mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1344 lines
42 KiB
1344 lines
42 KiB
/* |
|
* WMA compatible decoder |
|
* Copyright (c) 2002 The FFmpeg Project. |
|
* |
|
* This library is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2 of the License, or (at your option) any later version. |
|
* |
|
* This library is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with this library; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file wmadec.c |
|
* WMA compatible decoder. |
|
* This decoder handles Microsoft Windows Media Audio data, versions 1 & 2. |
|
* WMA v1 is identified by audio format 0x160 in Microsoft media files |
|
* (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161. |
|
* |
|
* To use this decoder, a calling application must supply the extra data |
|
* bytes provided with the WMA data. These are the extra, codec-specific |
|
* bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes |
|
* to the decoder using the extradata[_size] fields in AVCodecContext. There |
|
* should be 4 extra bytes for v1 data and 6 extra bytes for v2 data. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "bitstream.h" |
|
#include "dsputil.h" |
|
|
|
/* size of blocks */ |
|
#define BLOCK_MIN_BITS 7 |
|
#define BLOCK_MAX_BITS 11 |
|
#define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS) |
|
|
|
#define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) |
|
|
|
/* XXX: find exact max size */ |
|
#define HIGH_BAND_MAX_SIZE 16 |
|
|
|
#define NB_LSP_COEFS 10 |
|
|
|
/* XXX: is it a suitable value ? */ |
|
#define MAX_CODED_SUPERFRAME_SIZE 16384 |
|
|
|
#define MAX_CHANNELS 2 |
|
|
|
#define NOISE_TAB_SIZE 8192 |
|
|
|
#define LSP_POW_BITS 7 |
|
|
|
#define VLCBITS 9 |
|
#define VLCMAX ((22+VLCBITS-1)/VLCBITS) |
|
|
|
#define EXPVLCBITS 8 |
|
#define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS) |
|
|
|
#define HGAINVLCBITS 9 |
|
#define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS) |
|
|
|
typedef struct WMADecodeContext { |
|
GetBitContext gb; |
|
int sample_rate; |
|
int nb_channels; |
|
int bit_rate; |
|
int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */ |
|
int block_align; |
|
int use_bit_reservoir; |
|
int use_variable_block_len; |
|
int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */ |
|
int use_noise_coding; /* true if perceptual noise is added */ |
|
int byte_offset_bits; |
|
VLC exp_vlc; |
|
int exponent_sizes[BLOCK_NB_SIZES]; |
|
uint16_t exponent_bands[BLOCK_NB_SIZES][25]; |
|
int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */ |
|
int coefs_start; /* first coded coef */ |
|
int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */ |
|
int exponent_high_sizes[BLOCK_NB_SIZES]; |
|
int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE]; |
|
VLC hgain_vlc; |
|
|
|
/* coded values in high bands */ |
|
int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE]; |
|
int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE]; |
|
|
|
/* there are two possible tables for spectral coefficients */ |
|
VLC coef_vlc[2]; |
|
uint16_t *run_table[2]; |
|
uint16_t *level_table[2]; |
|
/* frame info */ |
|
int frame_len; /* frame length in samples */ |
|
int frame_len_bits; /* frame_len = 1 << frame_len_bits */ |
|
int nb_block_sizes; /* number of block sizes */ |
|
/* block info */ |
|
int reset_block_lengths; |
|
int block_len_bits; /* log2 of current block length */ |
|
int next_block_len_bits; /* log2 of next block length */ |
|
int prev_block_len_bits; /* log2 of prev block length */ |
|
int block_len; /* block length in samples */ |
|
int block_num; /* block number in current frame */ |
|
int block_pos; /* current position in frame */ |
|
uint8_t ms_stereo; /* true if mid/side stereo mode */ |
|
uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */ |
|
DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]); |
|
float max_exponent[MAX_CHANNELS]; |
|
int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE]; |
|
DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]); |
|
MDCTContext mdct_ctx[BLOCK_NB_SIZES]; |
|
float *windows[BLOCK_NB_SIZES]; |
|
DECLARE_ALIGNED_16(FFTSample, mdct_tmp[BLOCK_MAX_SIZE]); /* temporary storage for imdct */ |
|
/* output buffer for one frame and the last for IMDCT windowing */ |
|
DECLARE_ALIGNED_16(float, frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2]); |
|
/* last frame info */ |
|
uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */ |
|
int last_bitoffset; |
|
int last_superframe_len; |
|
float noise_table[NOISE_TAB_SIZE]; |
|
int noise_index; |
