mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2291 lines
71 KiB
2291 lines
71 KiB
/* |
|
* MPEG Audio decoder |
|
* Copyright (c) 2001, 2002 Fabrice Bellard |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* MPEG Audio decoder. |
|
*/ |
|
|
|
#include "libavutil/audioconvert.h" |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
#include "mathops.h" |
|
#include "dct32.h" |
|
|
|
/* |
|
* TODO: |
|
* - test lsf / mpeg25 extensively. |
|
*/ |
|
|
|
#include "mpegaudio.h" |
|
#include "mpegaudiodecheader.h" |
|
|
|
#if CONFIG_FLOAT |
|
# define SHR(a,b) ((a)*(1.0f/(1<<(b)))) |
|
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) |
|
# define FIXR(x) ((float)(x)) |
|
# define FIXHR(x) ((float)(x)) |
|
# define MULH3(x, y, s) ((s)*(y)*(x)) |
|
# define MULLx(x, y, s) ((y)*(x)) |
|
# define RENAME(a) a ## _float |
|
# define OUT_FMT AV_SAMPLE_FMT_FLT |
|
#else |
|
# define SHR(a,b) ((a)>>(b)) |
|
/* WARNING: only correct for posititive numbers */ |
|
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) |
|
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) |
|
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) |
|
# define MULH3(x, y, s) MULH((s)*(x), y) |
|
# define MULLx(x, y, s) MULL(x,y,s) |
|
# define RENAME(a) a ## _fixed |
|
# define OUT_FMT AV_SAMPLE_FMT_S16 |
|
#endif |
|
|
|
/****************/ |
|
|
|
#define HEADER_SIZE 4 |
|
|
|
#include "mpegaudiodata.h" |
|
#include "mpegaudiodectab.h" |
|
|
|
static void RENAME(compute_antialias)(MPADecodeContext *s, GranuleDef *g); |
|
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window, |
|
int *dither_state, OUT_INT *samples, int incr); |
|
|
|
/* vlc structure for decoding layer 3 huffman tables */ |
|
static VLC huff_vlc[16]; |
|
static VLC_TYPE huff_vlc_tables[ |
|
0+128+128+128+130+128+154+166+ |
|
142+204+190+170+542+460+662+414 |
|
][2]; |
|
static const int huff_vlc_tables_sizes[16] = { |
|
0, 128, 128, 128, 130, 128, 154, 166, |
|
142, 204, 190, 170, 542, 460, 662, 414 |
|
}; |
|
static VLC huff_quad_vlc[2]; |
|
static VLC_TYPE huff_quad_vlc_tables[128+16][2]; |
|
static const int huff_quad_vlc_tables_sizes[2] = { |
|
128, 16 |
|
}; |
|
/* computed from band_size_long */ |
|
static uint16_t band_index_long[9][23]; |
|
#include "mpegaudio_tablegen.h" |
|
/* intensity stereo coef table */ |
|
static INTFLOAT is_table[2][16]; |
|
static INTFLOAT is_table_lsf[2][2][16]; |
|
static int32_t csa_table[8][4]; |
|
static float csa_table_float[8][4]; |
|
static INTFLOAT mdct_win[8][36]; |
|
|
|
static int16_t division_tab3[1<<6 ]; |
|
static int16_t division_tab5[1<<8 ]; |
|
static int16_t division_tab9[1<<11]; |
|
|
|
static int16_t * const division_tabs[4] = { |
|
division_tab3, division_tab5, NULL, division_tab9 |
|
}; |
|
|
|
/* lower 2 bits: modulo 3, higher bits: shift */ |
|
static uint16_t scale_factor_modshift[64]; |
|
/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */ |
|
static int32_t scale_factor_mult[15][3]; |
|
/* mult table for layer 2 group quantization */ |
|
|
|
#define SCALE_GEN(v) \ |
|
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } |
|
|
|
static const int32_t scale_factor_mult2[3][3] = { |
|
SCALE_GEN(4.0 / 3.0), /* 3 steps */ |
|
SCALE_GEN(4.0 / 5.0), /* 5 steps */ |
|
SCALE_GEN(4.0 / 9.0), /* 9 steps */ |
|
}; |
|
|
|
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; |
|
|
|
/** |
|
* Convert region offsets to region sizes and truncate |
|
* size to big_values. |
|
*/ |
|
static void ff_region_offset2size(GranuleDef *g){ |
|
int i, k, j=0; |
|
g->region_size[2] = (576 / 2); |
|
for(i=0;i<3;i++) { |
|
k = FFMIN(g->region_size[i], g->big_values); |
|
g->region_size[i] = k - j; |
|
j = k; |
|
} |
|
} |
|
|
|
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){ |
|
if (g->block_type == 2) |
|
g->region_size[0] = (36 / 2); |
|
else { |
|
if (s->sample_rate_index <= 2) |
|
g->region_size[0] = (36 / 2); |
|
else if (s->sample_rate_index != 8) |
|
g->region_size[0] = (54 / 2); |
|
else |
|
g->region_size[0] = (108 / 2); |
|
} |
|
g->region_size[1] = (576 / 2); |
|
} |
|
|
|
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){ |
|
int l; |
|
g->region_size[0] = |
|
band_index_long[s->sample_rate_index][ra1 + 1] >> 1; |
|
/* should not overflow */ |
|
l = FFMIN(ra1 + ra2 + 2, 22); |
|
g->region_size[1] = |
|
band_index_long[s->sample_rate_index][l] >> 1; |
|
} |
|
|
|
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){ |
|
if (g->block_type == 2) { |
|
if (g->switch_point) { |
|
/* if switched mode, we handle the 36 first samples as |
|
long blocks. For 8000Hz, we handle the 48 first |
|
exponents as long blocks (XXX: check this!) */ |
|
if (s->sample_rate_index <= 2) |
|
g->long_end = 8; |
|
else if (s->sample_rate_index != 8) |
|
g->long_end = 6; |
|
else |
|
g->long_end = 4; /* 8000 Hz */ |
|
|
|
g->short_start = 2 + (s->sample_rate_index != 8); |
|
} else { |
|
g->long_end = 0; |
|
g->short_start = 0; |
|
} |
|
} else { |
|
g->short_start = 13; |
|
g->long_end = 22; |
|
} |
|
} |
|
|
|
