mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
766 lines
25 KiB
766 lines
25 KiB
/* |
|
* Copyright (C) 2024 Niklas Haas |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <math.h> |
|
#include <string.h> |
|
|
|
#include "libavutil/attributes.h" |
|
#include "libavutil/avassert.h" |
|
#include "libavutil/csp.h" |
|
#include "libavutil/slicethread.h" |
|
|
|
#include "cms.h" |
|
#include "csputils.h" |
|
#include "libswscale/swscale.h" |
|
#include "utils.h" |
|
|
|
bool sws_color_map_noop(const SwsColorMap *map) |
|
{ |
|
/* If the encoding space is different, we must go through a conversion */ |
|
if (map->src.prim != map->dst.prim || map->src.trc != map->dst.trc) |
|
return false; |
|
|
|
/* If the black point changes, we have to perform black point compensation */ |
|
if (av_cmp_q(map->src.min_luma, map->dst.min_luma)) |
|
return false; |
|
|
|
switch (map->intent) { |
|
case SWS_INTENT_ABSOLUTE_COLORIMETRIC: |
|
case SWS_INTENT_RELATIVE_COLORIMETRIC: |
|
return ff_prim_superset(&map->dst.gamut, &map->src.gamut) && |
|
av_cmp_q(map->src.max_luma, map->dst.max_luma) <= 0; |
|
case SWS_INTENT_PERCEPTUAL: |
|
case SWS_INTENT_SATURATION: |
|
return ff_prim_equal(&map->dst.gamut, &map->src.gamut) && |
|
!av_cmp_q(map->src.max_luma, map->dst.max_luma); |
|
default: |
|
av_assert0(!"Invalid gamut mapping intent?"); |
|
return true; |
|
} |
|
} |
|
|
|
/* Approximation of gamut hull at a given intensity level */ |
|
static const float hull(float I) |
|
{ |
|
return ((I - 6.0f) * I + 9.0f) * I; |
|
} |
|
|
|
/* For some minimal type safety, and code cleanliness */ |
|
typedef struct RGB { |
|
float R, G, B; /* nits */ |
|
} RGB; |
|
|
|
typedef struct IPT { |
|
float I, P, T; |
|
} IPT; |
|
|
|
typedef struct ICh { |
|
float I, C, h; |
|
} ICh; |
|
|
|
static av_always_inline ICh ipt2ich(IPT c) |
|
{ |
|
return (ICh) { |
|
.I = c.I, |
|
.C = sqrtf(c.P * c.P + c.T * c.T), |
|
.h = atan2f(c.T, c.P), |
|
}; |
|
} |
|
|
|
static av_always_inline IPT ich2ipt(ICh c) |
|
{ |
|
return (IPT) { |
|
.I = c.I, |
|
.P = c.C * cosf(c.h), |
|
.T = c.C * sinf(c.h), |
|
}; |
|
} |
|
|
|
/* Helper struct containing pre-computed cached values describing a gamut */ |
|
typedef struct Gamut { |
|
SwsMatrix3x3 encoding2lms; |
|
SwsMatrix3x3 lms2encoding; |
|
SwsMatrix3x3 lms2content; |
|
SwsMatrix3x3 content2lms; |
|
av_csp_eotf_function eotf; |
|
av_csp_eotf_function eotf_inv; |
|
float Iavg_frame; |
|
float Imax_frame; |
|
float Imin, Imax; |
|
float Lb, Lw; |
|
AVCIExy wp; |
|
ICh peak; /* updated as needed in loop body when hue changes */ |
|
} Gamut; |
|
|
|
static Gamut gamut_from_colorspace(SwsColor fmt) |
|
{ |
|
const AVColorPrimariesDesc *encoding = av_csp_primaries_desc_from_id(fmt.prim); |
|
const AVColorPrimariesDesc content = { |
|
.prim = fmt.gamut, |
|
.wp = encoding->wp, |
|
}; |
|
|
|
const float Lw = av_q2d(fmt.max_luma), Lb = av_q2d(fmt.min_luma); |
|
const float Imax = pq_oetf(Lw); |
|
|
|
return (Gamut) { |
|
