mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
457 lines
15 KiB
457 lines
15 KiB
/* |
|
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> |
|
* Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "libavutil/libm.h" |
|
#include "libavutil/log.h" |
|
#include "internal.h" |
|
#include "audio_data.h" |
|
|
|
struct ResampleContext { |
|
AVAudioResampleContext *avr; |
|
AudioData *buffer; |
|
uint8_t *filter_bank; |
|
int filter_length; |
|
int ideal_dst_incr; |
|
int dst_incr; |
|
int index; |
|
int frac; |
|
int src_incr; |
|
int compensation_distance; |
|
int phase_shift; |
|
int phase_mask; |
|
int linear; |
|
enum AVResampleFilterType filter_type; |
|
int kaiser_beta; |
|
double factor; |
|
void (*set_filter)(void *filter, double *tab, int phase, int tap_count); |
|
void (*resample_one)(struct ResampleContext *c, int no_filter, void *dst0, |
|
int dst_index, const void *src0, int src_size, |
|
int index, int frac); |
|
}; |
|
|
|
|
|
/* double template */ |
|
#define CONFIG_RESAMPLE_DBL |
|
#include "resample_template.c" |
|
#undef CONFIG_RESAMPLE_DBL |
|
|
|
/* float template */ |
|
#define CONFIG_RESAMPLE_FLT |
|
#include "resample_template.c" |
|
#undef CONFIG_RESAMPLE_FLT |
|
|
|
/* s32 template */ |
|
#define CONFIG_RESAMPLE_S32 |
|
#include "resample_template.c" |
|
#undef CONFIG_RESAMPLE_S32 |
|
|
|
/* s16 template */ |
|
#include "resample_template.c" |
|
|
|
|
|
/* 0th order modified bessel function of the first kind. */ |
|
static double bessel(double x) |
|
{ |
|
double v = 1; |
|
double lastv = 0; |
|
double t = 1; |
|
int i; |
|
|
|
x = x * x / 4; |
|
for (i = 1; v != lastv; i++) { |
|
lastv = v; |
|
t *= x / (i * i); |
|
v += t; |
|
} |
|
return v; |
|
} |
|
|
|
/* Build a polyphase filterbank. */ |
|
static int build_filter(ResampleContext *c) |
|
{ |
|
int ph, i; |
|
double x, y, w, factor; |
|
double *tab; |
|
int tap_count = c->filter_length; |
|
int phase_count = 1 << c->phase_shift; |
|
const int center = (tap_count - 1) / 2; |
|
|
|
tab = av_malloc(tap_count * sizeof(*tab)); |
|
if (!tab) |
|
return AVERROR(ENOMEM); |
|
|
|
/* if upsampling, only need to interpolate, no filter */ |
|
factor = FFMIN(c->factor, 1.0); |
|
|
|
for (ph = 0; ph < phase_count; ph++) { |
|
double norm = 0; |
|
for (i = 0; i < tap_count; i++) { |
|
x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor; |
|
if (x == 0) y = 1.0; |
|
else y = sin(x) / x; |
|
switch (c->filter_type) { |
|
case AV_RESAMPLE_FILTER_TYPE_CUBIC: { |
|
const float d = -0.5; //first order derivative = -0.5 |
|
x = fabs(((double)(i - center) - (double)ph / phase_count) * factor); |
|
if (x < 1.0) y = 1 - 3 * x*x + 2 * x*x*x + d * ( -x*x + x*x*x); |
|
else y = d * (-4 + 8 * x - 5 * x*x + x*x*x); |
|
break; |
|
} |
|
case AV_RESAMPLE_FILTER_TYPE_BLACKMAN_NUTTALL: |
|
w = 2.0 * x / (factor * tap_count) + M_PI; |
|
y *= 0.3635819 - 0.4891775 * cos( w) + |
|
0.1365995 * cos(2 * w) - |
|
0.0106411 * cos(3 * w); |
|
break; |
|
case AV_RESAMPLE_FILTER_TYPE_KAISER: |
|
w = 2.0 * x / (factor * tap_count * M_PI); |
|
y *= bessel(c->kaiser_beta * sqrt(FFMAX(1 - w * w, 0))); |
|
break; |
|
} |
|
|
|
tab[i] = y; |
|
norm += y; |
|
} |
|
/* normalize so that an uniform color remains the same */ |