/* layer 1 unscaling */ |
|
/* n = number of bits of the mantissa minus 1 */ |
|
static inline int l1_unscale(int n, int mant, int scale_factor) |
|
{ |
|
int shift, mod; |
|
int64_t val; |
|
|
|
shift = scale_factor_modshift[scale_factor]; |
|
mod = shift & 3; |
|
shift >>= 2; |
|
val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); |
|
shift += n; |
|
/* NOTE: at this point, 1 <= shift >= 21 + 15 */ |
|
return (int)((val + (1LL << (shift - 1))) >> shift); |
|
} |
|
|
|
static inline int l2_unscale_group(int steps, int mant, int scale_factor) |
|
{ |
|
int shift, mod, val; |
|
|
|
shift = scale_factor_modshift[scale_factor]; |
|
mod = shift & 3; |
|
shift >>= 2; |
|
|
|
val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; |
|
/* NOTE: at this point, 0 <= shift <= 21 */ |
|
if (shift > 0) |
|
val = (val + (1 << (shift - 1))) >> shift; |
|
return val; |
|
} |
|
|
|
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */ |
|
static inline int l3_unscale(int value, int exponent) |
|
{ |
|
unsigned int m; |
|
int e; |
|
|
|
e = table_4_3_exp [4*value + (exponent&3)]; |
|
m = table_4_3_value[4*value + (exponent&3)]; |
|
e -= (exponent >> 2); |
|
assert(e>=1); |
|
if (e > 31) |
|
return 0; |
|
m = (m + (1 << (e-1))) >> e; |
|
|
|
return m; |
|
} |
|
|
|
/* all integer n^(4/3) computation code */ |
|
#define DEV_ORDER 13 |
|
|
|
#define POW_FRAC_BITS 24 |
|
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) |
|
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) |
|
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS) |
|
|
|
static int dev_4_3_coefs[DEV_ORDER]; |
|
|
|
static av_cold void int_pow_init(void) |
|
{ |
|
int i, a; |
|
|
|
a = POW_FIX(1.0); |
|
for(i=0;i<DEV_ORDER;i++) { |
|
a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1); |
|
dev_4_3_coefs[i] = a; |
|
} |
|
} |
|
|
|
static av_cold int decode_init(AVCodecContext * avctx) |
|
{ |
|
MPADecodeContext *s = avctx->priv_data; |
|
static int init=0; |
|
int i, j, k; |
|
|
|
s->avctx = avctx; |
|
s->apply_window_mp3 = apply_window_mp3_c; |
|
#if HAVE_MMX && CONFIG_FLOAT |
|
ff_mpegaudiodec_init_mmx(s); |
|
#endif |
|
#if CONFIG_FLOAT |
|
ff_dct_init(&s->dct, 5, DCT_II); |
|
#endif |
|
if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s); |
|
|
|
avctx->sample_fmt= OUT_FMT; |
|
s->error_recognition= avctx->error_recognition; |
|
|
|
if (!init && !avctx->parse_only) { |
|
int offset; |
|
|
|
/* scale factors table for layer 1/2 */ |
|
for(i=0;i<64;i++) { |
|
int shift, mod; |
|
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */ |
|
shift = (i / 3); |
|
mod = i % 3; |
|
scale_factor_modshift[i] = mod | (shift << 2); |
|
} |
|
|
|
/* scale factor multiply for layer 1 */ |
|
for(i=0;i<15;i++) { |
|
int n, norm; |
|
n = i + 2; |
|
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); |
|
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); |
|
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); |
|
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); |
|
av_dlog(avctx, "%d: norm=%x s=%x %x %x\n", |
|
i, norm, |
|
scale_factor_mult[i][0], |
|
scale_factor_mult[i][1], |
|
scale_factor_mult[i][2]); |
|
} |
|
|
|
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); |
|
|
|
/* huffman decode tables */ |
|
offset = 0; |
|
for(i=1;i<16;i++) { |
|
const HuffTable *h = &mpa_huff_tables[i]; |
|
int xsize, x, y; |
|
uint8_t tmp_bits [512]; |
|
uint16_t tmp_codes[512]; |
|
|
|
memset(tmp_bits , 0, sizeof(tmp_bits )); |
|
memset(tmp_codes, 0, sizeof(tmp_codes)); |
|
|
|
xsize = h->xsize; |
|
|
|
j = 0; |
|
for(x=0;x<xsize;x++) { |
|
for(y=0;y<xsize;y++){ |
|
tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ]; |
|
tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++]; |
|
} |
|
} |
|
|
|
/* XXX: fail test */ |
|
huff_vlc[i].table = huff_vlc_tables+offset; |
|
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; |
|
init_vlc(&huff_vlc[i], 7, 512, |
|
tmp_bits, 1, 1, tmp_codes, 2, 2, |
|
INIT_VLC_USE_NEW_STATIC); |
|
offset += huff_vlc_tables_sizes[i]; |
|
} |
|
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); |
|
|
|
offset = 0; |
|
for(i=0;i<2;i++) { |
|
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; |
|
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; |
|
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, |
|
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, |
|
INIT_VLC_USE_NEW_STATIC); |
|
offset += huff_quad_vlc_tables_sizes[i]; |
|
} |
|
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); |
|
|
|
for(i=0;i<9;i++) { |
|
k = 0; |
|
for(j=0;j<22;j++) { |
|
band_index_long[i][j] = k; |
|
k += band_size_long[i][j]; |
|
} |
|
band_index_long[i][22] = k; |
|
} |
|
|
|
/* compute n ^ (4/3) and store it in mantissa/exp format */ |
|
|
|
int_pow_init(); |
|
mpegaudio_tableinit(); |
|
|
|
for (i = 0; i < 4; i++) |
|
if (ff_mpa_quant_bits[i] < 0) |
|
for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) { |
|
int val1, val2, val3, steps; |
|
int val = j; |
|
steps = ff_mpa_quant_steps[i]; |
|
val1 = val % steps; |