|
float noise_mult; /* XXX: suppress that and integrate it in the noise array */ |
|
/* lsp_to_curve tables */ |
|
float lsp_cos_table[BLOCK_MAX_SIZE]; |
|
float lsp_pow_e_table[256]; |
|
float lsp_pow_m_table1[(1 << LSP_POW_BITS)]; |
|
float lsp_pow_m_table2[(1 << LSP_POW_BITS)]; |
|
|
|
#ifdef TRACE |
|
int frame_count; |
|
#endif |
|
} WMADecodeContext; |
|
|
|
typedef struct CoefVLCTable { |
|
int n; /* total number of codes */ |
|
const uint32_t *huffcodes; /* VLC bit values */ |
|
const uint8_t *huffbits; /* VLC bit size */ |
|
const uint16_t *levels; /* table to build run/level tables */ |
|
} CoefVLCTable; |
|
|
|
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len); |
|
|
|
#include "wmadata.h" |
|
|
|
#ifdef TRACE |
|
static void dump_shorts(const char *name, const short *tab, int n) |
|
{ |
|
int i; |
|
|
|
tprintf("%s[%d]:\n", name, n); |
|
for(i=0;i<n;i++) { |
|
if ((i & 7) == 0) |
|
tprintf("%4d: ", i); |
|
tprintf(" %5d.0", tab[i]); |
|
if ((i & 7) == 7) |
|
tprintf("\n"); |
|
} |
|
} |
|
|
|
static void dump_floats(const char *name, int prec, const float *tab, int n) |
|
{ |
|
int i; |
|
|
|
tprintf("%s[%d]:\n", name, n); |
|
for(i=0;i<n;i++) { |
|
if ((i & 7) == 0) |
|
tprintf("%4d: ", i); |
|
tprintf(" %8.*f", prec, tab[i]); |
|
if ((i & 7) == 7) |
|
tprintf("\n"); |
|
} |
|
if ((i & 7) != 0) |
|
tprintf("\n"); |
|
} |
|
#endif |
|
|
|
/* XXX: use same run/length optimization as mpeg decoders */ |
|
static void init_coef_vlc(VLC *vlc, |
|
uint16_t **prun_table, uint16_t **plevel_table, |
|
const CoefVLCTable *vlc_table) |
|
{ |
|
int n = vlc_table->n; |
|
const uint8_t *table_bits = vlc_table->huffbits; |
|
const uint32_t *table_codes = vlc_table->huffcodes; |
|
const uint16_t *levels_table = vlc_table->levels; |
|
uint16_t *run_table, *level_table; |
|
const uint16_t *p; |
|
int i, l, j, level; |
|
|
|
init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0); |
|
|
|
run_table = av_malloc(n * sizeof(uint16_t)); |
|
level_table = av_malloc(n * sizeof(uint16_t)); |
|
p = levels_table; |
|
i = 2; |
|
level = 1; |
|
while (i < n) { |
|
l = *p++; |
|
for(j=0;j<l;j++) { |
|
run_table[i] = j; |
|
level_table[i] = level; |
|
i++; |
|
} |
|
level++; |
|
} |
|
*prun_table = run_table; |
|
*plevel_table = level_table; |
|
} |
|
|
|
static int wma_decode_init(AVCodecContext * avctx) |
|
{ |
|
WMADecodeContext *s = avctx->priv_data; |
|
int i, flags1, flags2; |
|
float *window; |
|
uint8_t *extradata; |
|
float bps1, high_freq; |
|
volatile float bps; |
|
int sample_rate1; |
|
int coef_vlc_table; |
|
|
|
s->sample_rate = avctx->sample_rate; |
|
s->nb_channels = avctx->channels; |
|
s->bit_rate = avctx->bit_rate; |
|
s->block_align = avctx->block_align; |
|
|
|
if (avctx->codec->id == CODEC_ID_WMAV1) { |
|
s->version = 1; |
|
} else { |
|
s->version = 2; |
|
} |
|
|
|
/* extract flag infos */ |
|
flags1 = 0; |
|
flags2 = 0; |
|
extradata = avctx->extradata; |
|
if (s->version == 1 && avctx->extradata_size >= 4) { |
|
flags1 = extradata[0] | (extradata[1] << 8); |
|
flags2 = extradata[2] | (extradata[3] << 8); |
|
} else if (s->version == 2 && avctx->extradata_size >= 6) { |
|
flags1 = extradata[0] | (extradata[1] << 8) | |
|
(extradata[2] << 16) | (extradata[3] << 24); |
|
flags2 = extradata[4] | (extradata[5] << 8); |
|
} |
|
s->use_exp_vlc = flags2 & 0x0001; |
|
s->use_bit_reservoir = flags2 & 0x0002; |
|
s->use_variable_block_len = flags2 & 0x0004; |
|
|
|
/* compute MDCT block size */ |
|
if (s->sample_rate <= 16000) { |
|
s->frame_len_bits = 9; |
|
} else if (s->sample_rate <= 22050 || |
|
(s->sample_rate <= 32000 && s->version == 1)) { |
|
s->frame_len_bits = 10; |
|
} else { |
|
s->frame_len_bits = 11; |
|
} |
|
s->frame_len = 1 << s->frame_len_bits; |
|
if (s->use_variable_block_len) { |
|
int nb_max, nb; |
|
nb = ((flags2 >> 3) & 3) + 1; |
|
if ((s->bit_rate / s->nb_channels) >= 32000) |
|
nb += 2; |
|
nb_max = s->frame_len_bits - BLOCK_MIN_BITS; |
|
if (nb > nb_max) |
|
nb = nb_max; |
|
s->nb_block_sizes = nb + 1; |
|
} else { |
|
s->nb_block_sizes = 1; |
|
} |
|
|
|
/* init rate dependant parameters */ |
|
s->use_noise_coding = 1; |
|
high_freq = s->sample_rate * 0.5; |
|
|
|
/* if version 2, then the rates are normalized */ |
|
sample_rate1 = s->sample_rate; |
|
if (s->version == 2) { |
|
if (sample_rate1 >= 44100) |
|
sample_rate1 = 44100; |
|
else if (sample_rate1 >= 22050) |
|
sample_rate1 = 22050; |
|
else if (sample_rate1 >= 16000) |
|
sample_rate1 = 16000; |
|
else if (sample_rate1 >= 11025) |
|
sample_rate1 = 11025; |
|
else if (sample_rate1 >= 8000) |