|
for (i = 0; i < tap_count; i++) |
|
tab[i] = tab[i] / norm; |
|
|
|
c->set_filter(c->filter_bank, tab, ph, tap_count); |
|
} |
|
|
|
av_free(tab); |
|
return 0; |
|
} |
|
|
|
ResampleContext *ff_audio_resample_init(AVAudioResampleContext *avr) |
|
{ |
|
ResampleContext *c; |
|
int out_rate = avr->out_sample_rate; |
|
int in_rate = avr->in_sample_rate; |
|
double factor = FFMIN(out_rate * avr->cutoff / in_rate, 1.0); |
|
int phase_count = 1 << avr->phase_shift; |
|
int felem_size; |
|
|
|
if (avr->internal_sample_fmt != AV_SAMPLE_FMT_S16P && |
|
avr->internal_sample_fmt != AV_SAMPLE_FMT_S32P && |
|
avr->internal_sample_fmt != AV_SAMPLE_FMT_FLTP && |
|
avr->internal_sample_fmt != AV_SAMPLE_FMT_DBLP) { |
|
av_log(avr, AV_LOG_ERROR, "Unsupported internal format for " |
|
"resampling: %s\n", |
|
av_get_sample_fmt_name(avr->internal_sample_fmt)); |
|
return NULL; |
|
} |
|
c = av_mallocz(sizeof(*c)); |
|
if (!c) |
|
return NULL; |
|
|
|
c->avr = avr; |
|
c->phase_shift = avr->phase_shift; |
|
c->phase_mask = phase_count - 1; |
|
c->linear = avr->linear_interp; |
|
c->factor = factor; |
|
c->filter_length = FFMAX((int)ceil(avr->filter_size / factor), 1); |
|
c->filter_type = avr->filter_type; |
|
c->kaiser_beta = avr->kaiser_beta; |
|
|
|
switch (avr->internal_sample_fmt) { |
|
case AV_SAMPLE_FMT_DBLP: |
|
c->resample_one = resample_one_dbl; |
|
c->set_filter = set_filter_dbl; |
|
break; |
|
case AV_SAMPLE_FMT_FLTP: |
|
c->resample_one = resample_one_flt; |
|
c->set_filter = set_filter_flt; |
|
break; |
|
case AV_SAMPLE_FMT_S32P: |
|
c->resample_one = resample_one_s32; |
|
c->set_filter = set_filter_s32; |
|
break; |
|
case AV_SAMPLE_FMT_S16P: |
|
c->resample_one = resample_one_s16; |
|
c->set_filter = set_filter_s16; |
|
break; |
|
} |
|
|
|
felem_size = av_get_bytes_per_sample(avr->internal_sample_fmt); |
|
c->filter_bank = av_mallocz(c->filter_length * (phase_count + 1) * felem_size); |
|
if (!c->filter_bank) |
|
goto error; |
|
|
|
if (build_filter(c) < 0) |
|
goto error; |
|
|
|
memcpy(&c->filter_bank[(c->filter_length * phase_count + 1) * felem_size], |
|
c->filter_bank, (c->filter_length - 1) * felem_size); |
|
memcpy(&c->filter_bank[c->filter_length * phase_count * felem_size], |
|
&c->filter_bank[(c->filter_length - 1) * felem_size], felem_size); |
|
|
|
c->compensation_distance = 0; |
|
if (!av_reduce(&c->src_incr, &c->dst_incr, out_rate, |
|
in_rate * (int64_t)phase_count, INT32_MAX / 2)) |
|
goto error; |
|
c->ideal_dst_incr = c->dst_incr; |
|
|
|
c->index = -phase_count * ((c->filter_length - 1) / 2); |
|
c->frac = 0; |
|
|
|
/* allocate internal buffer */ |
|
c->buffer = ff_audio_data_alloc(avr->resample_channels, 0, |
|
avr->internal_sample_fmt, |
|
"resample buffer"); |
|
if (!c->buffer) |
|
goto error; |
|
|
|
av_log(avr, AV_LOG_DEBUG, "resample: %s from %d Hz to %d Hz\n", |
|
av_get_sample_fmt_name(avr->internal_sample_fmt), |
|
avr->in_sample_rate, avr->out_sample_rate); |
|
|
|
return c; |
|
|
|
error: |
|
ff_audio_data_free(&c->buffer); |
|
av_free(c->filter_bank); |
|
av_free(c); |
|
return NULL; |
|
} |
|
|
|
void ff_audio_resample_free(ResampleContext **c) |
|
{ |
|
if (!*c) |
|
return; |
|
ff_audio_data_free(&(*c)->buffer); |
|