|
val /= steps; |
|
val2 = val % steps; |
|
val3 = val / steps; |
|
division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8); |
|
} |
|
|
|
|
|
for(i=0;i<7;i++) { |
|
float f; |
|
INTFLOAT v; |
|
if (i != 6) { |
|
f = tan((double)i * M_PI / 12.0); |
|
v = FIXR(f / (1.0 + f)); |
|
} else { |
|
v = FIXR(1.0); |
|
} |
|
is_table[0][i] = v; |
|
is_table[1][6 - i] = v; |
|
} |
|
/* invalid values */ |
|
for(i=7;i<16;i++) |
|
is_table[0][i] = is_table[1][i] = 0.0; |
|
|
|
for(i=0;i<16;i++) { |
|
double f; |
|
int e, k; |
|
|
|
for(j=0;j<2;j++) { |
|
e = -(j + 1) * ((i + 1) >> 1); |
|
f = pow(2.0, e / 4.0); |
|
k = i & 1; |
|
is_table_lsf[j][k ^ 1][i] = FIXR(f); |
|
is_table_lsf[j][k][i] = FIXR(1.0); |
|
av_dlog(avctx, "is_table_lsf %d %d: %x %x\n", |
|
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); |
|
} |
|
} |
|
|
|
for(i=0;i<8;i++) { |
|
float ci, cs, ca; |
|
ci = ci_table[i]; |
|
cs = 1.0 / sqrt(1.0 + ci * ci); |
|
ca = cs * ci; |
|
csa_table[i][0] = FIXHR(cs/4); |
|
csa_table[i][1] = FIXHR(ca/4); |
|
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); |
|
csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4); |
|
csa_table_float[i][0] = cs; |
|
csa_table_float[i][1] = ca; |
|
csa_table_float[i][2] = ca + cs; |
|
csa_table_float[i][3] = ca - cs; |
|
} |
|
|
|
/* compute mdct windows */ |
|
for(i=0;i<36;i++) { |
|
for(j=0; j<4; j++){ |
|
double d; |
|
|
|
if(j==2 && i%3 != 1) |
|
continue; |
|
|
|
d= sin(M_PI * (i + 0.5) / 36.0); |
|
if(j==1){ |
|
if (i>=30) d= 0; |
|
else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0); |
|
else if(i>=18) d= 1; |
|
}else if(j==3){ |
|
if (i< 6) d= 0; |
|
else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0); |
|
else if(i< 18) d= 1; |
|
} |
|
//merge last stage of imdct into the window coefficients |
|
d*= 0.5 / cos(M_PI*(2*i + 19)/72); |
|
|
|
if(j==2) |
|
mdct_win[j][i/3] = FIXHR((d / (1<<5))); |
|
else |
|
mdct_win[j][i ] = FIXHR((d / (1<<5))); |
|
} |
|
} |
|
|
|
/* NOTE: we do frequency inversion adter the MDCT by changing |
|
the sign of the right window coefs */ |
|
for(j=0;j<4;j++) { |
|
for(i=0;i<36;i+=2) { |
|
mdct_win[j + 4][i] = mdct_win[j][i]; |
|
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; |
|
} |
|
} |
|
|
|
init = 1; |
|
} |
|
|
|
if (avctx->codec_id == CODEC_ID_MP3ADU) |
|
s->adu_mode = 1; |
|
return 0; |
|
} |
|
|
|
|
|
#if CONFIG_FLOAT |
|
static inline float round_sample(float *sum) |
|
{ |
|
float sum1=*sum; |
|
*sum = 0; |
|
return sum1; |
|
} |
|
|
|
/* signed 16x16 -> 32 multiply add accumulate */ |
|
#define MACS(rt, ra, rb) rt+=(ra)*(rb) |
|
|
|
/* signed 16x16 -> 32 multiply */ |
|
#define MULS(ra, rb) ((ra)*(rb)) |
|
|
|
#define MLSS(rt, ra, rb) rt-=(ra)*(rb) |
|
|
|
#else |
|
|
|
static inline int round_sample(int64_t *sum) |
|
{ |
|
int sum1; |
|
sum1 = (int)((*sum) >> OUT_SHIFT); |
|
*sum &= (1<<OUT_SHIFT)-1; |
|
return av_clip_int16(sum1); |
|
} |
|
|
|
# define MULS(ra, rb) MUL64(ra, rb) |
|
# define MACS(rt, ra, rb) MAC64(rt, ra, rb) |
|
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb) |
|
#endif |
|
|
|
#define SUM8(op, sum, w, p) \ |
|
{ \ |
|
op(sum, (w)[0 * 64], (p)[0 * 64]); \ |
|
op(sum, (w)[1 * 64], (p)[1 * 64]); \ |
|
op(sum, (w)[2 * 64], (p)[2 * 64]); \ |
|
op(sum, (w)[3 * 64], (p)[3 * 64]); \ |
|
op(sum, (w)[4 * 64], (p)[4 * 64]); \ |
|
op(sum, (w)[5 * 64], (p)[5 * 64]); \ |
|
op(sum, (w)[6 * 64], (p)[6 * 64]); \ |
|
op(sum, (w)[7 * 64], (p)[7 * 64]); \ |
|
} |
|
|
|
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \ |
|
{ \ |
|
INTFLOAT tmp;\ |
|
tmp = p[0 * 64];\ |
|
op1(sum1, (w1)[0 * 64], tmp);\ |
|
op2(sum2, (w2)[0 * 64], tmp);\ |
|
tmp = p[1 * 64];\ |
|
op1(sum1, (w1)[1 * 64], tmp);\ |
|
op2(sum2, (w2)[1 * 64], tmp);\ |
|
tmp = p[2 * 64];\ |
|
op1(sum1, (w1)[2 * 64], tmp);\ |
|
op2(sum2, (w2)[2 * 64], tmp);\ |
|
tmp = p[3 * 64];\ |
|
op1(sum1, (w1)[3 * 64], tmp);\ |
|
op2(sum2, (w2)[3 * 64], tmp);\ |
|
tmp = p[4 * 64];\ |
|
op1(sum1, (w1)[4 * 64], tmp);\ |
|
op2(sum2, (w2)[4 * 64], tmp);\ |
|
tmp = p[5 * 64];\ |
|
op1(sum1, (w1)[5 * 64], tmp);\ |
|
op2(sum2, (w2)[5 * 64], tmp);\ |
|
tmp = p[6 * 64];\ |
|
op1(sum1, (w1)[6 * 64], tmp);\ |
|
op2(sum2, (w2)[6 * 64], tmp);\ |
|
tmp = p[7 * 64];\ |
|
op1(sum1, (w1)[7 * 64], tmp);\ |
|
op2(sum2, (w2)[7 * 64], tmp);\ |
|
} |
|
|
|
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window) |
|
{ |
|
int i, j; |
|
|
|
/* max = 18760, max sum over all 16 coefs : 44736 */ |
|
for(i=0;i<257;i++) { |
|
INTFLOAT v; |
|
v = ff_mpa_enwindow[i]; |
|
#if CONFIG_FLOAT |
|
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); |
|
#endif |
|
window[i] = v; |
|
if ((i & 63) != 0) |
|
v = -v; |
|
if (i != 0) |
|
window[512 - i] = v; |
|
} |
|
|
|
// Needed for avoiding shuffles in ASM implementations |
|
for(i=0; i < 8; i++) |
|
for(j=0; j < 16; j++) |
|
window[512+16*i+j] = window[64*i+32-j]; |
|
|
|
for(i=0; i < 8; i++) |
|
for(j=0; j < 16; j++) |
|
window[512+128+16*i+j] = window[64*i+48-j]; |
|
} |
|
|
|
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window, |
