mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
607 lines
25 KiB
607 lines
25 KiB
# Copyright (c) 2019 Guo Yejun |
|
# |
|
# This file is part of FFmpeg. |
|
# |
|
# FFmpeg is free software; you can redistribute it and/or |
|
# modify it under the terms of the GNU Lesser General Public |
|
# License as published by the Free Software Foundation; either |
|
# version 2.1 of the License, or (at your option) any later version. |
|
# |
|
# FFmpeg is distributed in the hope that it will be useful, |
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
# Lesser General Public License for more details. |
|
# |
|
# You should have received a copy of the GNU Lesser General Public |
|
# License along with FFmpeg; if not, write to the Free Software |
|
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
# ============================================================================== |
|
|
|
import tensorflow as tf |
|
import numpy as np |
|
import sys, struct |
|
import convert_header as header |
|
|
|
__all__ = ['convert_from_tensorflow'] |
|
|
|
class Operand(object): |
|
IOTYPE_INPUT = 1 |
|
IOTYPE_OUTPUT = 2 |
|
IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT |
|
DTYPE_FLOAT = 1 |
|
DTYPE_UINT8 = 4 |
|
index = 0 |
|
def __init__(self, name, dtype, dims): |
|
self.name = name |
|
self.dtype = dtype |
|
self.dims = dims |
|
self.iotype = 0 |
|
self.used_count = 0 |
|
self.index = Operand.index |
|
Operand.index = Operand.index + 1 |
|
self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'} |
|
self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'} |
|
|
|
def add_iotype(self, iotype): |
|
self.iotype = self.iotype | iotype |
|
if iotype == Operand.IOTYPE_INPUT: |
|
self.used_count = self.used_count + 1 |
|
|
|
def __str__(self): |
|
return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index, |
|
self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype], |
|
self.dims, self.used_count) |
|
|
|
def __lt__(self, other): |
|
return self.index < other.index |
|
|
|
class TFConverter: |
|
def __init__(self, graph_def, nodes, outfile, dump4tb): |
|
self.graph_def = graph_def |
|
self.nodes = nodes |
|
self.outfile = outfile |
|
self.dump4tb = dump4tb |
|
self.layer_number = 0 |
|
self.output_names = [] |
|
self.name_node_dict = {} |
|
self.edges = {} |
|
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} |
|
self.conv_paddings = {'VALID':0, 'SAME':1} |
|
self.pool_paddings = {'VALID':0, 'SAME':1} |
|
self.converted_nodes = set() |
|
self.conv2d_scope_names = set() |
|
self.conv2d_scopename_inputname_dict = {} |
|
self.dense_scope_names = set() |
|
self.dense_scopename_inputname_dict = {} |
|
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, |
|
'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8} |
|
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5} |
|
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, |
|
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, |
|
'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15, |
|
'Exp':16} |
|
self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} |
|
self.name_operand_dict = {} |
|
|
|
|
|
def add_operand(self, name, type): |
|
node = self.name_node_dict[name] |
|
if name not in self.name_operand_dict: |
|
dtype = node.attr['dtype'].type |
|
if dtype == 0: |
|
dtype = node.attr['T'].type |
|
dims = [-1,-1,-1,-1] |
|
if 'shape' in node.attr: |
|
dims[0] = node.attr['shape'].shape.dim[0].size |
|
dims[1] = node.attr['shape'].shape.dim[1].size |
|
dims[2] = node.attr['shape'].shape.dim[2].size |
|
dims[3] = node.attr['shape'].shape.dim[3].size |
|
operand = Operand(name, dtype, dims) |
|
self.name_operand_dict[name] = operand; |
|
self.name_operand_dict[name].add_iotype(type) |
|
return self.name_operand_dict[name].index |
|
|
|
|
|
def dump_for_tensorboard(self): |
|
graph = tf.get_default_graph() |
|
tf.import_graph_def(self.graph_def, name="") |
|
tf.summary.FileWriter('/tmp/graph', graph) |
|
print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it') |
|
|
|
|
|
def get_conv2d_params(self, conv2d_scope_name): |
|
knode = self.name_node_dict[conv2d_scope_name + '/kernel'] |
