zf; |
|
double u, v, w; |
|
const uint8_t *p = perlin->permutations; |
|
double period = perlin->period; |
|
int aaa, aba, aab, abb, baa, bba, bab, bbb; |
|
double x1, x2, y1, y2; |
|
|
|
if (perlin->period > 0) { |
|
// If we have any period on, change the coordinates to their "local" repetitions |
|
x = fmod(x, perlin->period); |
|
y = fmod(y, perlin->period); |
|
z = fmod(z, perlin->period); |
|
} |
|
|
|
// Calculate the "unit cube" that the point asked will be located in |
|
// The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that |
|
// plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube. |
|
xi = (int)x & 255; |
|
yi = (int)y & 255; |
|
zi = (int)z & 255; |
|
|
|
xf = x - (int)x; |
|
yf = y - (int)y; |
|
zf = z - (int)z; |
|
|
|
// We also fade the location to smooth the result. |
|
u = fade(xf); |
|
v = fade(yf); |
|
w = fade(zf); |
|
|
|
aaa = p[p[p[ xi ] + yi ] + zi ]; |
|
aba = p[p[p[ xi ] + inc(yi, period)] + zi ]; |
|
aab = p[p[p[ xi ] + yi ] + inc(zi, period)]; |
|
abb = p[p[p[ xi ] + inc(yi, period)] + inc(zi, period)]; |
|
baa = p[p[p[inc(xi, period)] + yi ] + zi ]; |
|
bba = p[p[p[inc(xi, period)] + inc(yi, period)] + zi ]; |
|
bab = p[p[p[inc(xi, period)] + yi ] + inc(zi, period)]; |
|
bbb = p[p[p[inc(xi, period)] + inc(yi, period)] + inc(zi, period)]; |
|
|
|
// The gradient function calculates the dot product between a pseudorandom |
|
// gradient vector and the vector from the input coordinate to the 8 |
|
// surrounding points in its unit cube. |
|
// This is all then lerped together as a sort of weighted average based on the faded (u,v,w) |
|
// values we made earlier. |
|
x1 = lerp(grad(aaa, xf , yf , zf), |
|
grad(baa, xf-1, yf , zf), |
|
u); |
|
x2 = lerp(grad(aba, xf , yf-1, zf), |
|
grad(bba, xf-1, yf-1, zf), |
|
u); |
|
y1 = lerp(x1, x2, v); |
|
|
|
x1 = lerp(grad(aab, xf , yf , zf-1), |
|
grad(bab, xf-1, yf , zf-1), |
|
u); |
|
x2 = lerp(grad(abb, xf , yf-1, zf-1), |
|
grad(bbb, xf-1, yf-1, zf-1), |
|
u); |
|
y2 = lerp(x1, x2, v); |
|
|
|
// For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1) |
|
return (lerp(y1, y2, w) + 1) / 2; |
|
} |
|
|
|
double ff_perlin_get(FFPerlin *perlin, double x, double y, double z) |
|
{ |
|
double total = 0; |
|
double frequency = 1; |
|
double amplitude = 1; |
|
double max_value = 0; // Used for normalizing result to 0.0 - 1.0 |
|
|
|
for (int i = 0; i < perlin->octaves; i++) { |
|
total += perlin_get(perlin, x * frequency, y * frequency, z * frequency) * amplitude; |
|
max_value += amplitude; |
|
amplitude *= perlin->persistence; |
|
frequency *= 2; |
|
} |
|
|
|
return total / max_value; |
|
} |
|
|
|
|