|
int *dither_state, OUT_INT *samples, int incr) |
|
{ |
|
register const MPA_INT *w, *w2, *p; |
|
int j; |
|
OUT_INT *samples2; |
|
#if CONFIG_FLOAT |
|
float sum, sum2; |
|
#else |
|
int64_t sum, sum2; |
|
#endif |
|
|
|
/* copy to avoid wrap */ |
|
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); |
|
|
|
samples2 = samples + 31 * incr; |
|
w = window; |
|
w2 = window + 31; |
|
|
|
sum = *dither_state; |
|
p = synth_buf + 16; |
|
SUM8(MACS, sum, w, p); |
|
p = synth_buf + 48; |
|
SUM8(MLSS, sum, w + 32, p); |
|
*samples = round_sample(&sum); |
|
samples += incr; |
|
w++; |
|
|
|
/* we calculate two samples at the same time to avoid one memory |
|
access per two sample */ |
|
for(j=1;j<16;j++) { |
|
sum2 = 0; |
|
p = synth_buf + 16 + j; |
|
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); |
|
p = synth_buf + 48 - j; |
|
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); |
|
|
|
*samples = round_sample(&sum); |
|
samples += incr; |
|
sum += sum2; |
|
*samples2 = round_sample(&sum); |
|
samples2 -= incr; |
|
w++; |
|
w2--; |
|
} |
|
|
|
p = synth_buf + 32; |
|
SUM8(MLSS, sum, w + 32, p); |
|
*samples = round_sample(&sum); |
|
*dither_state= sum; |
|
} |
|
|
|
|
|
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output: |
|
32 samples. */ |
|
/* XXX: optimize by avoiding ring buffer usage */ |
|
#if !CONFIG_FLOAT |
|
void ff_mpa_synth_filter_fixed(MPA_INT *synth_buf_ptr, int *synth_buf_offset, |
|
MPA_INT *window, int *dither_state, |
|
OUT_INT *samples, int incr, |
|
INTFLOAT sb_samples[SBLIMIT]) |
|
{ |
|
register MPA_INT *synth_buf; |
|
int offset; |
|
|
|
offset = *synth_buf_offset; |
|
synth_buf = synth_buf_ptr + offset; |
|
|
|
ff_dct32_fixed(synth_buf, sb_samples); |
|
apply_window_mp3_c(synth_buf, window, dither_state, samples, incr); |
|
|
|
offset = (offset - 32) & 511; |
|
*synth_buf_offset = offset; |
|
} |
|
#endif |
|
|
|
#define C3 FIXHR(0.86602540378443864676/2) |
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
static const INTFLOAT icos36[9] = { |
|
FIXR(0.50190991877167369479), |
|
FIXR(0.51763809020504152469), //0 |
|
FIXR(0.55168895948124587824), |
|
FIXR(0.61038729438072803416), |
|
FIXR(0.70710678118654752439), //1 |
|
FIXR(0.87172339781054900991), |
|
FIXR(1.18310079157624925896), |
|
FIXR(1.93185165257813657349), //2 |
|
FIXR(5.73685662283492756461), |
|
}; |
|
|
|
/* 0.5 / cos(pi*(2*i+1)/36) */ |
|
static const INTFLOAT icos36h[9] = { |
|
FIXHR(0.50190991877167369479/2), |
|
FIXHR(0.51763809020504152469/2), //0 |
|
FIXHR(0.55168895948124587824/2), |
|
FIXHR(0.61038729438072803416/2), |
|
FIXHR(0.70710678118654752439/2), //1 |
|
FIXHR(0.87172339781054900991/2), |
|
FIXHR(1.18310079157624925896/4), |
|
FIXHR(1.93185165257813657349/4), //2 |
|
// FIXHR(5.73685662283492756461), |
|
}; |
|
|
|
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious |
|
cases. */ |
|
static void imdct12(INTFLOAT *out, INTFLOAT *in) |
|
{ |
|
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; |
|
|
|
in0= in[0*3]; |
|
in1= in[1*3] + in[0*3]; |
|
in2= in[2*3] + in[1*3]; |
|
in3= in[3*3] + in[2*3]; |
|
in4= in[4*3] + in[3*3]; |
|
in5= in[5*3] + in[4*3]; |
|
in5 += in3; |
|
in3 += in1; |
|
|
|
in2= MULH3(in2, C3, 2); |
|
in3= MULH3(in3, C3, 4); |
|
|
|
t1 = in0 - in4; |
|
t2 = MULH3(in1 - in5, icos36h[4], 2); |
|
|
|
out[ 7]= |
|
out[10]= t1 + t2; |
|
out[ 1]= |
|
out[ 4]= t1 - t2; |
|
|
|
in0 += SHR(in4, 1); |
|
in4 = in0 + in2; |
|
in5 += 2*in1; |
|
in1 = MULH3(in5 + in3, icos36h[1], 1); |
|
out[ 8]= |
|
out[ 9]= in4 + in1; |
|
out[ 2]= |
|
out[ 3]= in4 - in1; |
|
|
|
in0 -= in2; |
|
in5 = MULH3(in5 - in3, icos36h[7], 2); |
|
out[ 0]= |
|
out[ 5]= in0 - in5; |
|
out[ 6]= |
|
out[11]= in0 + in5; |
|
} |
|
|
|
/* cos(pi*i/18) */ |
|
#define C1 FIXHR(0.98480775301220805936/2) |
|
#define C2 FIXHR(0.93969262078590838405/2) |
|
#define C3 FIXHR(0.86602540378443864676/2) |
|
#define C4 FIXHR(0.76604444311897803520/2) |
|
#define C5 FIXHR(0.64278760968653932632/2) |
|
#define C6 FIXHR(0.5/2) |
|
#define C7 FIXHR(0.34202014332566873304/2) |
|
#define C8 FIXHR(0.17364817766693034885/2) |
|
|
|
|
|
/* using Lee like decomposition followed by hand coded 9 points DCT */ |
|
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) |
|
{ |
|
int i, j; |
|
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; |
|
INTFLOAT tmp[18], *tmp1, *in1; |
|
|
|
for(i=17;i>=1;i--) |
|
in[i] += in[i-1]; |
|
for(i=17;i>=3;i-=2) |
|
in[i] += in[i-2]; |
|
|
|
for(j=0;j<2;j++) { |
|
tmp1 = tmp + j; |
|
in1 = in + j; |
|
|
|
t2 = in1[2*4] + in1[2*8] - in1[2*2]; |
|
|
|
t3 = in1[2*0] + SHR(in1[2*6],1); |
|
t1 = in1[2*0] - in1[2*6]; |
|
tmp1[ 6] = t1 - SHR(t2,1); |
|
tmp1[16] = t1 + t2; |
|
|
|
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); |
|
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); |
|
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); |
|
|
|
tmp1[10] = t3 - t0 - t2; |
|
tmp1[ 2] = t3 + t0 + t1; |
|
tmp1[14] = t3 + t2 - t1; |
|
|
|
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); |