|
bnode = self.name_node_dict[conv2d_scope_name + '/bias'] |
|
|
|
if conv2d_scope_name + '/dilation_rate' in self.name_node_dict: |
|
dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate'] |
|
else: |
|
dnode = None |
|
|
|
# the BiasAdd name is possible be changed into the output name, |
|
# if activation is None, and BiasAdd.next is the last op which is Identity |
|
if conv2d_scope_name + '/BiasAdd' in self.edges: |
|
anode = self.edges[conv2d_scope_name + '/BiasAdd'][0] |
|
if anode.op not in self.conv_activations: |
|
anode = None |
|
else: |
|
anode = None |
|
return knode, bnode, dnode, anode |
|
|
|
|
|
def get_dense_params(self, dense_scope_name): |
|
knode = self.name_node_dict[dense_scope_name + '/kernel'] |
|
bnode = self.name_node_dict.get(dense_scope_name + '/bias') |
|
# the BiasAdd name is possible be changed into the output name, |
|
# if activation is None, and BiasAdd.next is the last op which is Identity |
|
anode = None |
|
if bnode: |
|
if dense_scope_name + '/BiasAdd' in self.edges: |
|
anode = self.edges[dense_scope_name + '/BiasAdd'][0] |
|
if anode.op not in self.conv_activations: |
|
anode = None |
|
else: |
|
anode = None |
|
return knode, bnode, anode |
|
|
|
|
|
def dump_complex_conv2d_to_file(self, node, f): |
|
assert(node.op == 'Conv2D') |
|
self.layer_number = self.layer_number + 1 |
|
self.converted_nodes.add(node.name) |
|
|
|
scope_name = TFConverter.get_scope_name(node.name) |
|
#knode for kernel, bnode for bias, dnode for dilation, anode for activation |
|
knode, bnode, dnode, anode = self.get_conv2d_params(scope_name) |
|
|
|
if dnode is not None: |
|
dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0] |
|
else: |
|
dilation = 1 |
|
|
|
if anode is not None: |
|
activation = anode.op |
|
else: |
|
activation = 'None' |
|
|
|
padding = node.attr['padding'].s.decode("utf-8") |
|
# conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method. |
|
if dilation > 1 and scope_name + '/stack' in self.name_node_dict: |
|
if self.name_node_dict[scope_name + '/stack'].op == "Const": |
|
padding = 'SAME' |
|
padding = self.conv_paddings[padding] |
|
|
|
ktensor = knode.attr['value'].tensor |
|
filter_height = ktensor.tensor_shape.dim[0].size |
|
filter_width = ktensor.tensor_shape.dim[1].size |
|
in_channels = ktensor.tensor_shape.dim[2].size |
|
out_channels = ktensor.tensor_shape.dim[3].size |
|
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) |
|
kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) |
|
kernel = np.transpose(kernel, [3, 0, 1, 2]) |
|
|
|
has_bias = 1 |
|
np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) |
|
kernel.tofile(f) |
|
|
|
btensor = bnode.attr['value'].tensor |
|
if btensor.tensor_shape.dim[0].size == 1: |
|
bias = struct.pack("f", btensor.float_val[0]) |
|
else: |
|
bias = btensor.tensor_content |
|
f.write(bias) |
|
|
|
input_name = self.conv2d_scopename_inputname_dict[scope_name] |
|
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) |
|
|
|
if anode is not None: |
|
output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) |
|
else: |
|
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
def dump_dense_to_file(self, node, f): |
|
assert(node.op == 'MatMul') |
|
self.layer_number = self.layer_number + 1 |
|
self.converted_nodes.add(node.name) |
|
|
|
scope_name = TFConverter.get_scope_name(node.name) |
|
#knode for kernel, bnode for bias, anode for activation |
|
knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0]) |
|
|
|
if bnode is not None: |
|
has_bias = 1 |
|
btensor = bnode.attr['value'].tensor |
|
if btensor.tensor_shape.dim[0].size == 1: |
|
bias = struct.pack("f", btensor.float_val[0]) |
|
else: |
|
bias = btensor.tensor_content |
|
else: |
|
has_bias = 0 |
|
|
|
if anode is not None: |
|
activation = anode.op |
|
else: |
|
activation = 'None' |
|
|
|
ktensor = knode.attr['value'].tensor |
|
in_channels = ktensor.tensor_shape.dim[0].size |
|
out_channels = ktensor.tensor_shape.dim[1].size |
|
if in_channels * out_channels == 1: |
|
kernel = np.float32(ktensor.float_val[0]) |
|
else: |
|
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) |