|
sample_rate1 = 8000; |
|
} |
|
|
|
bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate); |
|
s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2; |
|
|
|
/* compute high frequency value and choose if noise coding should |
|
be activated */ |
|
bps1 = bps; |
|
if (s->nb_channels == 2) |
|
bps1 = bps * 1.6; |
|
if (sample_rate1 == 44100) { |
|
if (bps1 >= 0.61) |
|
s->use_noise_coding = 0; |
|
else |
|
high_freq = high_freq * 0.4; |
|
} else if (sample_rate1 == 22050) { |
|
if (bps1 >= 1.16) |
|
s->use_noise_coding = 0; |
|
else if (bps1 >= 0.72) |
|
high_freq = high_freq * 0.7; |
|
else |
|
high_freq = high_freq * 0.6; |
|
} else if (sample_rate1 == 16000) { |
|
if (bps > 0.5) |
|
high_freq = high_freq * 0.5; |
|
else |
|
high_freq = high_freq * 0.3; |
|
} else if (sample_rate1 == 11025) { |
|
high_freq = high_freq * 0.7; |
|
} else if (sample_rate1 == 8000) { |
|
if (bps <= 0.625) { |
|
high_freq = high_freq * 0.5; |
|
} else if (bps > 0.75) { |
|
s->use_noise_coding = 0; |
|
} else { |
|
high_freq = high_freq * 0.65; |
|
} |
|
} else { |
|
if (bps >= 0.8) { |
|
high_freq = high_freq * 0.75; |
|
} else if (bps >= 0.6) { |
|
high_freq = high_freq * 0.6; |
|
} else { |
|
high_freq = high_freq * 0.5; |
|
} |
|
} |
|
dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2); |
|
dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n", |
|
s->version, s->nb_channels, s->sample_rate, s->bit_rate, |
|
s->block_align); |
|
dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n", |
|
bps, bps1, high_freq, s->byte_offset_bits); |
|
dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n", |
|
s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes); |
|
|
|
/* compute the scale factor band sizes for each MDCT block size */ |
|
{ |
|
int a, b, pos, lpos, k, block_len, i, j, n; |
|
const uint8_t *table; |
|
|
|
if (s->version == 1) { |
|
s->coefs_start = 3; |
|
} else { |
|
s->coefs_start = 0; |
|
} |
|
for(k = 0; k < s->nb_block_sizes; k++) { |
|
block_len = s->frame_len >> k; |
|
|
|
if (s->version == 1) { |
|
lpos = 0; |
|
for(i=0;i<25;i++) { |
|
a = wma_critical_freqs[i]; |
|
b = s->sample_rate; |
|
pos = ((block_len * 2 * a) + (b >> 1)) / b; |
|
if (pos > block_len) |
|
pos = block_len; |
|
s->exponent_bands[0][i] = pos - lpos; |
|
if (pos >= block_len) { |
|
i++; |
|
break; |
|
} |
|
lpos = pos; |
|
} |
|
s->exponent_sizes[0] = i; |
|
} else { |
|
/* hardcoded tables */ |
|
table = NULL; |
|
a = s->frame_len_bits - BLOCK_MIN_BITS - k; |
|
if (a < 3) { |
|
if (s->sample_rate >= 44100) |
|
table = exponent_band_44100[a]; |
|
else if (s->sample_rate >= 32000) |
|
table = exponent_band_32000[a]; |
|
else if (s->sample_rate >= 22050) |
|
table = exponent_band_22050[a]; |
|
} |
|
if (table) { |
|
n = *table++; |
|
for(i=0;i<n;i++) |
|
s->exponent_bands[k][i] = table[i]; |
|
s->exponent_sizes[k] = n; |
|
} else { |
|
j = 0; |
|
lpos = 0; |
|
for(i=0;i<25;i++) { |
|
a = wma_critical_freqs[i]; |
|
b = s->sample_rate; |
|
pos = ((block_len * 2 * a) + (b << 1)) / (4 * b); |
|
pos <<= 2; |
|
if (pos > block_len) |
|
pos = block_len; |
|
if (pos > lpos) |
|
s->exponent_bands[k][j++] = pos - lpos; |
|
if (pos >= block_len) |
|
break; |
|
lpos = pos; |
|
} |
|
s->exponent_sizes[k] = j; |
|
} |
|
} |
|
|
|
/* max number of coefs */ |
|
s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k; |
|
/* high freq computation */ |
|
s->high_band_start[k] = (int)((block_len * 2 * high_freq) / |
|
s->sample_rate + 0.5); |
|
n = s->exponent_sizes[k]; |
|
j = 0; |
|
pos = 0; |
|
for(i=0;i<n;i++) { |
|
int start, end; |
|
start = pos; |
|
pos += s->exponent_bands[k][i]; |
|
end = pos; |
|
if (start < s->high_band_start[k]) |
|
start = s->high_band_start[k]; |
|
if (end > s->coefs_end[k]) |
|
end = s->coefs_end[k]; |
|
if (end > start) |
|
s->exponent_high_bands[k][j++] = end - start; |
|
} |
|
s->exponent_high_sizes[k] = j; |
|
#if 0 |
|
tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ", |
|
s->frame_len >> k, |
|
s->coefs_end[k], |
|
s->high_band_start[k], |
|
s->exponent_high_sizes[k]); |
|
for(j=0;j<s->exponent_high_sizes[k];j++) |
|
tprintf(" %d", s->exponent_high_bands[k][j]); |
|
tprintf("\n"); |
|
#endif |
|
} |
|
} |
|
|
|
#ifdef TRACE |
|
{ |
|
int i, j; |
|
for(i = 0; i < s->nb_block_sizes; i++) { |
|
tprintf("%5d: n=%2d:", |
|
s->frame_len >> i, |
|
s->exponent_sizes[i]); |
|
for(j=0;j<s->exponent_sizes[i];j++) |
|
tprintf(" %d", s->exponent_bands[i][j]); |
|
tprintf("\n"); |
|
} |
|
} |
|
#endif |
|
|
|
/* init MDCT */ |
|
for(i = 0; i < s->nb_block_sizes; i++) |