|
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); |
|
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); |
|
t0 = MULH3(in1[2*3], C3, 2); |
|
|
|
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); |
|
|
|
tmp1[ 0] = t2 + t3 + t0; |
|
tmp1[12] = t2 + t1 - t0; |
|
tmp1[ 8] = t3 - t1 - t0; |
|
} |
|
|
|
i = 0; |
|
for(j=0;j<4;j++) { |
|
t0 = tmp[i]; |
|
t1 = tmp[i + 2]; |
|
s0 = t1 + t0; |
|
s2 = t1 - t0; |
|
|
|
t2 = tmp[i + 1]; |
|
t3 = tmp[i + 3]; |
|
s1 = MULH3(t3 + t2, icos36h[j], 2); |
|
s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS); |
|
|
|
t0 = s0 + s1; |
|
t1 = s0 - s1; |
|
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j]; |
|
out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j]; |
|
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1); |
|
buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1); |
|
|
|
t0 = s2 + s3; |
|
t1 = s2 - s3; |
|
out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j]; |
|
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j]; |
|
buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1); |
|
buf[ + j] = MULH3(t0, win[18 + j], 1); |
|
i += 4; |
|
} |
|
|
|
s0 = tmp[16]; |
|
s1 = MULH3(tmp[17], icos36h[4], 2); |
|
t0 = s0 + s1; |
|
t1 = s0 - s1; |
|
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4]; |
|
out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4]; |
|
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1); |
|
buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1); |
|
} |
|
|
|
/* return the number of decoded frames */ |
|
static int mp_decode_layer1(MPADecodeContext *s) |
|
{ |
|
int bound, i, v, n, ch, j, mant; |
|
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; |
|
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; |
|
|
|
if (s->mode == MPA_JSTEREO) |
|
bound = (s->mode_ext + 1) * 4; |
|
else |
|
bound = SBLIMIT; |
|
|
|
/* allocation bits */ |
|
for(i=0;i<bound;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
allocation[ch][i] = get_bits(&s->gb, 4); |
|
} |
|
} |
|
for(i=bound;i<SBLIMIT;i++) { |
|
allocation[0][i] = get_bits(&s->gb, 4); |
|
} |
|
|
|
/* scale factors */ |
|
for(i=0;i<bound;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (allocation[ch][i]) |
|
scale_factors[ch][i] = get_bits(&s->gb, 6); |
|
} |
|
} |
|
for(i=bound;i<SBLIMIT;i++) { |
|
if (allocation[0][i]) { |
|
scale_factors[0][i] = get_bits(&s->gb, 6); |
|
scale_factors[1][i] = get_bits(&s->gb, 6); |
|
} |
|
} |
|
|
|
/* compute samples */ |
|
for(j=0;j<12;j++) { |
|
for(i=0;i<bound;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
n = allocation[ch][i]; |
|
if (n) { |
|
mant = get_bits(&s->gb, n + 1); |
|
v = l1_unscale(n, mant, scale_factors[ch][i]); |
|
} else { |
|
v = 0; |
|
} |
|
s->sb_samples[ch][j][i] = v; |
|
} |
|
} |
|
for(i=bound;i<SBLIMIT;i++) { |
|
n = allocation[0][i]; |
|
if (n) { |
|
mant = get_bits(&s->gb, n + 1); |
|
v = l1_unscale(n, mant, scale_factors[0][i]); |
|
s->sb_samples[0][j][i] = v; |
|
v = l1_unscale(n, mant, scale_factors[1][i]); |
|
s->sb_samples[1][j][i] = v; |
|
} else { |
|
s->sb_samples[0][j][i] = 0; |
|
s->sb_samples[1][j][i] = 0; |
|
} |
|
} |
|
} |
|
return 12; |
|
} |
|
|
|
static int mp_decode_layer2(MPADecodeContext *s) |
|
{ |
|
int sblimit; /* number of used subbands */ |
|
const unsigned char *alloc_table; |
|
int table, bit_alloc_bits, i, j, ch, bound, v; |
|
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; |
|
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; |
|
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; |
|
int scale, qindex, bits, steps, k, l, m, b; |
|
|
|
/* select decoding table */ |
|
table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels, |
|
s->sample_rate, s->lsf); |
|
sblimit = ff_mpa_sblimit_table[table]; |
|
alloc_table = ff_mpa_alloc_tables[table]; |
|
|
|
if (s->mode == MPA_JSTEREO) |
|
bound = (s->mode_ext + 1) * 4; |
|
else |
|
bound = sblimit; |
|
|
|
av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit); |
|
|
|
/* sanity check */ |
|
if( bound > sblimit ) bound = sblimit; |
|
|
|
/* parse bit allocation */ |
|
j = 0; |
|
for(i=0;i<bound;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); |
|
} |
|
j += 1 << bit_alloc_bits; |
|
} |
|
for(i=bound;i<sblimit;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
v = get_bits(&s->gb, bit_alloc_bits); |
|
bit_alloc[0][i] = v; |
|
bit_alloc[1][i] = v; |
|
j += 1 << bit_alloc_bits; |
|
} |
|
|
|
/* scale codes */ |
|
for(i=0;i<sblimit;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (bit_alloc[ch][i]) |
|
scale_code[ch][i] = get_bits(&s->gb, 2); |
|
} |
|
} |
|
|
|
/* scale factors */ |
|
for(i=0;i<sblimit;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
if (bit_alloc[ch][i]) { |
|
sf = scale_factors[ch][i]; |
|
switch(scale_code[ch][i]) { |
|
default: |
|
case 0: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[1] = get_bits(&s->gb, 6); |
|
sf[2] = get_bits(&s->gb, 6); |
|
break; |
|
case 2: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[1] = sf[0]; |