|
kernel = kernel.reshape(in_channels, out_channels) |
|
kernel = np.transpose(kernel, [1, 0]) |
|
|
|
np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f) |
|
kernel.tofile(f) |
|
if has_bias: |
|
f.write(bias) |
|
|
|
input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]] |
|
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) |
|
|
|
if anode is not None: |
|
output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) |
|
else: |
|
if bnode is not None: |
|
output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) |
|
else: |
|
output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_simple_conv2d_to_file(self, node, f): |
|
assert(node.op == 'Conv2D') |
|
self.layer_number = self.layer_number + 1 |
|
self.converted_nodes.add(node.name) |
|
|
|
node0 = self.name_node_dict[node.input[0]] |
|
node1 = self.name_node_dict[node.input[1]] |
|
if node0.op == 'Const': |
|
knode = node0 |
|
input_name = node.input[1] |
|
else: |
|
knode = node1 |
|
input_name = node.input[0] |
|
|
|
ktensor = knode.attr['value'].tensor |
|
filter_height = ktensor.tensor_shape.dim[0].size |
|
filter_width = ktensor.tensor_shape.dim[1].size |
|
in_channels = ktensor.tensor_shape.dim[2].size |
|
out_channels = ktensor.tensor_shape.dim[3].size |
|
if filter_height * filter_width * in_channels * out_channels == 1: |
|
kernel = np.float32(ktensor.float_val[0]) |
|
else: |
|
kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) |
|
kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) |
|
kernel = np.transpose(kernel, [3, 0, 1, 2]) |
|
|
|
has_bias = 0 |
|
dilation = 1 |
|
padding = node.attr['padding'].s.decode("utf-8") |
|
np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'], |
|
in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) |
|
kernel.tofile(f) |
|
|
|
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_depth2space_to_file(self, node, f): |
|
assert(node.op == 'DepthToSpace') |
|
self.layer_number = self.layer_number + 1 |
|
block_size = node.attr['block_size'].i |
|
np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f) |
|
self.converted_nodes.add(node.name) |
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_mirrorpad_to_file(self, node, f): |
|
assert(node.op == 'MirrorPad') |
|
self.layer_number = self.layer_number + 1 |
|
mode = node.attr['mode'].s |
|
mode = self.mirrorpad_mode[mode.decode("utf-8")] |
|
np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f) |
|
pnode = self.name_node_dict[node.input[1]] |
|
self.converted_nodes.add(pnode.name) |
|
paddings = pnode.attr['value'].tensor.tensor_content |
|
f.write(paddings) |
|
self.converted_nodes.add(node.name) |
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_maximum_to_file(self, node, f): |
|
assert(node.op == 'Maximum') |
|
self.layer_number = self.layer_number + 1 |
|
ynode = self.name_node_dict[node.input[1]] |
|
y = ynode.attr['value'].tensor.float_val[0] |
|
np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f) |
|
np.array([y], dtype=np.float32).tofile(f) |
|
self.converted_nodes.add(node.name) |
|
input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_mathbinary_to_file(self, node, f): |
|
self.layer_number = self.layer_number + 1 |
|
self.converted_nodes.add(node.name) |
|
i0_node = self.name_node_dict[node.input[0]] |
|
i1_node = self.name_node_dict[node.input[1]] |
|
np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) |
|
if i0_node.op == 'Const': |
|
scalar = i0_node.attr['value'].tensor.float_val[0] |
|
np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1 |
|
np.array([scalar], dtype=np.float32).tofile(f) |
|
np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0 |
|
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) |
|
np.array([input_operand_index], dtype=np.uint32).tofile(f) |
|
elif i1_node.op == 'Const': |
|
scalar = i1_node.attr['value'].tensor.float_val[0] |
|
np.array([0], dtype=np.uint32).tofile(f) |
|
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) |
|
np.array([input_operand_index], dtype=np.uint32).tofile(f) |
|
np.array([1], dtype=np.uint32).tofile(f) |
|
np.array([scalar], dtype=np.float32).tofile(f) |
|
