652 lines
16 KiB

/*
* AMR Audio decoder stub
* Copyright (c) 2003 the ffmpeg project
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
This code implements amr-nb and amr-wb audio encoder/decoder through external reference
code from www.3gpp.org. The licence of the code from 3gpp is unclear so you
have to download the code separately. Two versions exists: One fixed-point
and one with floats. For some reason the float-encoder is significant faster
atleast on a P4 1.5GHz (0.9s instead of 9.9s on a 30s audio clip at MR102).
Both float and fixed point is supported for amr-nb, but only float for
amr-wb.
--AMR-NB--
The fixed-point (TS26.073) can be downloaded from:
http://www.3gpp.org/ftp/Specs/archive/26_series/26.073/26073-510.zip
Extract the soure into ffmpeg/libavcodec/amr
To use the fixed version run "./configure" with "--enable-amr_nb-fixed"
The float version (default) can be downloaded from:
http://www.3gpp.org/ftp/Specs/archive/26_series/26.104/26104-510.zip
Extract the soure into ffmpeg/libavcodec/amr_float
The specification for amr-nb can be found in TS 26.071
(http://www.3gpp.org/ftp/Specs/html-info/26071.htm) and some other
info at http://www.3gpp.org/ftp/Specs/html-info/26-series.htm
--AMR-WB--
The reference code can be downloaded from:
http://www.3gpp.org/ftp/Specs/archive/26_series/26.204/26204-510.zip
It should be extracted to "libavcodec/amrwb_float". Enable it with
"--enable-amr_wb".
The specification for amr-wb can be downloaded from:
http://www.3gpp.org/ftp/Specs/archive/26_series/26.171/26171-500.zip
If someone want to use the fixed point version it can be downloaded
from: http://www.3gpp.org/ftp/Specs/archive/26_series/26.173/26173-571.zip
*/
#include "../config.h"
#include "avcodec.h"
#ifdef AMR_NB_FIXED
#define MMS_IO
#include "amr/sp_dec.h"
#include "amr/d_homing.h"
#include "amr/typedef.h"
#include "amr/sp_enc.h"
#include "amr/sid_sync.h"
#include "amr/e_homing.h"
#else
#include "amr_float/interf_dec.h"
#include "amr_float/interf_enc.h"
#endif
/* Common code for fixed and float version*/
typedef struct AMR_bitrates
{
int startrate;
int stoprate;
enum Mode mode;
} AMR_bitrates;
/* Match desired bitrate with closest one*/
static enum Mode getBitrateMode(int bitrate)
{
/* Adjusted so that all bitrates can be used from commandline where
only a multiple of 1000 can be specified*/
AMR_bitrates rates[]={ {0,4999,MR475}, //4
{5000,5899,MR515},//5
{5900,6699,MR59},//6
{6700,7000,MR67},//7
{7001,7949,MR74},//8
{7950,9999,MR795},//9
{10000,11999,MR102},//10
{12000,64000,MR122},//12
};
int i;
for(i=0;i<8;i++)
{
if(rates[i].startrate<=bitrate && rates[i].stoprate>=bitrate)
{
return(rates[i].mode);
}
}
/*Return highest possible*/
return(MR122);
}
#ifdef AMR_NB_FIXED
/* fixed point version*/
/* frame size in serial bitstream file (frame type + serial stream + flags) */
#define SERIAL_FRAMESIZE (1+MAX_SERIAL_SIZE+5)
typedef struct AMRContext {
int frameCount;
Speech_Decode_FrameState *speech_decoder_state;
enum RXFrameType rx_type;
enum Mode mode;
Word16 reset_flag;
Word16 reset_flag_old;
enum Mode enc_bitrate;
Speech_Encode_FrameState *enstate;
sid_syncState *sidstate;
enum TXFrameType tx_frametype;
} AMRContext;
static int amr_nb_decode_init(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
s->frameCount=0;
s->speech_decoder_state=NULL;