.encoding2lms = ff_sws_ipt_rgb2lms(encoding), |
|
.lms2encoding = ff_sws_ipt_lms2rgb(encoding), |
|
.lms2content = ff_sws_ipt_lms2rgb(&content), |
|
.content2lms = ff_sws_ipt_rgb2lms(&content), |
|
.eotf = av_csp_itu_eotf(fmt.trc), |
|
.eotf_inv = av_csp_itu_eotf_inv(fmt.trc), |
|
.wp = encoding->wp, |
|
.Imin = pq_oetf(Lb), |
|
.Imax = Imax, |
|
.Imax_frame = fmt.frame_peak.den ? pq_oetf(av_q2d(fmt.frame_peak)) : Imax, |
|
.Iavg_frame = fmt.frame_avg.den ? pq_oetf(av_q2d(fmt.frame_avg)) : 0.0f, |
|
.Lb = Lb, |
|
.Lw = Lw, |
|
}; |
|
} |
|
|
|
static av_always_inline IPT rgb2ipt(RGB c, const SwsMatrix3x3 rgb2lms) |
|
{ |
|
const float L = rgb2lms.m[0][0] * c.R + |
|
rgb2lms.m[0][1] * c.G + |
|
rgb2lms.m[0][2] * c.B; |
|
const float M = rgb2lms.m[1][0] * c.R + |
|
rgb2lms.m[1][1] * c.G + |
|
rgb2lms.m[1][2] * c.B; |
|
const float S = rgb2lms.m[2][0] * c.R + |
|
rgb2lms.m[2][1] * c.G + |
|
rgb2lms.m[2][2] * c.B; |
|
const float Lp = pq_oetf(L); |
|
const float Mp = pq_oetf(M); |
|
const float Sp = pq_oetf(S); |
|
return (IPT) { |
|
.I = 0.4000f * Lp + 0.4000f * Mp + 0.2000f * Sp, |
|
.P = 4.4550f * Lp - 4.8510f * Mp + 0.3960f * Sp, |
|
.T = 0.8056f * Lp + 0.3572f * Mp - 1.1628f * Sp, |
|
}; |
|
} |
|
|
|
static av_always_inline RGB ipt2rgb(IPT c, const SwsMatrix3x3 lms2rgb) |
|
{ |
|
const float Lp = c.I + 0.0975689f * c.P + 0.205226f * c.T; |
|
const float Mp = c.I - 0.1138760f * c.P + 0.133217f * c.T; |
|
const float Sp = c.I + 0.0326151f * c.P - 0.676887f * c.T; |
|
const float L = pq_eotf(Lp); |
|
const float M = pq_eotf(Mp); |
|
const float S = pq_eotf(Sp); |
|
return (RGB) { |
|
.R = lms2rgb.m[0][0] * L + |
|
lms2rgb.m[0][1] * M + |
|
lms2rgb.m[0][2] * S, |
|
.G = lms2rgb.m[1][0] * L + |
|
lms2rgb.m[1][1] * M + |
|
lms2rgb.m[1][2] * S, |
|
.B = lms2rgb.m[2][0] * L + |
|
lms2rgb.m[2][1] * M + |
|
lms2rgb.m[2][2] * S, |
|
}; |
|
} |
|
|
|
static inline bool ingamut(IPT c, Gamut gamut) |
|
{ |
|
const float min_rgb = gamut.Lb - 1e-4f; |
|
const float max_rgb = gamut.Lw + 1e-2f; |
|
const float Lp = c.I + 0.0975689f * c.P + 0.205226f * c.T; |
|
const float Mp = c.I - 0.1138760f * c.P + 0.133217f * c.T; |
|
const float Sp = c.I + 0.0326151f * c.P - 0.676887f * c.T; |
|
if (Lp < gamut.Imin || Lp > gamut.Imax || |
|
Mp < gamut.Imin || Mp > gamut.Imax || |
|
Sp < gamut.Imin || Sp > gamut.Imax) |
|
{ |
|
/* Values outside legal LMS range */ |
|
return false; |
|
} else { |
|
const float L = pq_eotf(Lp); |
|
const float M = pq_eotf(Mp); |
|
const float S = pq_eotf(Sp); |
|
RGB rgb = { |
|
.R = gamut.lms2content.m[0][0] * L + |
|
gamut.lms2content.m[0][1] * M + |
|
gamut.lms2content.m[0][2] * S, |
|
.G = gamut.lms2content.m[1][0] * L + |
|
gamut.lms2content.m[1][1] * M + |
|
gamut.lms2content.m[1][2] * S, |
|
.B = gamut.lms2content.m[2][0] * L + |
|
gamut.lms2content.m[2][1] * M + |
|
gamut.lms2content.m[2][2] * S, |
|
}; |
|
return rgb.R >= min_rgb && rgb.R <= max_rgb && |
|
rgb.G >= min_rgb && rgb.G <= max_rgb && |
|
rgb.B >= min_rgb && rgb.B <= max_rgb; |