else: |
|
np.array([0], dtype=np.uint32).tofile(f) |
|
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) |
|
np.array([input_operand_index], dtype=np.uint32).tofile(f) |
|
np.array([0], dtype=np.uint32).tofile(f) |
|
input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) |
|
np.array([input_operand_index], dtype=np.uint32).tofile(f) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([output_operand_index], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_mathunary_to_file(self, node, f): |
|
self.layer_number = self.layer_number + 1 |
|
self.converted_nodes.add(node.name) |
|
i0_node = self.name_node_dict[node.input[0]] |
|
np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f) |
|
input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) |
|
np.array([input_operand_index], dtype=np.uint32).tofile(f) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([output_operand_index],dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_avg_pool_to_file(self, node, f): |
|
assert(node.op == 'AvgPool') |
|
self.layer_number = self.layer_number + 1 |
|
self.converted_nodes.add(node.name) |
|
node0 = self.name_node_dict[node.input[0]] |
|
strides = node.attr['strides'] |
|
|
|
# Tensorflow do not support pooling strides in batch dimension and |
|
# current native NN do not support pooling strides in channel dimension, added assert() here. |
|
assert(strides.list.i[1]==strides.list.i[2]) |
|
assert(strides.list.i[0]==1) |
|
assert(strides.list.i[3]==1) |
|
strides = strides.list.i[1] |
|
filter_node = node.attr['ksize'] |
|
input_name = node.input[0] |
|
|
|
# Tensorflow do not support pooling ksize in batch dimension and channel dimension. |
|
assert(filter_node.list.i[0]==1) |
|
assert(filter_node.list.i[3]==1) |
|
filter_height = filter_node.list.i[1] |
|
filter_width = filter_node.list.i[2] |
|
|
|
padding = node.attr['padding'].s.decode("utf-8") |
|
np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], |
|
dtype=np.uint32).tofile(f) |
|
|
|
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) |
|
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) |
|
np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_layers_to_file(self, f): |
|
for node in self.nodes: |
|
if node.name in self.converted_nodes: |
|
continue |
|
|
|
# conv2d with dilation generates very complex nodes, so handle it in special |
|
if self.in_conv2d_scope(node.name): |
|
if node.op == 'Conv2D': |
|
self.dump_complex_conv2d_to_file(node, f) |
|
continue |
|
if self.in_dense_scope(node.name): |
|
if node.op == 'MatMul': |
|
self.dump_dense_to_file(node, f) |
|
continue |
|
|
|
|
|
if node.op == 'Conv2D': |
|
self.dump_simple_conv2d_to_file(node, f) |
|
continue |
|
if node.name in self.output_names: |
|
input_name = self.id_different_scope_dict[node.name] |
|
if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name): |
|
continue |
|
if node.op == 'AvgPool': |
|
self.dump_avg_pool_to_file(node, f) |
|
elif node.op == 'DepthToSpace': |
|
self.dump_depth2space_to_file(node, f) |
|
elif node.op == 'MirrorPad': |
|
self.dump_mirrorpad_to_file(node, f) |
|
elif node.op == 'Maximum': |
|
self.dump_maximum_to_file(node, f) |
|
elif node.op in self.mathbin2code: |
|
self.dump_mathbinary_to_file(node, f) |
|
elif node.op in self.mathun2code: |
|
self.dump_mathunary_to_file(node, f) |
|
|
|
|
|
def dump_operands_to_file(self, f): |
|
operands = sorted(self.name_operand_dict.values()) |
|
for operand in operands: |
|
#print('{}'.format(operand)) |
|
np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f) |
|
f.write(operand.name.encode('utf-8')) |
|
np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f) |
|
np.array(operand.dims, dtype=np.uint32).tofile(f) |
|
|
|
|
|
def dump_to_file(self): |
|
with open(self.outfile, 'wb') as f: |
|
f.write(header.str.encode('utf-8')) |
|
np.array([header.major, header.minor], dtype=np.uint32).tofile(f) |
|
self.dump_layers_to_file(f) |
|
self.dump_operands_to_file(f) |
|
np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f) |
|
|
|
|
|
def generate_name_node_dict(self): |
|
for node in self.nodes: |
|
self.name_node_dict[node.name] = node |