s->rx_type = (enum RXFrameType)0;
s->mode= (enum Mode)0;
s->reset_flag=0;
s->reset_flag_old=1;
if(Speech_Decode_Frame_init(&s->speech_decoder_state, "Decoder"))
{
printf("Speech_Decode_Frame_init error\n");
return -1;
}
return 0;
}
static int amr_nb_encode_init(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
s->frameCount=0;
s->speech_decoder_state=NULL;
s->rx_type = (enum RXFrameType)0;
s->mode= (enum Mode)0;
s->reset_flag=0;
s->reset_flag_old=1;
if(avctx->sample_rate!=8000)
{
if(avctx->debug)
{
fprintf(stderr, "Only 8000Hz sample rate supported\n");
}
return -1;
}
if(avctx->channels!=1)
{
if(avctx->debug)
{
fprintf(stderr, "Only mono supported\n");
}
return -1;
}
avctx->frame_size=160;
avctx->coded_frame= avcodec_alloc_frame();
if(Speech_Encode_Frame_init(&s->enstate, 0, "encoder") || sid_sync_init (&s->sidstate))
{
if(avctx->debug)
{
fprintf(stderr, "Speech_Encode_Frame_init error\n");
}
return -1;
}
s->enc_bitrate=getBitrateMode(avctx->bit_rate);
return 0;
}
static int amr_nb_encode_close(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
Speech_Encode_Frame_exit(&s->enstate);
sid_sync_exit (&s->sidstate);
av_freep(&avctx->coded_frame);
return 0;
}
static int amr_nb_decode_close(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
Speech_Decode_Frame_exit(&s->speech_decoder_state);
return 0;
}
static int amr_nb_decode_frame(AVCodecContext * avctx,
void *data, int *data_size,
uint8_t * buf, int buf_size)
{
AMRContext *s = avctx->priv_data;
uint8_t*amrData=buf;
int offset=0;
UWord8 toc, q, ft;
Word16 serial[SERIAL_FRAMESIZE]; /* coded bits */
Word16 *synth;
UWord8 *packed_bits;
*data_size=0;
static Word16 packed_size[16] = {12, 13, 15, 17, 19, 20, 26, 31, 5, 0, 0, 0, 0, 0, 0, 0};
int i;
//printf("amr_decode_frame data_size=%i buf=0x%X buf_size=%d frameCount=%d!!\n",*data_size,buf,buf_size,s->frameCount);
synth=data;
// while(offset<buf_size)
{
toc=amrData[offset];
/* read rest of the frame based on ToC byte */
q = (toc >> 2) & 0x01;
ft = (toc >> 3) & 0x0F;
//printf("offset=%d, packet_size=%d amrData= 0x%X %X %X %X\n",offset,packed_size[ft],amrData[offset],amrData[offset+1],amrData[offset+2],amrData[offset+3]);
offset++;
packed_bits=amrData+offset;
offset+=packed_size[ft];
//Unsort and unpack bits
s->rx_type = UnpackBits(q, ft, packed_bits, &s->mode, &serial[1]);
//We have a new frame
s->frameCount++;
if (s->rx_type == RX_NO_DATA)
{
s->mode = s->speech_decoder_state->prev_mode;
}
else {
s->speech_decoder_state->prev_mode = s->mode;
}
/* if homed: check if this frame is another homing frame */
if (s->reset_flag_old == 1)
{
/* only check until end of first subframe */
s->reset_flag = decoder_homing_frame_test_first(&serial[1], s->mode);
}
/* produce encoder homing frame if homed & input=decoder homing frame */
if ((s->reset_flag != 0) && (s->reset_flag_old != 0))
{
for (i = 0; i < L_FRAME; i++)
{
synth[i] = EHF_MASK;
}
}
else
{
/* decode frame */
Speech_Decode_Frame(s->speech_decoder_state, s->mode, &serial[1], s->rx_type, synth);
}
//Each AMR-frame results in 160 16-bit samples
*data_size+=160*2;
synth+=160;
/* if not homed: check whether current frame is a homing frame */
if (s->reset_flag_old == 0)
{
/* check whole frame */
s->reset_flag = decoder_homing_frame_test(&serial[1], s->mode);
}
/* reset decoder if current frame is a homing frame */