|
ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1); |
|
|
|
/* init MDCT windows : simple sinus window */ |
|
for(i = 0; i < s->nb_block_sizes; i++) { |
|
int n, j; |
|
float alpha; |
|
n = 1 << (s->frame_len_bits - i); |
|
window = av_malloc(sizeof(float) * n); |
|
alpha = M_PI / (2.0 * n); |
|
for(j=0;j<n;j++) { |
|
window[n - j - 1] = sin((j + 0.5) * alpha); |
|
} |
|
s->windows[i] = window; |
|
} |
|
|
|
s->reset_block_lengths = 1; |
|
|
|
if (s->use_noise_coding) { |
|
|
|
/* init the noise generator */ |
|
if (s->use_exp_vlc) |
|
s->noise_mult = 0.02; |
|
else |
|
s->noise_mult = 0.04; |
|
|
|
#ifdef TRACE |
|
for(i=0;i<NOISE_TAB_SIZE;i++) |
|
s->noise_table[i] = 1.0 * s->noise_mult; |
|
#else |
|
{ |
|
unsigned int seed; |
|
float norm; |
|
seed = 1; |
|
norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult; |
|
for(i=0;i<NOISE_TAB_SIZE;i++) { |
|
seed = seed * 314159 + 1; |
|
s->noise_table[i] = (float)((int)seed) * norm; |
|
} |
|
} |
|
#endif |
|
init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits), |
|
hgain_huffbits, 1, 1, |
|
hgain_huffcodes, 2, 2, 0); |
|
} |
|
|
|
if (s->use_exp_vlc) { |
|
init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits), |
|
scale_huffbits, 1, 1, |
|
scale_huffcodes, 4, 4, 0); |
|
} else { |
|
wma_lsp_to_curve_init(s, s->frame_len); |
|
} |
|
|
|
/* choose the VLC tables for the coefficients */ |
|
coef_vlc_table = 2; |
|
if (s->sample_rate >= 32000) { |
|
if (bps1 < 0.72) |
|
coef_vlc_table = 0; |
|
else if (bps1 < 1.16) |
|
coef_vlc_table = 1; |
|
} |
|
|
|
init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], |
|
&coef_vlcs[coef_vlc_table * 2]); |
|
init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], |
|
&coef_vlcs[coef_vlc_table * 2 + 1]); |
|
return 0; |
|
} |
|
|
|
/* interpolate values for a bigger or smaller block. The block must |
|
have multiple sizes */ |
|
static void interpolate_array(float *scale, int old_size, int new_size) |
|
{ |
|
int i, j, jincr, k; |
|
float v; |
|
|
|
if (new_size > old_size) { |
|
jincr = new_size / old_size; |
|
j = new_size; |
|
for(i = old_size - 1; i >=0; i--) { |
|
v = scale[i]; |
|
k = jincr; |
|
do { |
|
scale[--j] = v; |
|
} while (--k); |
|
} |
|
} else if (new_size < old_size) { |
|
j = 0; |
|
jincr = old_size / new_size; |
|
for(i = 0; i < new_size; i++) { |
|
scale[i] = scale[j]; |
|
j += jincr; |
|
} |
|
} |
|
} |
|
|
|
/* compute x^-0.25 with an exponent and mantissa table. We use linear |
|
interpolation to reduce the mantissa table size at a small speed |
|
expense (linear interpolation approximately doubles the number of |
|
bits of precision). */ |
|
static inline float pow_m1_4(WMADecodeContext *s, float x) |
|
{ |
|
union { |
|
float f; |
|
unsigned int v; |
|
} u, t; |
|
unsigned int e, m; |
|
float a, b; |
|
|
|
u.f = x; |
|
e = u.v >> 23; |
|
m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1); |
|
/* build interpolation scale: 1 <= t < 2. */ |
|
t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23); |
|
a = s->lsp_pow_m_table1[m]; |
|
b = s->lsp_pow_m_table2[m]; |
|
return s->lsp_pow_e_table[e] * (a + b * t.f); |
|
} |
|
|
|
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len) |
|
{ |
|
float wdel, a, b; |
|
int i, e, m; |
|
|
|
wdel = M_PI / frame_len; |
|
for(i=0;i<frame_len;i++) |
|
s->lsp_cos_table[i] = 2.0f * cos(wdel * i); |
|
|
|
/* tables for x^-0.25 computation */ |
|
for(i=0;i<256;i++) { |
|
e = i - 126; |
|
s->lsp_pow_e_table[i] = pow(2.0, e * -0.25); |
|
} |
|
|
|
/* NOTE: these two tables are needed to avoid two operations in |
|
pow_m1_4 */ |
|
b = 1.0; |
|
for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) { |
|
m = (1 << LSP_POW_BITS) + i; |
|
a = (float)m * (0.5 / (1 << LSP_POW_BITS)); |
|
a = pow(a, -0.25); |
|
s->lsp_pow_m_table1[i] = 2 * a - b; |
|
s->lsp_pow_m_table2[i] = b - a; |
|
b = a; |
|
} |
|
#if 0 |
|
for(i=1;i<20;i++) { |
|
float v, r1, r2; |
|
v = 5.0 / i; |
|
r1 = pow_m1_4(s, v); |
|
r2 = pow(v,-0.25); |
|
printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1); |
|
} |
|
#endif |
|
} |
|
|
|
/* NOTE: We use the same code as Vorbis here */ |
|
/* XXX: optimize it further with SSE/3Dnow */ |
|
static void wma_lsp_to_curve(WMADecodeContext *s, |
|
float *out, float *val_max_ptr, |
|
int n, float *lsp) |
|
{ |
|
int i, j; |
|
float p, q, w, v, val_max; |
|
|
|
val_max = 0; |
|
for(i=0;i<n;i++) { |
|
p = 0.5f; |
|
q = 0.5f; |
|
w = s->lsp_cos_table[i]; |
|
for(j=1;j<NB_LSP_COEFS;j+=2){ |
|
q *= w - lsp[j - 1]; |
|
p *= w - lsp[j]; |
|
} |
|
p *= p * (2.0f - w); |
|