av_free((*c)->filter_bank); |
|
av_freep(c); |
|
} |
|
|
|
int avresample_set_compensation(AVAudioResampleContext *avr, int sample_delta, |
|
int compensation_distance) |
|
{ |
|
ResampleContext *c; |
|
AudioData *fifo_buf = NULL; |
|
int ret = 0; |
|
|
|
if (compensation_distance < 0) |
|
return AVERROR(EINVAL); |
|
if (!compensation_distance && sample_delta) |
|
return AVERROR(EINVAL); |
|
|
|
/* if resampling was not enabled previously, re-initialize the |
|
AVAudioResampleContext and force resampling */ |
|
if (!avr->resample_needed) { |
|
int fifo_samples; |
|
double matrix[AVRESAMPLE_MAX_CHANNELS * AVRESAMPLE_MAX_CHANNELS] = { 0 }; |
|
|
|
/* buffer any remaining samples in the output FIFO before closing */ |
|
fifo_samples = av_audio_fifo_size(avr->out_fifo); |
|
if (fifo_samples > 0) { |
|
fifo_buf = ff_audio_data_alloc(avr->out_channels, fifo_samples, |
|
avr->out_sample_fmt, NULL); |
|
if (!fifo_buf) |
|
return AVERROR(EINVAL); |
|
ret = ff_audio_data_read_from_fifo(avr->out_fifo, fifo_buf, |
|
fifo_samples); |
|
if (ret < 0) |
|
goto reinit_fail; |
|
} |
|
/* save the channel mixing matrix */ |
|
ret = avresample_get_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS); |
|
if (ret < 0) |
|
goto reinit_fail; |
|
|
|
/* close the AVAudioResampleContext */ |
|
avresample_close(avr); |
|
|
|
avr->force_resampling = 1; |
|
|
|
/* restore the channel mixing matrix */ |
|
ret = avresample_set_matrix(avr, matrix, AVRESAMPLE_MAX_CHANNELS); |
|
if (ret < 0) |
|
goto reinit_fail; |
|
|
|
/* re-open the AVAudioResampleContext */ |
|
ret = avresample_open(avr); |
|
if (ret < 0) |
|
goto reinit_fail; |
|
|
|
/* restore buffered samples to the output FIFO */ |
|
if (fifo_samples > 0) { |
|
ret = ff_audio_data_add_to_fifo(avr->out_fifo, fifo_buf, 0, |
|
fifo_samples); |
|
if (ret < 0) |
|
goto reinit_fail; |
|
ff_audio_data_free(&fifo_buf); |
|
} |
|
} |
|
c = avr->resample; |
|
c->compensation_distance = compensation_distance; |
|
if (compensation_distance) { |
|
c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * |
|
(int64_t)sample_delta / compensation_distance; |
|
} else { |
|
c->dst_incr = c->ideal_dst_incr; |
|
} |
|
return 0; |
|
|
|
reinit_fail: |
|
ff_audio_data_free(&fifo_buf); |
|
return ret; |
|
} |
|
|
|
static int resample(ResampleContext *c, void *dst, const void *src, |
|
int *consumed, int src_size, int dst_size, int update_ctx) |
|
{ |
|
int dst_index; |
|
int index = c->index; |
|
int frac = c->frac; |
|
int dst_incr_frac = c->dst_incr % c->src_incr; |
|
int dst_incr = c->dst_incr / c->src_incr; |
|
int compensation_distance = c->compensation_distance; |
|
|
|
if (!dst != !src) |
|
return AVERROR(EINVAL); |
|
|
|
if (compensation_distance == 0 && c->filter_length == 1 && |
|
c->phase_shift == 0) { |
|
int64_t index2 = ((int64_t)index) << 32; |
|
int64_t incr = (1LL << 32) * c->dst_incr / c->src_incr; |
|
dst_size = FFMIN(dst_size, |
|
(src_size-1-index) * (int64_t)c->src_incr / |
|
c->dst_incr); |
|
|
|
if (dst) { |
|
for(dst_index = 0; dst_index < dst_size; dst_index++) { |
|
c->resample_one(c, 1, dst, dst_index, src, 0, index2 >> 32, 0); |
|
index2 += incr; |
|
} |
|
} else { |
|
dst_index = dst_size; |
|
} |
|
index += dst_index * dst_incr; |
|