if (s->reset_flag != 0)
{
Speech_Decode_Frame_reset(s->speech_decoder_state);
}
s->reset_flag_old = s->reset_flag;
}
return offset;
}
static int amr_nb_encode_frame(AVCodecContext *avctx,
unsigned char *frame/*out*/, int buf_size, void *data/*in*/)
{
short serial_data[250] = {0};
AMRContext *s = avctx->priv_data;
int written;
s->reset_flag = encoder_homing_frame_test(data);
Speech_Encode_Frame(s->enstate, s->enc_bitrate, data, &serial_data[1], &s->mode);
/* add frame type and mode */
sid_sync (s->sidstate, s->mode, &s->tx_frametype);
written = PackBits(s->mode, s->enc_bitrate, s->tx_frametype, &serial_data[1], frame);
if (s->reset_flag != 0)
{
Speech_Encode_Frame_reset(s->enstate);
sid_sync_reset(s->sidstate);
}
return written;
}
#else /* Float point version*/
typedef struct AMRContext {
int frameCount;
void * decState;
int *enstate;
enum Mode enc_bitrate;
} AMRContext;
static int amr_nb_decode_init(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
s->frameCount=0;
s->decState=Decoder_Interface_init();
if(!s->decState)
{
printf("Decoder_Interface_init error\r\n");
return -1;
}
return 0;
}
static int amr_nb_encode_init(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
s->frameCount=0;
if(avctx->sample_rate!=8000)
{
if(avctx->debug)
{
fprintf(stderr, "Only 8000Hz sample rate supported\n");
}
return -1;
}
if(avctx->channels!=1)
{
if(avctx->debug)
{
fprintf(stderr, "Only mono supported\n");
}
return -1;
}
avctx->frame_size=160;
avctx->coded_frame= avcodec_alloc_frame();
s->enstate=Encoder_Interface_init(0);
if(!s->enstate)
{
if(avctx->debug)
{
fprintf(stderr, "Encoder_Interface_init error\n");
}
return -1;
}
s->enc_bitrate=getBitrateMode(avctx->bit_rate);
return 0;
}
static int amr_nb_decode_close(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
Decoder_Interface_exit(s->decState);
return 0;
}
static int amr_nb_encode_close(AVCodecContext * avctx)
{
AMRContext *s = avctx->priv_data;
Encoder_Interface_exit(s->enstate);
av_freep(&avctx->coded_frame);
return 0;
}
static int amr_nb_decode_frame(AVCodecContext * avctx,
void *data, int *data_size,
uint8_t * buf, int buf_size)
{
AMRContext *s = (AMRContext*)avctx->priv_data;
uint8_t*amrData=buf;
int offset=0;
static short block_size[16]={ 12, 13, 15, 17, 19, 20, 26, 31, 5, 0, 0, 0, 0, 0, 0, 0 };
enum Mode dec_mode;
int packet_size;
*data_size=0;
//printf("amr_decode_frame data_size=%i buf=0x%X buf_size=%d frameCount=%d!!\n",*data_size,buf,buf_size,s->frameCount);
while(offset<buf_size)
{
dec_mode = (amrData[offset] >> 3) & 0x000F;
packet_size = block_size[dec_mode];
s->frameCount++;
//printf("offset=%d, packet_size=%d amrData= 0x%X %X %X %X\n",offset,packet_size,amrData[offset],amrData[offset+1],amrData[offset+2],amrData[offset+3]);
/* call decoder */
Decoder_Interface_Decode(s->decState, &amrData[offset], data+*data_size, 0);
*data_size+=160*2;
offset+=packet_size+1;
}
return buf_size;
}
static int amr_nb_encode_frame(AVCodecContext *avctx,
unsigned char *frame/*out*/, int buf_size, void *data/*in*/)
{
AMRContext *s = (AMRContext*)avctx->priv_data;
int written;
written = Encoder_Interface_Encode(s->enstate,
s->enc_bitrate,
data,
frame,
0);
return written;
}
#endif
AVCodec amr_nb_decoder =
{
"amr_nb",
CODEC_TYPE_AUDIO,
CODEC_ID_AMR_NB,
sizeof(AMRContext),
amr_nb_decode_init,
NULL,
amr_nb_decode_close,