|
sf[2] = sf[0]; |
|
break; |
|
case 1: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[2] = get_bits(&s->gb, 6); |
|
sf[1] = sf[0]; |
|
break; |
|
case 3: |
|
sf[0] = get_bits(&s->gb, 6); |
|
sf[2] = get_bits(&s->gb, 6); |
|
sf[1] = sf[2]; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* samples */ |
|
for(k=0;k<3;k++) { |
|
for(l=0;l<12;l+=3) { |
|
j = 0; |
|
for(i=0;i<bound;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
b = bit_alloc[ch][i]; |
|
if (b) { |
|
scale = scale_factors[ch][i][k]; |
|
qindex = alloc_table[j+b]; |
|
bits = ff_mpa_quant_bits[qindex]; |
|
if (bits < 0) { |
|
int v2; |
|
/* 3 values at the same time */ |
|
v = get_bits(&s->gb, -bits); |
|
v2 = division_tabs[qindex][v]; |
|
steps = ff_mpa_quant_steps[qindex]; |
|
|
|
s->sb_samples[ch][k * 12 + l + 0][i] = |
|
l2_unscale_group(steps, v2 & 15, scale); |
|
s->sb_samples[ch][k * 12 + l + 1][i] = |
|
l2_unscale_group(steps, (v2 >> 4) & 15, scale); |
|
s->sb_samples[ch][k * 12 + l + 2][i] = |
|
l2_unscale_group(steps, v2 >> 8 , scale); |
|
} else { |
|
for(m=0;m<3;m++) { |
|
v = get_bits(&s->gb, bits); |
|
v = l1_unscale(bits - 1, v, scale); |
|
s->sb_samples[ch][k * 12 + l + m][i] = v; |
|
} |
|
} |
|
} else { |
|
s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
|
} |
|
} |
|
/* next subband in alloc table */ |
|
j += 1 << bit_alloc_bits; |
|
} |
|
/* XXX: find a way to avoid this duplication of code */ |
|
for(i=bound;i<sblimit;i++) { |
|
bit_alloc_bits = alloc_table[j]; |
|
b = bit_alloc[0][i]; |
|
if (b) { |
|
int mant, scale0, scale1; |
|
scale0 = scale_factors[0][i][k]; |
|
scale1 = scale_factors[1][i][k]; |
|
qindex = alloc_table[j+b]; |
|
bits = ff_mpa_quant_bits[qindex]; |
|
if (bits < 0) { |
|
/* 3 values at the same time */ |
|
v = get_bits(&s->gb, -bits); |
|
steps = ff_mpa_quant_steps[qindex]; |
|
mant = v % steps; |
|
v = v / steps; |
|
s->sb_samples[0][k * 12 + l + 0][i] = |
|
l2_unscale_group(steps, mant, scale0); |
|
s->sb_samples[1][k * 12 + l + 0][i] = |
|
l2_unscale_group(steps, mant, scale1); |
|
mant = v % steps; |
|
v = v / steps; |
|
s->sb_samples[0][k * 12 + l + 1][i] = |
|
l2_unscale_group(steps, mant, scale0); |
|
s->sb_samples[1][k * 12 + l + 1][i] = |
|
l2_unscale_group(steps, mant, scale1); |
|
s->sb_samples[0][k * 12 + l + 2][i] = |
|
l2_unscale_group(steps, v, scale0); |
|
s->sb_samples[1][k * 12 + l + 2][i] = |
|
l2_unscale_group(steps, v, scale1); |
|
} else { |
|
for(m=0;m<3;m++) { |
|
mant = get_bits(&s->gb, bits); |
|
s->sb_samples[0][k * 12 + l + m][i] = |
|
l1_unscale(bits - 1, mant, scale0); |
|
s->sb_samples[1][k * 12 + l + m][i] = |
|
l1_unscale(bits - 1, mant, scale1); |
|
} |
|
} |
|
} else { |
|
s->sb_samples[0][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[0][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[0][k * 12 + l + 2][i] = 0; |
|
s->sb_samples[1][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[1][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[1][k * 12 + l + 2][i] = 0; |
|
} |
|
/* next subband in alloc table */ |
|
j += 1 << bit_alloc_bits; |
|
} |
|
/* fill remaining samples to zero */ |
|
for(i=sblimit;i<SBLIMIT;i++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
|
s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
|
} |
|
} |
|
} |
|
} |
|
return 3 * 12; |
|
} |
|
|
|
#define SPLIT(dst,sf,n)\ |
|
if(n==3){\ |
|
int m= (sf*171)>>9;\ |
|
dst= sf - 3*m;\ |
|
sf=m;\ |
|
}else if(n==4){\ |
|
dst= sf&3;\ |
|
sf>>=2;\ |
|
}else if(n==5){\ |
|
int m= (sf*205)>>10;\ |
|
dst= sf - 5*m;\ |
|
sf=m;\ |
|
}else if(n==6){\ |
|
int m= (sf*171)>>10;\ |
|
dst= sf - 6*m;\ |
|
sf=m;\ |
|
}else{\ |
|
dst=0;\ |
|
} |
|
|
|
static av_always_inline void lsf_sf_expand(int *slen, |
|
int sf, int n1, int n2, int n3) |
|
{ |
|
SPLIT(slen[3], sf, n3) |
|
SPLIT(slen[2], sf, n2) |
|
SPLIT(slen[1], sf, n1) |
|
slen[0] = sf; |
|
} |
|
|
|
static void exponents_from_scale_factors(MPADecodeContext *s, |
|
GranuleDef *g, |
|
int16_t *exponents) |
|
{ |
|
const uint8_t *bstab, *pretab; |
|
int len, i, j, k, l, v0, shift, gain, gains[3]; |
|
int16_t *exp_ptr; |
|
|
|
exp_ptr = exponents; |
|
gain = g->global_gain - 210; |
|
shift = g->scalefac_scale + 1; |
|
|
|
bstab = band_size_long[s->sample_rate_index]; |
|
pretab = mpa_pretab[g->preflag]; |
|
for(i=0;i<g->long_end;i++) { |
|
v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400; |
|
len = bstab[i]; |
|
for(j=len;j>0;j--) |
|
*exp_ptr++ = v0; |
|
} |
|
|
|
if (g->short_start < 13) { |
|
bstab = band_size_short[s->sample_rate_index]; |
|
gains[0] = gain - (g->subblock_gain[0] << 3); |
|
gains[1] = gain - (g->subblock_gain[1] << 3); |
|
gains[2] = gain - (g->subblock_gain[2] << 3); |
|
k = g->long_end; |
|
for(i=g->short_start;i<13;i++) { |
|
len = bstab[i]; |
|
for(l=0;l<3;l++) { |
|
v0 = gains[l] - (g->scale_factors[k++] << shift) + 400; |
|
for(j=len;j>0;j--) |
|
*exp_ptr++ = v0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* handle n = 0 too */ |
|
static inline int get_bitsz(GetBitContext *s, int n) |
|