q *= q * (2.0f + w); |
|
v = p + q; |
|
v = pow_m1_4(s, v); |
|
if (v > val_max) |
|
val_max = v; |
|
out[i] = v; |
|
} |
|
*val_max_ptr = val_max; |
|
} |
|
|
|
/* decode exponents coded with LSP coefficients (same idea as Vorbis) */ |
|
static void decode_exp_lsp(WMADecodeContext *s, int ch) |
|
{ |
|
float lsp_coefs[NB_LSP_COEFS]; |
|
int val, i; |
|
|
|
for(i = 0; i < NB_LSP_COEFS; i++) { |
|
if (i == 0 || i >= 8) |
|
val = get_bits(&s->gb, 3); |
|
else |
|
val = get_bits(&s->gb, 4); |
|
lsp_coefs[i] = lsp_codebook[i][val]; |
|
} |
|
|
|
wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch], |
|
s->block_len, lsp_coefs); |
|
} |
|
|
|
/* decode exponents coded with VLC codes */ |
|
static int decode_exp_vlc(WMADecodeContext *s, int ch) |
|
{ |
|
int last_exp, n, code; |
|
const uint16_t *ptr, *band_ptr; |
|
float v, *q, max_scale, *q_end; |
|
|
|
band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits]; |
|
ptr = band_ptr; |
|
q = s->exponents[ch]; |
|
q_end = q + s->block_len; |
|
max_scale = 0; |
|
if (s->version == 1) { |
|
last_exp = get_bits(&s->gb, 5) + 10; |
|
/* XXX: use a table */ |
|
v = pow(10, last_exp * (1.0 / 16.0)); |
|
max_scale = v; |
|
n = *ptr++; |
|
do { |
|
*q++ = v; |
|
} while (--n); |
|
} |
|
last_exp = 36; |
|
while (q < q_end) { |
|
code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX); |
|
if (code < 0) |
|
return -1; |
|
/* NOTE: this offset is the same as MPEG4 AAC ! */ |
|
last_exp += code - 60; |
|
/* XXX: use a table */ |
|
v = pow(10, last_exp * (1.0 / 16.0)); |
|
if (v > max_scale) |
|
max_scale = v; |
|
n = *ptr++; |
|
do { |
|
*q++ = v; |
|
} while (--n); |
|
} |
|
s->max_exponent[ch] = max_scale; |
|
return 0; |
|
} |
|
|
|
/* return 0 if OK. return 1 if last block of frame. return -1 if |
|
unrecorrable error. */ |
|
static int wma_decode_block(WMADecodeContext *s) |
|
{ |
|
int n, v, a, ch, code, bsize; |
|
int coef_nb_bits, total_gain, parse_exponents; |
|
float window[BLOCK_MAX_SIZE * 2]; |
|
// XXX: FIXME!! there's a bug somewhere which makes this mandatory under altivec |
|
#ifdef HAVE_ALTIVEC |
|
volatile int nb_coefs[MAX_CHANNELS] __attribute__((aligned(16))); |
|
#else |
|
int nb_coefs[MAX_CHANNELS]; |
|
#endif |
|
float mdct_norm; |
|
|
|
#ifdef TRACE |
|
tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num); |
|
#endif |
|
|
|
/* compute current block length */ |
|
if (s->use_variable_block_len) { |
|
n = av_log2(s->nb_block_sizes - 1) + 1; |
|
|
|
if (s->reset_block_lengths) { |
|
s->reset_block_lengths = 0; |
|
v = get_bits(&s->gb, n); |
|
if (v >= s->nb_block_sizes) |
|
return -1; |
|
s->prev_block_len_bits = s->frame_len_bits - v; |
|
v = get_bits(&s->gb, n); |
|
if (v >= s->nb_block_sizes) |
|
return -1; |
|
s->block_len_bits = s->frame_len_bits - v; |
|
} else { |
|
/* update block lengths */ |
|
s->prev_block_len_bits = s->block_len_bits; |
|
s->block_len_bits = s->next_block_len_bits; |
|
} |
|
v = get_bits(&s->gb, n); |
|
if (v >= s->nb_block_sizes) |
|
return -1; |
|
s->next_block_len_bits = s->frame_len_bits - v; |
|
} else { |
|
/* fixed block len */ |
|
s->next_block_len_bits = s->frame_len_bits; |
|
s->prev_block_len_bits = s->frame_len_bits; |
|
s->block_len_bits = s->frame_len_bits; |
|
} |
|
|
|
/* now check if the block length is coherent with the frame length */ |
|
s->block_len = 1 << s->block_len_bits; |
|
if ((s->block_pos + s->block_len) > s->frame_len) |
|
return -1; |
|
|
|
if (s->nb_channels == 2) { |
|
s->ms_stereo = get_bits(&s->gb, 1); |
|
} |
|
v = 0; |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
a = get_bits(&s->gb, 1); |
|
s->channel_coded[ch] = a; |
|
v |= a; |
|
} |
|
/* if no channel coded, no need to go further */ |
|
/* XXX: fix potential framing problems */ |
|
if (!v) |
|
goto next; |
|
|
|
bsize = s->frame_len_bits - s->block_len_bits; |
|
|
|
/* read total gain and extract corresponding number of bits for |
|
coef escape coding */ |
|
total_gain = 1; |
|
for(;;) { |
|
a = get_bits(&s->gb, 7); |
|
total_gain += a; |
|
if (a != 127) |
|
break; |
|
} |
|
|
|
if (total_gain < 15) |
|
coef_nb_bits = 13; |
|
else if (total_gain < 32) |
|
coef_nb_bits = 12; |
|
else if (total_gain < 40) |
|
coef_nb_bits = 11; |
|
else if (total_gain < 45) |
|
coef_nb_bits = 10; |
|
else |
|
coef_nb_bits = 9; |
|
|
|
/* compute number of coefficients */ |
|
n = s->coefs_end[bsize] - s->coefs_start; |
|
for(ch = 0; ch < s->nb_channels; ch++) |
|
nb_coefs[ch] = n; |
|
|
|
/* complex coding */ |
|
if (s->use_noise_coding) { |
|
|
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