|
} |
|
} |
|
|
|
static const float maxDelta = 5e-5f; |
|
|
|
// Find gamut intersection using specified bounds |
|
static inline ICh |
|
desat_bounded(float I, float h, float Cmin, float Cmax, Gamut gamut) |
|
{ |
|
if (I <= gamut.Imin) |
|
return (ICh) { .I = gamut.Imin, .C = 0, .h = h }; |
|
else if (I >= gamut.Imax) |
|
return (ICh) { .I = gamut.Imax, .C = 0, .h = h }; |
|
else { |
|
const float maxDI = I * maxDelta; |
|
ICh res = { .I = I, .C = (Cmin + Cmax) / 2, .h = h }; |
|
do { |
|
if (ingamut(ich2ipt(res), gamut)) { |
|
Cmin = res.C; |
|
} else { |
|
Cmax = res.C; |
|
} |
|
res.C = (Cmin + Cmax) / 2; |
|
} while (Cmax - Cmin > maxDI); |
|
|
|
return res; |
|
} |
|
} |
|
|
|
// Finds maximally saturated in-gamut color (for given hue) |
|
static inline ICh saturate(float hue, Gamut gamut) |
|
{ |
|
static const float invphi = 0.6180339887498948f; |
|
static const float invphi2 = 0.38196601125010515f; |
|
|
|
ICh lo = { .I = gamut.Imin, .h = hue }; |
|
ICh hi = { .I = gamut.Imax, .h = hue }; |
|
float de = hi.I - lo.I; |
|
ICh a = { .I = lo.I + invphi2 * de }; |
|
ICh b = { .I = lo.I + invphi * de }; |
|
a = desat_bounded(a.I, hue, 0.0f, 0.5f, gamut); |
|
b = desat_bounded(b.I, hue, 0.0f, 0.5f, gamut); |
|
|
|
while (de > maxDelta) { |
|
de *= invphi; |
|
if (a.C > b.C) { |
|
hi = b; |
|
b = a; |
|
a.I = lo.I + invphi2 * de; |
|
a = desat_bounded(a.I, hue, lo.C - maxDelta, 0.5f, gamut); |
|
} else { |
|
lo = a; |
|
a = b; |
|
b.I = lo.I + invphi * de; |
|
b = desat_bounded(b.I, hue, hi.C - maxDelta, 0.5f, gamut); |
|
} |
|
} |
|
|
|
return a.C > b.C ? a : b; |
|
} |
|
|
|
static float softclip(float value, float source, float target) |
|
{ |
|
const float j = SOFTCLIP_KNEE; |
|
float peak, x, a, b, scale; |
|
if (!target) |
|
return 0.0f; |
|
|
|
peak = source / target; |
|
x = fminf(value / target, peak); |
|
if (x <= j || peak <= 1.0) |
|
return value; |
|
|
|
/* Apply simple mobius function */ |
|
a = -j*j * (peak - 1.0f) / (j*j - 2.0f * j + peak); |
|
b = (j*j - 2.0f * j * peak + peak) / fmaxf(1e-6f, peak - 1.0f); |
|
scale = (b*b + 2.0f * b*j + j*j) / (b - a); |
|
|
|
return scale * (x + a) / (x + b) * target; |
|
} |
|
|
|
/** |
|
* Something like fmixf(base, c, x) but follows an exponential curve, note |
|
* that this can be used to extend 'c' outwards for x > 1 |
|
*/ |
|
static inline ICh mix_exp(ICh c, float x, float gamma, float base) |
|
{ |
|
return (ICh) { |
|
.I = base + (c.I - base) * powf(x, gamma), |
|
.C = c.C * x, |
|
.h = c.h, |
|
}; |
|
} |
|
|
|
/** |
|
* Drop gamma for colors approaching black and achromatic to avoid numerical |
|
* instabilities, and excessive brightness boosting of grain, while also |
|
* strongly boosting gamma for values exceeding the target peak |
|
*/ |
|
static inline float scale_gamma(float gamma, ICh ich, Gamut gamut) |
|
{ |
|
const float Imin = gamut.Imin; |
|
const float Irel = fmaxf((ich.I - Imin) / (gamut.peak.I - Imin), 0.0f); |
|