|
|
|
|
|
def generate_output_names(self): |
|
used_names = [] |
|
for node in self.nodes: |
|
for input in node.input: |
|
used_names.append(input) |
|
|
|
for node in self.nodes: |
|
if node.name not in used_names: |
|
self.output_names.append(node.name) |
|
|
|
|
|
def remove_identity(self): |
|
self.id_different_scope_dict = {} |
|
id_nodes = [] |
|
id_dict = {} |
|
for node in self.nodes: |
|
if node.op == 'Identity': |
|
name = node.name |
|
input = node.input[0] |
|
id_nodes.append(node) |
|
# do not change the output name |
|
if name in self.output_names: |
|
self.name_node_dict[input].name = name |
|
self.name_node_dict[name] = self.name_node_dict[input] |
|
del self.name_node_dict[input] |
|
self.id_different_scope_dict[name] = input |
|
else: |
|
id_dict[name] = input |
|
|
|
for idnode in id_nodes: |
|
self.nodes.remove(idnode) |
|
|
|
for node in self.nodes: |
|
for i in range(len(node.input)): |
|
input = node.input[i] |
|
if input in id_dict: |
|
node.input[i] = id_dict[input] |
|
|
|
|
|
def generate_edges(self): |
|
for node in self.nodes: |
|
for input in node.input: |
|
if input in self.edges: |
|
self.edges[input].append(node) |
|
else: |
|
self.edges[input] = [node] |
|
|
|
|
|
@staticmethod |
|
def get_scope_name(name): |
|
index = name.rfind('/') |
|
if index == -1: |
|
return "" |
|
return name[0:index] |
|
|
|
|
|
def in_conv2d_scope(self, name): |
|
inner_scope = TFConverter.get_scope_name(name) |
|
if inner_scope == "": |
|
return False; |
|
for scope in self.conv2d_scope_names: |
|
index = inner_scope.find(scope) |
|
if index == 0: |
|
return True |
|
return False |
|
|
|
|
|
def in_dense_scope(self, name): |
|
inner_scope = TFConverter.get_scope_name(name) |
|
if inner_scope == "": |
|
return False; |
|
for scope in self.dense_scope_names: |
|
index = inner_scope.find(scope) |
|
if index == 0: |
|
return True |
|
return False |
|
|
|
def generate_sub_block_op_scope_info(self): |
|
# mostly, conv2d/dense is a sub block in graph, get the scope name |
|
for node in self.nodes: |
|
if node.op == 'Conv2D': |
|
scope = TFConverter.get_scope_name(node.name) |
|
# for the case tf.nn.conv2d is called directly |
|
if scope == '': |
|
continue |
|
# for the case tf.nn.conv2d is called within a scope |
|
if scope + '/kernel' not in self.name_node_dict: |
|
continue |
|
self.conv2d_scope_names.add(scope) |
|
elif node.op == 'MatMul': |
|
scope = TFConverter.get_scope_name(node.name) |
|
# for the case tf.nn.dense is called directly |
|
if scope == '': |
|
continue |
|
# for the case tf.nn.dense is called within a scope |
|
if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict: |
|
continue |
|
self.dense_scope_names.add(scope.split('/Tensordot')[0]) |
|
|
|
# get the input name to the conv2d/dense sub block |
|
for node in self.nodes: |
|
scope = TFConverter.get_scope_name(node.name) |
|
if scope in self.conv2d_scope_names: |
|
if node.op == 'Conv2D' or node.op == 'Shape': |
|
for inp in node.input: |
|
if TFConverter.get_scope_name(inp) != scope: |
|
self.conv2d_scopename_inputname_dict[scope] = inp |
|
elif scope in self.dense_scope_names: |
|
if node.op == 'MatMul' or node.op == 'Shape': |
|
for inp in node.input: |
|
if TFConverter.get_scope_name(inp) != scope: |
|
self.dense_scopename_inputname_dict[scope] = inp |
|
elif scope.split('/Tensordot')[0] in self.dense_scope_names: |
|
if node.op == 'Transpose': |
|
for inp in node.input: |
|
if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0: |
|
self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp |
|
|
|
|
|
def run(self): |
|
self.generate_name_node_dict() |
|
self.generate_output_names() |
|
self.remove_identity() |
|
self.generate_edges() |
|
self.generate_sub_block_op_scope_info() |
|
|
|
if self.dump4tb: |
|
self.dump_for_tensorboard() |
|
|
|
self.dump_to_file() |
|
|
|
|
|
def convert_from_tensorflow(infile, outfile, dump4tb): |
|
with open(infile, 'rb') as f: |
|
# read the file in .proto format |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
nodes = graph_def.node |
|
|
|
converter = TFConverter(graph_def, nodes, outfile, dump4tb) |
|
converter.run()
|
|
|