{ |
|
if (n == 0) |
|
return 0; |
|
else |
|
return get_bits(s, n); |
|
} |
|
|
|
|
|
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){ |
|
if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){ |
|
s->gb= s->in_gb; |
|
s->in_gb.buffer=NULL; |
|
assert((get_bits_count(&s->gb) & 7) == 0); |
|
skip_bits_long(&s->gb, *pos - *end_pos); |
|
*end_pos2= |
|
*end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos; |
|
*pos= get_bits_count(&s->gb); |
|
} |
|
} |
|
|
|
/* Following is a optimized code for |
|
INTFLOAT v = *src |
|
if(get_bits1(&s->gb)) |
|
v = -v; |
|
*dst = v; |
|
*/ |
|
#if CONFIG_FLOAT |
|
#define READ_FLIP_SIGN(dst,src)\ |
|
v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\ |
|
AV_WN32A(dst, v); |
|
#else |
|
#define READ_FLIP_SIGN(dst,src)\ |
|
v= -get_bits1(&s->gb);\ |
|
*(dst) = (*(src) ^ v) - v; |
|
#endif |
|
|
|
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, |
|
int16_t *exponents, int end_pos2) |
|
{ |
|
int s_index; |
|
int i; |
|
int last_pos, bits_left; |
|
VLC *vlc; |
|
int end_pos= FFMIN(end_pos2, s->gb.size_in_bits); |
|
|
|
/* low frequencies (called big values) */ |
|
s_index = 0; |
|
for(i=0;i<3;i++) { |
|
int j, k, l, linbits; |
|
j = g->region_size[i]; |
|
if (j == 0) |
|
continue; |
|
/* select vlc table */ |
|
k = g->table_select[i]; |
|
l = mpa_huff_data[k][0]; |
|
linbits = mpa_huff_data[k][1]; |
|
vlc = &huff_vlc[l]; |
|
|
|
if(!l){ |
|
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j); |
|
s_index += 2*j; |
|
continue; |
|
} |
|
|
|
/* read huffcode and compute each couple */ |
|
for(;j>0;j--) { |
|
int exponent, x, y; |
|
int v; |
|
int pos= get_bits_count(&s->gb); |
|
|
|
if (pos >= end_pos){ |
|
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index); |
|
switch_buffer(s, &pos, &end_pos, &end_pos2); |
|
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos); |
|
if(pos >= end_pos) |
|
break; |
|
} |
|
y = get_vlc2(&s->gb, vlc->table, 7, 3); |
|
|
|
if(!y){ |
|
g->sb_hybrid[s_index ] = |
|
g->sb_hybrid[s_index+1] = 0; |
|
s_index += 2; |
|
continue; |
|
} |
|
|
|
exponent= exponents[s_index]; |
|
|
|
av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n", |
|
i, g->region_size[i] - j, x, y, exponent); |
|
if(y&16){ |
|
x = y >> 5; |
|
y = y & 0x0f; |
|
if (x < 15){ |
|
READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x) |
|
}else{ |
|
x += get_bitsz(&s->gb, linbits); |
|
v = l3_unscale(x, exponent); |
|
if (get_bits1(&s->gb)) |
|
v = -v; |
|
g->sb_hybrid[s_index] = v; |
|
} |
|
if (y < 15){ |
|
READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y) |
|
}else{ |
|
y += get_bitsz(&s->gb, linbits); |
|
v = l3_unscale(y, exponent); |
|
if (get_bits1(&s->gb)) |
|
v = -v; |
|
g->sb_hybrid[s_index+1] = v; |
|
} |
|
}else{ |
|
x = y >> 5; |
|
y = y & 0x0f; |
|
x += y; |
|
if (x < 15){ |
|
READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x) |
|
}else{ |
|
x += get_bitsz(&s->gb, linbits); |
|
v = l3_unscale(x, exponent); |
|
if (get_bits1(&s->gb)) |
|
v = -v; |
|
g->sb_hybrid[s_index+!!y] = v; |
|
} |
|
g->sb_hybrid[s_index+ !y] = 0; |
|
} |
|
s_index+=2; |
|
} |
|
} |
|
|
|
/* high frequencies */ |
|
vlc = &huff_quad_vlc[g->count1table_select]; |
|
last_pos=0; |
|
while (s_index <= 572) { |
|
int pos, code; |
|
pos = get_bits_count(&s->gb); |
|
if (pos >= end_pos) { |
|
if (pos > end_pos2 && last_pos){ |
|
/* some encoders generate an incorrect size for this |
|
part. We must go back into the data */ |
|
s_index -= 4; |
|
skip_bits_long(&s->gb, last_pos - pos); |
|
av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos); |
|
if(s->error_recognition >= FF_ER_COMPLIANT) |
|
s_index=0; |
|
break; |
|
} |
|
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index); |
|
switch_buffer(s, &pos, &end_pos, &end_pos2); |
|
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index); |
|
if(pos >= end_pos) |
|
break; |
|
} |
|
last_pos= pos; |
|
|
|
code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1); |
|
av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code); |
|
g->sb_hybrid[s_index+0]= |
|
g->sb_hybrid[s_index+1]= |
|
g->sb_hybrid[s_index+2]= |
|
g->sb_hybrid[s_index+3]= 0; |
|
while(code){ |
|
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; |
|
int v; |
|
int pos= s_index+idxtab[code]; |
|
code ^= 8>>idxtab[code]; |
|
READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos]) |
|
} |
|
s_index+=4; |
|
} |
|
/* skip extension bits */ |
|
bits_left = end_pos2 - get_bits_count(&s->gb); |
|
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer); |
|
if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) { |
|
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left); |
|
s_index=0; |
|
}else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){ |
|
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left); |
|
s_index=0; |
|
} |
|
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index)); |
|
skip_bits_long(&s->gb, bits_left); |
|
|
|
i= get_bits_count(&s->gb); |
|
switch_buffer(s, &i, &end_pos, &end_pos2); |