return gamma * powf(Irel, 3) * fminf(ich.C / gamut.peak.C, 1.0f); |
|
} |
|
|
|
/* Clip a color along the exponential curve given by `gamma` */ |
|
static inline IPT clip_gamma(IPT ipt, float gamma, Gamut gamut) |
|
{ |
|
float lo = 0.0f, hi = 1.0f, x = 0.5f; |
|
const float maxDI = fmaxf(ipt.I * maxDelta, 1e-7f); |
|
ICh ich; |
|
|
|
if (ipt.I <= gamut.Imin) |
|
return (IPT) { .I = gamut.Imin }; |
|
if (ingamut(ipt, gamut)) |
|
return ipt; |
|
|
|
ich = ipt2ich(ipt); |
|
if (!gamma) |
|
return ich2ipt(desat_bounded(ich.I, ich.h, 0.0f, ich.C, gamut)); |
|
|
|
gamma = scale_gamma(gamma, ich, gamut); |
|
do { |
|
ICh test = mix_exp(ich, x, gamma, gamut.peak.I); |
|
if (ingamut(ich2ipt(test), gamut)) { |
|
lo = x; |
|
} else { |
|
hi = x; |
|
} |
|
x = (lo + hi) / 2.0f; |
|
} while (hi - lo > maxDI); |
|
|
|
return ich2ipt(mix_exp(ich, x, gamma, gamut.peak.I)); |
|
} |
|
|
|
typedef struct CmsCtx CmsCtx; |
|
struct CmsCtx { |
|
/* Tone mapping parameters */ |
|
float Qa, Qb, Qc, Pa, Pb, src_knee, dst_knee; /* perceptual */ |
|
float I_scale, I_offset; /* linear methods */ |
|
|
|
/* Colorspace parameters */ |
|
Gamut src; |
|
Gamut tmp; /* after tone mapping */ |
|
Gamut dst; |
|
SwsMatrix3x3 adaptation; /* for absolute intent */ |
|
|
|
/* Invocation parameters */ |
|
SwsColorMap map; |
|
float (*tone_map)(const CmsCtx *ctx, float I); |
|
IPT (*adapt_colors)(const CmsCtx *ctx, IPT ipt); |
|
v3u16_t *input; |
|
v3u16_t *output; |
|
|
|
/* Threading parameters */ |
|
int slice_size; |
|
int size_input; |
|
int size_output_I; |
|
int size_output_PT; |
|
}; |
|
|
|
/** |
|
* Helper function to pick a knee point based on the * HDR10+ brightness |
|
* metadata and scene brightness average matching. |
|
* |
|
* Inspired by SMPTE ST2094-10, with some modifications |
|
*/ |
|
static void st2094_pick_knee(float src_max, float src_min, float src_avg, |
|
float dst_max, float dst_min, |
|
float *out_src_knee, float *out_dst_knee) |
|
{ |
|
const float min_knee = PERCEPTUAL_KNEE_MIN; |
|
const float max_knee = PERCEPTUAL_KNEE_MAX; |
|
const float def_knee = PERCEPTUAL_KNEE_DEF; |
|
const float src_knee_min = fmixf(src_min, src_max, min_knee); |
|
const float src_knee_max = fmixf(src_min, src_max, max_knee); |
|
const float dst_knee_min = fmixf(dst_min, dst_max, min_knee); |
|
const float dst_knee_max = fmixf(dst_min, dst_max, max_knee); |
|
float src_knee, target, adapted, tuning, adaptation, dst_knee; |
|
|
|
/* Choose source knee based on dynamic source scene brightness */ |
|
src_knee = src_avg ? src_avg : fmixf(src_min, src_max, def_knee); |
|
src_knee = av_clipf(src_knee, src_knee_min, src_knee_max); |
|
|
|
/* Choose target adaptation point based on linearly re-scaling source knee */ |
|
target = (src_knee - src_min) / (src_max - src_min); |
|
adapted = fmixf(dst_min, dst_max, target); |
|
|
|
/** |
|
* Choose the destnation knee by picking the perceptual adaptation point |
|
* between the source knee and the desired target. This moves the knee |
|