amr_nb_decode_frame,
};
AVCodec amr_nb_encoder =
{
"amr_nb",
CODEC_TYPE_AUDIO,
CODEC_ID_AMR_NB,
sizeof(AMRContext),
amr_nb_encode_init,
amr_nb_encode_frame,
amr_nb_encode_close,
NULL,
};
/* -----------AMR wideband ------------*/
#ifdef AMR_WB
#ifdef _TYPEDEF_H
//To avoid duplicate typedefs from typdef in amr-nb
#define typedef_h
#endif
#include "amrwb_float/enc_if.h"
#include "amrwb_float/dec_if.h"
/* Common code for fixed and float version*/
typedef struct AMRWB_bitrates
{
int startrate;
int stoprate;
int mode;
} AMRWB_bitrates;
static int getWBBitrateMode(int bitrate)
{
/* Adjusted so that all bitrates can be used from commandline where
only a multiple of 1000 can be specified*/
AMRWB_bitrates rates[]={ {0,7999,0}, //6.6kHz
{8000,9999,1},//8.85
{10000,13000,2},//12.65
{13001,14999,3},//14.25
{15000,17000,4},//15.85
{17001,18000,5},//18.25
{18001,22000,6},//19.85
{22001,23000,7},//23.05
{23001,24000,8},//23.85
};
int i;
for(i=0;i<9;i++)
{
if(rates[i].startrate<=bitrate && rates[i].stoprate>=bitrate)
{
return(rates[i].mode);
}
}
/*Return highest possible*/
return(8);
}
typedef struct AMRWBContext {
int frameCount;
void *state;
int mode;
Word16 allow_dtx;
} AMRWBContext;
static int amr_wb_encode_init(AVCodecContext * avctx)
{
AMRWBContext *s = (AMRWBContext*)avctx->priv_data;
s->frameCount=0;
if(avctx->sample_rate!=16000)
{
if(avctx->debug)
{
fprintf(stderr, "Only 16000Hz sample rate supported\n");
}
return -1;
}
if(avctx->channels!=1)
{
if(avctx->debug)
{
fprintf(stderr, "Only mono supported\n");
}
return -1;
}
avctx->frame_size=320;
avctx->coded_frame= avcodec_alloc_frame();
s->state = E_IF_init();
s->mode=getWBBitrateMode(avctx->bit_rate);
s->allow_dtx=0;
return 0;
}
static int amr_wb_encode_close(AVCodecContext * avctx)
{
AMRWBContext *s = (AMRWBContext*) avctx->priv_data;
E_IF_exit(s->state);
av_freep(&avctx->coded_frame);
s->frameCount++;
return 0;
}
static int amr_wb_encode_frame(AVCodecContext *avctx,
unsigned char *frame/*out*/, int buf_size, void *data/*in*/)
{
AMRWBContext *s = (AMRWBContext*) avctx->priv_data;
int size = E_IF_encode(s->state, s->mode, data, frame, s->allow_dtx);
return size;
}
static int amr_wb_decode_init(AVCodecContext * avctx)
{
AMRWBContext *s = (AMRWBContext *)avctx->priv_data;
s->frameCount=0;
s->state = D_IF_init();
return 0;
}
extern const UWord8 block_size[];
static int amr_wb_decode_frame(AVCodecContext * avctx,
void *data, int *data_size,
uint8_t * buf, int buf_size)
{
AMRWBContext *s = (AMRWBContext*)avctx->priv_data;
uint8_t*amrData=buf;
int offset=0;
int mode;
int packet_size;
*data_size=0;
while(offset<buf_size)
{
s->frameCount++;
mode = (Word16)((amrData[offset] >> 3) & 0x0F);
packet_size = block_size[mode];
D_IF_decode( s->state, &amrData[offset], data+*data_size, _good_frame);
*data_size+=320*2;
offset+=packet_size;
}
return buf_size;
}
static int amr_wb_decode_close(AVCodecContext * avctx)
{
AMRWBContext *s = (AMRWBContext *)avctx->priv_data;
D_IF_exit(s->state);
return 0;
}
AVCodec amr_wb_decoder =
{
"amr_wb",
CODEC_TYPE_AUDIO,
CODEC_ID_AMR_WB,
sizeof(AMRWBContext),
amr_wb_decode_init,
NULL,
amr_wb_decode_close,
amr_wb_decode_frame,
};
AVCodec amr_wb_encoder =
{
"amr_wb",
CODEC_TYPE_AUDIO,
CODEC_ID_AMR_WB,
sizeof(AMRWBContext),
amr_wb_encode_init,
amr_wb_encode_frame,
amr_wb_encode_close,
NULL,
};
#endif //AMR_WB