int i, n, a; |
|
n = s->exponent_high_sizes[bsize]; |
|
for(i=0;i<n;i++) { |
|
a = get_bits(&s->gb, 1); |
|
s->high_band_coded[ch][i] = a; |
|
/* if noise coding, the coefficients are not transmitted */ |
|
if (a) |
|
nb_coefs[ch] -= s->exponent_high_bands[bsize][i]; |
|
} |
|
} |
|
} |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
int i, n, val, code; |
|
|
|
n = s->exponent_high_sizes[bsize]; |
|
val = (int)0x80000000; |
|
for(i=0;i<n;i++) { |
|
if (s->high_band_coded[ch][i]) { |
|
if (val == (int)0x80000000) { |
|
val = get_bits(&s->gb, 7) - 19; |
|
} else { |
|
code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX); |
|
if (code < 0) |
|
return -1; |
|
val += code - 18; |
|
} |
|
s->high_band_values[ch][i] = val; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* exposant can be interpolated in short blocks. */ |
|
parse_exponents = 1; |
|
if (s->block_len_bits != s->frame_len_bits) { |
|
parse_exponents = get_bits(&s->gb, 1); |
|
} |
|
|
|
if (parse_exponents) { |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
if (s->use_exp_vlc) { |
|
if (decode_exp_vlc(s, ch) < 0) |
|
return -1; |
|
} else { |
|
decode_exp_lsp(s, ch); |
|
} |
|
} |
|
} |
|
} else { |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits, |
|
s->block_len); |
|
} |
|
} |
|
} |
|
|
|
/* parse spectral coefficients : just RLE encoding */ |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
VLC *coef_vlc; |
|
int level, run, sign, tindex; |
|
int16_t *ptr, *eptr; |
|
const int16_t *level_table, *run_table; |
|
|
|
/* special VLC tables are used for ms stereo because |
|
there is potentially less energy there */ |
|
tindex = (ch == 1 && s->ms_stereo); |
|
coef_vlc = &s->coef_vlc[tindex]; |
|
run_table = s->run_table[tindex]; |
|
level_table = s->level_table[tindex]; |
|
/* XXX: optimize */ |
|
ptr = &s->coefs1[ch][0]; |
|
eptr = ptr + nb_coefs[ch]; |
|
memset(ptr, 0, s->block_len * sizeof(int16_t)); |
|
for(;;) { |
|
code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX); |
|
if (code < 0) |
|
return -1; |
|
if (code == 1) { |
|
/* EOB */ |
|
break; |
|
} else if (code == 0) { |
|
/* escape */ |
|
level = get_bits(&s->gb, coef_nb_bits); |
|
/* NOTE: this is rather suboptimal. reading |
|
block_len_bits would be better */ |
|
run = get_bits(&s->gb, s->frame_len_bits); |
|
} else { |
|
/* normal code */ |
|
run = run_table[code]; |
|
level = level_table[code]; |
|
} |
|
sign = get_bits(&s->gb, 1); |
|
if (!sign) |
|
level = -level; |
|
ptr += run; |
|
if (ptr >= eptr) |
|
return -1; |
|
*ptr++ = level; |
|
/* NOTE: EOB can be omitted */ |
|
if (ptr >= eptr) |
|
break; |
|
} |
|
} |
|
if (s->version == 1 && s->nb_channels >= 2) { |
|
align_get_bits(&s->gb); |
|
} |
|
} |
|
|
|
/* normalize */ |
|
{ |
|
int n4 = s->block_len / 2; |
|
mdct_norm = 1.0 / (float)n4; |
|
if (s->version == 1) { |
|
mdct_norm *= sqrt(n4); |
|
} |
|
} |
|
|
|
/* finally compute the MDCT coefficients */ |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
int16_t *coefs1; |
|
float *coefs, *exponents, mult, mult1, noise, *exp_ptr; |
|
int i, j, n, n1, last_high_band; |
|
float exp_power[HIGH_BAND_MAX_SIZE]; |
|
|
|
coefs1 = s->coefs1[ch]; |
|
exponents = s->exponents[ch]; |
|
mult = pow(10, total_gain * 0.05) / s->max_exponent[ch]; |
|
mult *= mdct_norm; |
|
coefs = s->coefs[ch]; |
|
if (s->use_noise_coding) { |
|
mult1 = mult; |
|
/* very low freqs : noise */ |
|
for(i = 0;i < s->coefs_start; i++) { |
|
*coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
} |
|
|
|
n1 = s->exponent_high_sizes[bsize]; |
|
|
|
/* compute power of high bands */ |
|
exp_ptr = exponents + |
|
s->high_band_start[bsize] - |
|
s->coefs_start; |
|
last_high_band = 0; /* avoid warning */ |
|
for(j=0;j<n1;j++) { |
|
n = s->exponent_high_bands[s->frame_len_bits - |
|
s->block_len_bits][j]; |
|
if (s->high_band_coded[ch][j]) { |
|
float e2, v; |
|
e2 = 0; |
|
for(i = 0;i < n; i++) { |
|
v = exp_ptr[i]; |
|
e2 += v * v; |
|
} |
|
exp_power[j] = e2 / n; |
|
last_high_band = j; |
|
tprintf("%d: power=%f (%d)\n", j, exp_power[j], n); |
|
} |
|
exp_ptr += n; |
|
} |
|
|
|
/* main freqs and high freqs */ |
|
for(j=-1;j<n1;j++) { |
|
if (j < 0) { |
|
n = s->high_band_start[bsize] - |
|
s->coefs_start; |
|
} else { |
|
n = s->exponent_high_bands[s->frame_len_bits - |
|
s->block_len_bits][j]; |
|
} |
|
if (j >= 0 && s->high_band_coded[ch][j]) { |
|
/* use noise with specified power */ |
|
mult1 = sqrt(exp_power[j] / exp_power[last_high_band]); |
|
/* XXX: use a table */ |
|
mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05); |
|
mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult); |
|
mult1 *= mdct_norm; |
|
for(i = 0;i < n; i++) { |
|
noise = s->noise_table[s->noise_index]; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
*coefs++ = (*exponents++) * noise * mult1; |
|
} |
|
} else { |
|
/* coded values + small noise */ |
|
for(i = 0;i < n; i++) { |
|
noise = s->noise_table[s->noise_index]; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
*coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult; |
|
} |
|
} |
|
} |
|
|
|
/* very high freqs : noise */ |
|
n = s->block_len - s->coefs_end[bsize]; |
|
mult1 = mult * exponents[-1]; |
|
for(i = 0; i < n; i++) { |
|
*coefs++ = s->noise_table[s->noise_index] * mult1; |
|
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1); |
|
} |
|
} else { |
|
/* XXX: optimize more */ |
|
for(i = 0;i < s->coefs_start; i++) |
|
*coefs++ = 0.0; |
|
n = nb_coefs[ch]; |
|
for(i = 0;i < n; i++) { |
|
*coefs++ = coefs1[i] * exponents[i] * mult; |
|
} |
|
n = s->block_len - s->coefs_end[bsize]; |
|
for(i = 0;i < n; i++) |
|
*coefs++ = 0.0; |
|
} |
|
} |
|
} |
|
|
|
#ifdef TRACE |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
dump_floats("exponents", 3, s->exponents[ch], s->block_len); |
|
dump_floats("coefs", 1, s->coefs[ch], s->block_len); |
|
} |
|
} |
|
#endif |
|
|
|
if (s->ms_stereo && s->channel_coded[1]) { |
|
float a, b; |
|
int i; |
|
|
|
/* nominal case for ms stereo: we do it before mdct */ |
|
/* no need to optimize this case because it should almost |
|
never happen */ |
|
if (!s->channel_coded[0]) { |
|
tprintf("rare ms-stereo case happened\n"); |
|
memset(s->coefs[0], 0, sizeof(float) * s->block_len); |
|
s->channel_coded[0] = 1; |
|
} |
|
|
|
for(i = 0; i < s->block_len; i++) { |
|
a = s->coefs[0][i]; |
|
b = s->coefs[1][i]; |
|
s->coefs[0][i] = a + b; |
|
s->coefs[1][i] = a - b; |
|
} |
|
} |
|
|
|
/* build the window : we ensure that when the windows overlap |
|
their squared sum is always 1 (MDCT reconstruction rule) */ |
|
/* XXX: merge with output */ |
|
{ |
|
int i, next_block_len, block_len, prev_block_len, n; |
|
float *wptr; |
|
|
|
block_len = s->block_len; |
|
prev_block_len = 1 << s->prev_block_len_bits; |
|
next_block_len = 1 << s->next_block_len_bits; |
|
|
|
/* right part */ |
|
wptr = window + block_len; |
|
if (block_len <= next_block_len) { |
|
for(i=0;i<block_len;i++) |
|
*wptr++ = s->windows[bsize][i]; |
|
} else { |
|
/* overlap */ |
|
n = (block_len / 2) - (next_block_len / 2); |
|
for(i=0;i<n;i++) |
|
*wptr++ = 1.0; |
|
for(i=0;i<next_block_len;i++) |
|
*wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i]; |
|
for(i=0;i<n;i++) |
|
*wptr++ = 0.0; |
|
} |
|
|
|
/* left part */ |
|
wptr = window + block_len; |
|
if (block_len <= prev_block_len) { |
|
for(i=0;i<block_len;i++) |
|
*--wptr = s->windows[bsize][i]; |
|
} else { |
|
/* overlap */ |
|
n = (block_len / 2) - (prev_block_len / 2); |
|
for(i=0;i<n;i++) |
|
*--wptr = 1.0; |
|
for(i=0;i<prev_block_len;i++) |
|
*--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i]; |
|
for(i=0;i<n;i++) |
|
*--wptr = 0.0; |
|
} |
|
} |
|
|
|
|
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
if (s->channel_coded[ch]) { |
|
DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]); |
|
float *ptr; |
|
int i, n4, index, n; |
|
|
|
n = s->block_len; |
|
n4 = s->block_len / 2; |
|
ff_imdct_calc(&s->mdct_ctx[bsize], |
|
output, s->coefs[ch], s->mdct_tmp); |
|
|
|
/* XXX: optimize all that by build the window and |
|
multipying/adding at the same time */ |
|
/* multiply by the window */ |
|
for(i=0;i<n * 2;i++) { |
|
output[i] *= window[i]; |
|
} |
|
|
|
/* add in the frame */ |
|
index = (s->frame_len / 2) + s->block_pos - n4; |
|
ptr = &s->frame_out[ch][index]; |
|
for(i=0;i<n * 2;i++) { |
|
*ptr += output[i]; |
|
ptr++; |
|
} |
|
|
|
/* specific fast case for ms-stereo : add to second |
|
channel if it is not coded */ |
|
if (s->ms_stereo && !s->channel_coded[1]) { |
|
ptr = &s->frame_out[1][index]; |
|
for(i=0;i<n * 2;i++) { |
|
*ptr += output[i]; |
|
ptr++; |
|
} |
|
} |
|
} |
|
} |
|
next: |
|
/* update block number */ |
|
s->block_num++; |
|
s->block_pos += s->block_len; |
|
if (s->block_pos >= s->frame_len) |
|
return 1; |
|
else |
|
return 0; |
|
} |
|
|
|
/* decode a frame of frame_len samples */ |
|
static int wma_decode_frame(WMADecodeContext *s, int16_t *samples) |
|
{ |
|
int ret, i, n, a, ch, incr; |
|
int16_t *ptr; |
|
float *iptr; |
|
|
|
#ifdef TRACE |
|
tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len); |
|
#endif |
|
|
|
/* read each block */ |