* point, on the vertical axis, closer to the 1:1 (neutral) line. |
|
* |
|
* Adjust the adaptation strength towards 1 based on how close the knee |
|
* point is to its extreme values (min/max knee) |
|
*/ |
|
tuning = smoothstepf(max_knee, def_knee, target) * |
|
smoothstepf(min_knee, def_knee, target); |
|
adaptation = fmixf(1.0f, PERCEPTUAL_ADAPTATION, tuning); |
|
dst_knee = fmixf(src_knee, adapted, adaptation); |
|
dst_knee = av_clipf(dst_knee, dst_knee_min, dst_knee_max); |
|
|
|
*out_src_knee = src_knee; |
|
*out_dst_knee = dst_knee; |
|
} |
|
|
|
static void tone_map_setup(CmsCtx *ctx, bool dynamic) |
|
{ |
|
const float dst_min = ctx->dst.Imin; |
|
const float dst_max = ctx->dst.Imax; |
|
const float src_min = ctx->src.Imin; |
|
const float src_max = dynamic ? ctx->src.Imax_frame : ctx->src.Imax; |
|
const float src_avg = dynamic ? ctx->src.Iavg_frame : 0.0f; |
|
float slope, ratio, in_min, in_max, out_min, out_max, t; |
|
|
|
switch (ctx->map.intent) { |
|
case SWS_INTENT_PERCEPTUAL: |
|
st2094_pick_knee(src_max, src_min, src_avg, dst_max, dst_min, |
|
&ctx->src_knee, &ctx->dst_knee); |
|
|
|
/* Solve for linear knee (Pa = 0) */ |
|
slope = (ctx->dst_knee - dst_min) / (ctx->src_knee - src_min); |
|
|
|
/** |
|
* Tune the slope at the knee point slightly: raise it to a user-provided |
|
* gamma exponent, multiplied by an extra tuning coefficient designed to |
|
* make the slope closer to 1.0 when the difference in peaks is low, and |
|
* closer to linear when the difference between peaks is high. |
|
*/ |
|
ratio = src_max / dst_max - 1.0f; |
|
ratio = av_clipf(SLOPE_TUNING * ratio, SLOPE_OFFSET, 1.0f + SLOPE_OFFSET); |
|
slope = powf(slope, (1.0f - PERCEPTUAL_CONTRAST) * ratio); |
|
|
|
/* Normalize everything the pivot to make the math easier */ |
|
in_min = src_min - ctx->src_knee; |
|
in_max = src_max - ctx->src_knee; |
|
out_min = dst_min - ctx->dst_knee; |
|
out_max = dst_max - ctx->dst_knee; |
|
|
|
/** |
|
* Solve P of order 2 for: |
|
* P(in_min) = out_min |
|
* P'(0.0) = slope |
|
* P(0.0) = 0.0 |
|
*/ |
|
ctx->Pa = (out_min - slope * in_min) / (in_min * in_min); |
|
ctx->Pb = slope; |
|
|
|
/** |
|
* Solve Q of order 3 for: |
|
* Q(in_max) = out_max |
|
* Q''(in_max) = 0.0 |
|
* Q(0.0) = 0.0 |
|
* Q'(0.0) = slope |
|
*/ |
|
t = 2 * in_max * in_max; |
|
ctx->Qa = (slope * in_max - out_max) / (in_max * t); |
|
ctx->Qb = -3 * (slope * in_max - out_max) / t; |
|
ctx->Qc = slope; |
|
break; |
|
case SWS_INTENT_SATURATION: |
|
/* Linear stretch */ |
|
ctx->I_scale = (dst_max - dst_min) / (src_max - src_min); |
|
ctx->I_offset = dst_min - src_min * ctx->I_scale; |
|
break; |
|
case SWS_INTENT_RELATIVE_COLORIMETRIC: |
|
/* Pure black point adaptation */ |
|
ctx->I_scale = src_max / (src_max - src_min) / |
|
(dst_max / (dst_max - dst_min)); |
|
ctx->I_offset = dst_min - src_min * ctx->I_scale; |
|
break; |
|
case SWS_INTENT_ABSOLUTE_COLORIMETRIC: |
|
/* Hard clip */ |
|
ctx->I_scale = 1.0f; |
|
ctx->I_offset = 0.0f; |
|
break; |
|
} |
|
} |