index += (frac + dst_index * (int64_t)dst_incr_frac) / c->src_incr; |
|
frac = (frac + dst_index * (int64_t)dst_incr_frac) % c->src_incr; |
|
} else { |
|
for (dst_index = 0; dst_index < dst_size; dst_index++) { |
|
int sample_index = index >> c->phase_shift; |
|
|
|
if (sample_index + c->filter_length > src_size || |
|
-sample_index >= src_size) |
|
break; |
|
|
|
if (dst) |
|
c->resample_one(c, 0, dst, dst_index, src, src_size, index, frac); |
|
|
|
frac += dst_incr_frac; |
|
index += dst_incr; |
|
if (frac >= c->src_incr) { |
|
frac -= c->src_incr; |
|
index++; |
|
} |
|
if (dst_index + 1 == compensation_distance) { |
|
compensation_distance = 0; |
|
dst_incr_frac = c->ideal_dst_incr % c->src_incr; |
|
dst_incr = c->ideal_dst_incr / c->src_incr; |
|
} |
|
} |
|
} |
|
if (consumed) |
|
*consumed = FFMAX(index, 0) >> c->phase_shift; |
|
|
|
if (update_ctx) { |
|
if (index >= 0) |
|
index &= c->phase_mask; |
|
|
|
if (compensation_distance) { |
|
compensation_distance -= dst_index; |
|
if (compensation_distance <= 0) |
|
return AVERROR_BUG; |
|
} |
|
c->frac = frac; |
|
c->index = index; |
|
c->dst_incr = dst_incr_frac + c->src_incr*dst_incr; |
|
c->compensation_distance = compensation_distance; |
|
} |
|
|
|
return dst_index; |
|
} |
|
|
|
int ff_audio_resample(ResampleContext *c, AudioData *dst, AudioData *src, |
|
int *consumed) |
|
{ |
|
int ch, in_samples, in_leftover, out_samples = 0; |
|
int ret = AVERROR(EINVAL); |
|
|
|
in_samples = src ? src->nb_samples : 0; |
|
in_leftover = c->buffer->nb_samples; |
|
|
|
/* add input samples to the internal buffer */ |
|
if (src) { |
|
ret = ff_audio_data_combine(c->buffer, in_leftover, src, 0, in_samples); |
|
if (ret < 0) |
|
return ret; |
|
} else if (!in_leftover) { |
|
/* no remaining samples to flush */ |
|
return 0; |
|
} else { |
|
/* TODO: pad buffer to flush completely */ |
|
} |
|
|
|
/* calculate output size and reallocate output buffer if needed */ |
|
/* TODO: try to calculate this without the dummy resample() run */ |
|
if (!dst->read_only && dst->allow_realloc) { |
|
out_samples = resample(c, NULL, NULL, NULL, c->buffer->nb_samples, |
|
INT_MAX, 0); |
|
ret = ff_audio_data_realloc(dst, out_samples); |
|
if (ret < 0) { |
|
av_log(c->avr, AV_LOG_ERROR, "error reallocating output\n"); |
|
return ret; |
|
} |
|
} |
|
|
|
/* resample each channel plane */ |
|
for (ch = 0; ch < c->buffer->channels; ch++) { |
|
out_samples = resample(c, (void *)dst->data[ch], |
|
(const void *)c->buffer->data[ch], consumed, |
|
c->buffer->nb_samples, dst->allocated_samples, |
|
ch + 1 == c->buffer->channels); |
|
} |
|
if (out_samples < 0) { |
|
av_log(c->avr, AV_LOG_ERROR, "error during resampling\n"); |
|
return out_samples; |
|
} |
|
|
|
/* drain consumed samples from the internal buffer */ |
|
ff_audio_data_drain(c->buffer, *consumed); |
|
|
|
av_dlog(c->avr, "resampled %d in + %d leftover to %d out + %d leftover\n", |
|
in_samples, in_leftover, out_samples, c->buffer->nb_samples); |
|
|
|
dst->nb_samples = out_samples; |
|
return 0; |
|
} |
|
|
|
int avresample_get_delay(AVAudioResampleContext *avr) |
|
{ |
|
if (!avr->resample_needed || !avr->resample) |
|
return 0; |
|
|
|
return avr->resample->buffer->nb_samples; |
|
}
|
|
|