|
s->block_num = 0; |
|
s->block_pos = 0; |
|
for(;;) { |
|
ret = wma_decode_block(s); |
|
if (ret < 0) |
|
return -1; |
|
if (ret) |
|
break; |
|
} |
|
|
|
/* convert frame to integer */ |
|
n = s->frame_len; |
|
incr = s->nb_channels; |
|
for(ch = 0; ch < s->nb_channels; ch++) { |
|
ptr = samples + ch; |
|
iptr = s->frame_out[ch]; |
|
|
|
for(i=0;i<n;i++) { |
|
a = lrintf(*iptr++); |
|
if (a > 32767) |
|
a = 32767; |
|
else if (a < -32768) |
|
a = -32768; |
|
*ptr = a; |
|
ptr += incr; |
|
} |
|
/* prepare for next block */ |
|
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len], |
|
s->frame_len * sizeof(float)); |
|
/* XXX: suppress this */ |
|
memset(&s->frame_out[ch][s->frame_len], 0, |
|
s->frame_len * sizeof(float)); |
|
} |
|
|
|
#ifdef TRACE |
|
dump_shorts("samples", samples, n * s->nb_channels); |
|
#endif |
|
return 0; |
|
} |
|
|
|
static int wma_decode_superframe(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
uint8_t *buf, int buf_size) |
|
{ |
|
WMADecodeContext *s = avctx->priv_data; |
|
int nb_frames, bit_offset, i, pos, len; |
|
uint8_t *q; |
|
int16_t *samples; |
|
|
|
tprintf("***decode_superframe:\n"); |
|
|
|
if(buf_size==0){ |
|
s->last_superframe_len = 0; |
|
return 0; |
|
} |
|
|
|
samples = data; |
|
|
|
init_get_bits(&s->gb, buf, buf_size*8); |
|
|
|
if (s->use_bit_reservoir) { |
|
/* read super frame header */ |
|
get_bits(&s->gb, 4); /* super frame index */ |
|
nb_frames = get_bits(&s->gb, 4) - 1; |
|
|
|
bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3); |
|
|
|
if (s->last_superframe_len > 0) { |
|
// printf("skip=%d\n", s->last_bitoffset); |
|
/* add bit_offset bits to last frame */ |
|
if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) > |
|
MAX_CODED_SUPERFRAME_SIZE) |
|
goto fail; |
|
q = s->last_superframe + s->last_superframe_len; |
|
len = bit_offset; |
|
while (len > 0) { |
|
*q++ = (get_bits)(&s->gb, 8); |
|
len -= 8; |
|
} |
|
if (len > 0) { |
|
*q++ = (get_bits)(&s->gb, len) << (8 - len); |
|
} |
|
|
|
/* XXX: bit_offset bits into last frame */ |
|
init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8); |
|
/* skip unused bits */ |
|
if (s->last_bitoffset > 0) |
|
skip_bits(&s->gb, s->last_bitoffset); |
|
/* this frame is stored in the last superframe and in the |
|
current one */ |
|
if (wma_decode_frame(s, samples) < 0) |
|
goto fail; |
|
samples += s->nb_channels * s->frame_len; |
|
} |
|
|
|
/* read each frame starting from bit_offset */ |
|
pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3; |
|
init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8); |
|
len = pos & 7; |
|
if (len > 0) |
|
skip_bits(&s->gb, len); |
|
|
|
s->reset_block_lengths = 1; |
|
for(i=0;i<nb_frames;i++) { |
|
if (wma_decode_frame(s, samples) < 0) |
|
goto fail; |
|
samples += s->nb_channels * s->frame_len; |
|
} |
|
|
|
/* we copy the end of the frame in the last frame buffer */ |
|
pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7); |
|
s->last_bitoffset = pos & 7; |
|
pos >>= 3; |
|
len = buf_size - pos; |
|
if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) { |
|
goto fail; |
|
} |
|
s->last_superframe_len = len; |
|
memcpy(s->last_superframe, buf + pos, len); |
|
} else { |
|
/* single frame decode */ |
|
if (wma_decode_frame(s, samples) < 0) |
|
goto fail; |
|
samples += s->nb_channels * s->frame_len; |
|
} |
|
*data_size = (int8_t *)samples - (int8_t *)data; |
|
return s->block_align; |
|
fail: |
|
/* when error, we reset the bit reservoir */ |
|
s->last_superframe_len = 0; |
|
return -1; |
|
} |
|
|
|
static int wma_decode_end(AVCodecContext *avctx) |
|
{ |
|
WMADecodeContext *s = avctx->priv_data; |
|
int i; |
|
|
|
for(i = 0; i < s->nb_block_sizes; i++) |
|
ff_mdct_end(&s->mdct_ctx[i]); |
|
for(i = 0; i < s->nb_block_sizes; i++) |
|
av_free(s->windows[i]); |
|
|
|
if (s->use_exp_vlc) { |
|
free_vlc(&s->exp_vlc); |
|
} |
|
if (s->use_noise_coding) { |
|
free_vlc(&s->hgain_vlc); |
|
} |
|
for(i = 0;i < 2; i++) { |
|
free_vlc(&s->coef_vlc[i]); |
|
av_free(s->run_table[i]); |
|
av_free(s->level_table[i]); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec wmav1_decoder = |
|
{ |
|
"wmav1", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_WMAV1, |
|
sizeof(WMADecodeContext), |
|
wma_decode_init, |
|
NULL, |
|
wma_decode_end, |
|
wma_decode_superframe, |
|
}; |
|
|
|
AVCodec wmav2_decoder = |
|
{ |
|
"wmav2", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_WMAV2, |
|
sizeof(WMADecodeContext), |
|
wma_decode_init, |
|
NULL, |
|
wma_decode_end, |
|
wma_decode_superframe, |
|
};
|
|
|