|
|
|
static av_always_inline IPT tone_map_apply(const CmsCtx *ctx, IPT ipt) |
|
{ |
|
float I = ipt.I, desat; |
|
|
|
if (ctx->map.intent == SWS_INTENT_PERCEPTUAL) { |
|
const float Pa = ctx->Pa, Pb = ctx->Pb; |
|
const float Qa = ctx->Qa, Qb = ctx->Qb, Qc = ctx->Qc; |
|
I -= ctx->src_knee; |
|
I = I > 0 ? ((Qa * I + Qb) * I + Qc) * I : (Pa * I + Pb) * I; |
|
I += ctx->dst_knee; |
|
} else { |
|
I = ctx->I_scale * I + ctx->I_offset; |
|
} |
|
|
|
/** |
|
* Avoids raising saturation excessively when raising brightness, and |
|
* also desaturates when reducing brightness greatly to account for the |
|
* reduction in gamut volume. |
|
*/ |
|
desat = fminf(ipt.I / I, hull(I) / hull(ipt.I)); |
|
return (IPT) { |
|
.I = I, |
|
.P = ipt.P * desat, |
|
.T = ipt.T * desat, |
|
}; |
|
} |
|
|
|
static IPT perceptual(const CmsCtx *ctx, IPT ipt) |
|
{ |
|
ICh ich = ipt2ich(ipt); |
|
IPT mapped = rgb2ipt(ipt2rgb(ipt, ctx->tmp.lms2content), ctx->dst.content2lms); |
|
RGB rgb; |
|
float maxRGB; |
|
|
|
/* Protect in gamut region */ |
|
const float maxC = fmaxf(ctx->tmp.peak.C, ctx->dst.peak.C); |
|
float k = smoothstepf(PERCEPTUAL_DEADZONE, 1.0f, ich.C / maxC); |
|
k *= PERCEPTUAL_STRENGTH; |
|
ipt.I = fmixf(ipt.I, mapped.I, k); |
|
ipt.P = fmixf(ipt.P, mapped.P, k); |
|
ipt.T = fmixf(ipt.T, mapped.T, k); |
|
|
|
rgb = ipt2rgb(ipt, ctx->dst.lms2content); |
|
maxRGB = fmaxf(rgb.R, fmaxf(rgb.G, rgb.B)); |
|
rgb.R = fmaxf(softclip(rgb.R, maxRGB, ctx->dst.Lw), ctx->dst.Lb); |
|
rgb.G = fmaxf(softclip(rgb.G, maxRGB, ctx->dst.Lw), ctx->dst.Lb); |
|
rgb.B = fmaxf(softclip(rgb.B, maxRGB, ctx->dst.Lw), ctx->dst.Lb); |
|
|
|
return rgb2ipt(rgb, ctx->dst.content2lms); |
|
} |
|
|
|
static IPT relative(const CmsCtx *ctx, IPT ipt) |
|
{ |
|
return clip_gamma(ipt, COLORIMETRIC_GAMMA, ctx->dst); |
|
} |
|
|
|
static IPT absolute(const CmsCtx *ctx, IPT ipt) |
|
{ |
|
RGB rgb = ipt2rgb(ipt, ctx->dst.lms2encoding); |
|
float c[3] = { rgb.R, rgb.G, rgb.B }; |
|
ff_sws_matrix3x3_apply(&ctx->adaptation, c); |
|
ipt = rgb2ipt((RGB) { c[0], c[1], c[2] }, ctx->dst.encoding2lms); |
|
|
|
return clip_gamma(ipt, COLORIMETRIC_GAMMA, ctx->dst); |
|
} |
|
|
|
static IPT saturation(const CmsCtx * ctx, IPT ipt) |
|
{ |
|
RGB rgb = ipt2rgb(ipt, ctx->tmp.lms2content); |
|
return rgb2ipt(rgb, ctx->dst.content2lms); |
|
} |
|
|
|
static av_always_inline av_const uint16_t av_round16f(float x) |
|
{ |
|
return av_clip_uint16(x * (UINT16_MAX - 1) + 0.5f); |
|
} |
|
|
|
/* Call this whenever the hue changes inside the loop body */ |
|
static av_always_inline void update_hue_peaks(CmsCtx *ctx, float P, float T) |
|
{ |
|
const float hue = atan2f(T, P); |
|
switch (ctx->map.intent) { |
|
case SWS_INTENT_PERCEPTUAL: |
|
ctx->tmp.peak = saturate(hue, ctx->tmp); |
|
/* fall through */ |
|
case SWS_INTENT_RELATIVE_COLORIMETRIC: |
|
case SWS_INTENT_ABSOLUTE_COLORIMETRIC: |
|
ctx->dst.peak = saturate(hue, ctx->dst); |
|
return; |
|
default: |
|
return; |
|
} |
|
} |
|
|
|
static void generate_slice(void *priv, int jobnr, int threadnr, int nb_jobs, |
|
int nb_threads) |
|
{ |
|
CmsCtx ctx = *(const CmsCtx *) priv; |
|
|
|
const int slice_start = jobnr * ctx.slice_size; |
|
const int slice_stride = ctx.size_input * ctx.size_input; |
|
const int slice_end = FFMIN((jobnr + 1) * ctx.slice_size, ctx.size_input); |
|
v3u16_t *input = &ctx.input[slice_start * slice_stride]; |
|
|
|
const int output_slice_h = (ctx.size_output_PT + nb_jobs - 1) / nb_jobs; |
|
const int output_start = jobnr * output_slice_h; |
|
const int output_stride = ctx.size_output_PT * ctx.size_output_I; |
|
const int output_end = FFMIN((jobnr + 1) * output_slice_h, ctx.size_output_PT); |
|
v3u16_t *output = ctx.output ? &ctx.output[output_start * output_stride] : NULL; |
|
|
|
const float I_scale = 1.0f / (ctx.src.Imax - ctx.src.Imin); |
|
const float I_offset = -ctx.src.Imin * I_scale; |
|
const float PT_offset = (float) (1 << 15) / (UINT16_MAX - 1); |
|
|
|
const float input_scale = 1.0f / (ctx.size_input - 1); |
|
const float output_scale_PT = 1.0f / (ctx.size_output_PT - 1); |
|
const float output_scale_I = (ctx.tmp.Imax - ctx.tmp.Imin) / |
|
(ctx.size_output_I - 1); |
|
|
|
for (int Bx = slice_start; Bx < slice_end; Bx++) { |
|
const float B = input_scale * Bx; |
|
for (int Gx = 0; Gx < ctx.size_input; Gx++) { |
|
const float G = input_scale * Gx; |
|
for (int Rx = 0; Rx < ctx.size_input; Rx++) { |
|
double c[3] = { input_scale * Rx, G, B }; |
|
RGB rgb; |
|
IPT ipt; |
|
|
|
ctx.src.eotf(ctx.src.Lw, ctx.src.Lb, c); |
|
rgb = (RGB) { c[0], c[1], c[2] }; |
|
ipt = rgb2ipt(rgb, ctx.src.encoding2lms); |
|
|
|
if (output) { |
|
/* Save intermediate value to 3DLUT */ |
|
*input++ = (v3u16_t) { |
|
av_round16f(I_scale * ipt.I + I_offset), |
|
av_round16f(ipt.P + PT_offset), |
|
av_round16f(ipt.T + PT_offset), |
|
}; |
|
} else { |
|
update_hue_peaks(&ctx, ipt.P, ipt.T); |
|
|
|
ipt = tone_map_apply(&ctx, ipt); |
|
ipt = ctx.adapt_colors(&ctx, ipt); |
|
rgb = ipt2rgb(ipt, ctx.dst.lms2encoding); |
|
|
|
c[0] = rgb.R; |
|
c[1] = rgb.G; |
|
c[2] = rgb.B; |
|
ctx.dst.eotf_inv(ctx.dst.Lw, ctx.dst.Lb, c); |
|
*input++ = (v3u16_t) { |
|
av_round16f(c[0]), |
|
av_round16f(c[1]), |
|
av_round16f(c[2]), |
|
}; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (!output) |
|
return; |
|
|
|
/* Generate split gamut mapping LUT */ |
|
for (int Tx = output_start; Tx < output_end; Tx++) { |
|
const float T = output_scale_PT * Tx - PT_offset; |
|
for (int Px = 0; Px < ctx.size_output_PT; Px++) { |
|
const float P = output_scale_PT * Px - PT_offset; |
|
update_hue_peaks(&ctx, P, T); |
|
|
|
for (int Ix = 0; Ix < ctx.size_output_I; Ix++) { |
|
const float I = output_scale_I * Ix + ctx.tmp.Imin; |
|
IPT ipt = ctx.adapt_colors(&ctx, (IPT) { I, P, T }); |
|
RGB rgb = ipt2rgb(ipt, ctx.dst.lms2encoding); |
|
double c[3] = { rgb.R, rgb.G, rgb.B }; |
|
ctx.dst.eotf_inv(ctx.dst.Lw, ctx.dst.Lb, c); |
|
*output++ = (v3u16_t) { |
|
av_round16f(c[0]), |
|
av_round16f(c[1]), |
|
av_round16f(c[2]), |
|
}; |
|
} |
|
} |
|
} |
|
} |
|
|
|
int sws_color_map_generate_static(v3u16_t *lut, int size, const SwsColorMap *map) |
|
{ |
|
return sws_color_map_generate_dynamic(lut, NULL, size, 1, 1, map); |
|
} |
|
|
|
int sws_color_map_generate_dynamic(v3u16_t *input, v3u16_t *output, |
|
int size_input, int size_I, int size_PT, |
|
const SwsColorMap *map) |
|
{ |
|
AVSliceThread *slicethread; |
|
int ret, num_slices; |
|
|
|
CmsCtx ctx = { |
|
.map = *map, |
|
.input = input, |
|
.output = output, |
|
.size_input = size_input, |
|
.size_output_I = size_I, |
|
.size_output_PT = size_PT, |
|
.src = gamut_from_colorspace(map->src), |
|
.dst = gamut_from_colorspace(map->dst), |
|
}; |
|
|
|
switch (ctx.map.intent) { |
|
case SWS_INTENT_PERCEPTUAL: ctx.adapt_colors = perceptual; break; |
|
case SWS_INTENT_RELATIVE_COLORIMETRIC: ctx.adapt_colors = relative; break; |
|
case SWS_INTENT_SATURATION: ctx.adapt_colors = saturation; break; |
|
case SWS_INTENT_ABSOLUTE_COLORIMETRIC: ctx.adapt_colors = absolute; break; |
|
default: return AVERROR(EINVAL); |
|
} |
|
|
|
if (!output) { |
|
/* Tone mapping is handled in a separate step when using dynamic TM */ |
|
tone_map_setup(&ctx, false); |
|
} |
|
|
|
/* Intermediate color space after tone mapping */ |
|
ctx.tmp = ctx.src; |
|
ctx.tmp.Lb = ctx.dst.Lb; |
|
ctx.tmp.Lw = ctx.dst.Lw; |
|
ctx.tmp.Imin = ctx.dst.Imin; |
|
ctx.tmp.Imax = ctx.dst.Imax; |
|
|
|
if (ctx.map.intent == SWS_INTENT_ABSOLUTE_COLORIMETRIC) { |
|
/** |
|
* The IPT transform already implies an explicit white point adaptation |
|
* from src to dst, so to get absolute colorimetric semantics we have |
|
* to explicitly undo this adaptation with a * corresponding inverse. |
|
*/ |
|
ctx.adaptation = ff_sws_get_adaptation(&ctx.map.dst.gamut, |
|
ctx.dst.wp, ctx.src.wp); |
|
} |
|
|
|
ret = avpriv_slicethread_create(&slicethread, &ctx, generate_slice, NULL, 0); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ctx.slice_size = (ctx.size_input + ret - 1) / ret; |
|
num_slices = (ctx.size_input + ctx.slice_size - 1) / ctx.slice_size; |
|
avpriv_slicethread_execute(slicethread, num_slices, 0); |
|
avpriv_slicethread_free(&slicethread); |
|
return 0; |
|
} |
|
|
|
void sws_tone_map_generate(v2u16_t *lut, int size, const SwsColorMap *map) |
|
{ |
|
CmsCtx ctx = { |
|
.map = *map, |
|
.src = gamut_from_colorspace(map->src), |
|
.dst = gamut_from_colorspace(map->dst), |
|
}; |
|
|
|
const float src_scale = (ctx.src.Imax - ctx.src.Imin) / (size - 1); |
|
const float src_offset = ctx.src.Imin; |
|
const float dst_scale = 1.0f / (ctx.dst.Imax - ctx.dst.Imin); |
|
const float dst_offset = -ctx.dst.Imin * dst_scale; |
|
|
|
tone_map_setup(&ctx, true); |
|
|
|
for (int i = 0; i < size; i++) { |
|
const float I = src_scale * i + src_offset; |
|
IPT ipt = tone_map_apply(&ctx, (IPT) { I, 1.0f }); |
|
lut[i] = (v2u16_t) { |
|
av_round16f(dst_scale * ipt.I + dst_offset), |
|
av_clip_uint16(ipt.P * (1 << 15) + 0.5f), |
|
}; |
|
} |
|
}
|
|
|