|
|
|
return 0; |
|
} |
|
|
|
/* Reorder short blocks from bitstream order to interleaved order. It |
|
would be faster to do it in parsing, but the code would be far more |
|
complicated */ |
|
static void reorder_block(MPADecodeContext *s, GranuleDef *g) |
|
{ |
|
int i, j, len; |
|
INTFLOAT *ptr, *dst, *ptr1; |
|
INTFLOAT tmp[576]; |
|
|
|
if (g->block_type != 2) |
|
return; |
|
|
|
if (g->switch_point) { |
|
if (s->sample_rate_index != 8) { |
|
ptr = g->sb_hybrid + 36; |
|
} else { |
|
ptr = g->sb_hybrid + 48; |
|
} |
|
} else { |
|
ptr = g->sb_hybrid; |
|
} |
|
|
|
for(i=g->short_start;i<13;i++) { |
|
len = band_size_short[s->sample_rate_index][i]; |
|
ptr1 = ptr; |
|
dst = tmp; |
|
for(j=len;j>0;j--) { |
|
*dst++ = ptr[0*len]; |
|
*dst++ = ptr[1*len]; |
|
*dst++ = ptr[2*len]; |
|
ptr++; |
|
} |
|
ptr+=2*len; |
|
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); |
|
} |
|
} |
|
|
|
#define ISQRT2 FIXR(0.70710678118654752440) |
|
|
|
static void compute_stereo(MPADecodeContext *s, |
|
GranuleDef *g0, GranuleDef *g1) |
|
{ |
|
int i, j, k, l; |
|
int sf_max, sf, len, non_zero_found; |
|
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2; |
|
int non_zero_found_short[3]; |
|
|
|
/* intensity stereo */ |
|
if (s->mode_ext & MODE_EXT_I_STEREO) { |
|
if (!s->lsf) { |
|
is_tab = is_table; |
|
sf_max = 7; |
|
} else { |
|
is_tab = is_table_lsf[g1->scalefac_compress & 1]; |
|
sf_max = 16; |
|
} |
|
|
|
tab0 = g0->sb_hybrid + 576; |
|
tab1 = g1->sb_hybrid + 576; |
|
|
|
non_zero_found_short[0] = 0; |
|
non_zero_found_short[1] = 0; |
|
non_zero_found_short[2] = 0; |
|
k = (13 - g1->short_start) * 3 + g1->long_end - 3; |
|
for(i = 12;i >= g1->short_start;i--) { |
|
/* for last band, use previous scale factor */ |
|
if (i != 11) |
|
k -= 3; |
|
len = band_size_short[s->sample_rate_index][i]; |
|
for(l=2;l>=0;l--) { |
|
tab0 -= len; |
|
tab1 -= len; |
|
if (!non_zero_found_short[l]) { |
|
/* test if non zero band. if so, stop doing i-stereo */ |
|
for(j=0;j<len;j++) { |
|
if (tab1[j] != 0) { |
|
non_zero_found_short[l] = 1; |
|
goto found1; |
|
} |
|
} |
|
sf = g1->scale_factors[k + l]; |
|
if (sf >= sf_max) |
|
goto found1; |
|
|
|
v1 = is_tab[0][sf]; |
|
v2 = is_tab[1][sf]; |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); |
|
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); |
|
} |
|
} else { |
|
found1: |
|
if (s->mode_ext & MODE_EXT_MS_STEREO) { |
|
/* lower part of the spectrum : do ms stereo |
|
if enabled */ |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tmp1 = tab1[j]; |
|
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); |
|
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
non_zero_found = non_zero_found_short[0] | |
|
non_zero_found_short[1] | |
|
non_zero_found_short[2]; |
|
|
|
for(i = g1->long_end - 1;i >= 0;i--) { |
|
len = band_size_long[s->sample_rate_index][i]; |
|
tab0 -= len; |
|
tab1 -= len; |
|
/* test if non zero band. if so, stop doing i-stereo */ |
|
if (!non_zero_found) { |
|
for(j=0;j<len;j++) { |
|
if (tab1[j] != 0) { |
|
non_zero_found = 1; |
|
goto found2; |
|
} |
|
} |
|
/* for last band, use previous scale factor */ |
|
k = (i == 21) ? 20 : i; |
|
sf = g1->scale_factors[k]; |
|
if (sf >= sf_max) |
|
goto found2; |
|
v1 = is_tab[0][sf]; |
|
v2 = is_tab[1][sf]; |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); |
|
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); |
|
} |
|
} else { |
|
found2: |
|
if (s->mode_ext & MODE_EXT_MS_STEREO) { |
|
/* lower part of the spectrum : do ms stereo |
|
if enabled */ |
|
for(j=0;j<len;j++) { |
|
tmp0 = tab0[j]; |
|
tmp1 = tab1[j]; |
|
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); |
|
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS); |
|
} |
|
} |
|
} |
|
} |
|
} else if (s->mode_ext & MODE_EXT_MS_STEREO) { |
|
/* ms stereo ONLY */ |
|
/* NOTE: the 1/sqrt(2) normalization factor is included in the |
|
global gain */ |
|
tab0 = g0->sb_hybrid; |
|
tab1 = g1->sb_hybrid; |
|
for(i=0;i<576;i++) { |
|
tmp0 = tab0[i]; |
|
tmp1 = tab1[i]; |
|
tab0[i] = tmp0 + tmp1; |
|
tab1[i] = tmp0 - tmp1; |
|
} |
|
} |
|
} |
|
|
|
#if !CONFIG_FLOAT |
|
static void compute_antialias_fixed(MPADecodeContext *s, GranuleDef *g) |
|
{ |
|
int32_t *ptr, *csa; |
|
int n, i; |
|
|
|
/* we antialias only "long" bands */ |
|
if (g->block_type == 2) { |
|
if (!g->switch_point) |
|
return; |
|
/* XXX: check this for 8000Hz case */ |
|
n = 1; |
|
} else { |
|
n = SBLIMIT - 1; |
|
} |
|
|
|
ptr = g->sb_hybrid + 18; |
|
for(i = n;i > 0;i--) { |
|
int tmp0, tmp1, tmp2; |
|
csa = &csa_table[0][0]; |
|
#define INT_AA(j) \ |
|
tmp0 = ptr[-1-j];\ |
|
tmp1 = ptr[ j];\ |
|
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ |
|
ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\ |
|
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); |
|
|
|
INT_AA(0) |
|
INT_AA(1) |
|
INT_AA(2) |
|
INT_AA(3) |
|
INT_AA(4) |
|
INT_AA(5) |
|
INT_AA(6) |
|
INT_AA(7) |
|
|
|
ptr += 18; |
|
} |
|
} |
|
#endif |
|
|
|
static void compute_imdct(MPADecodeContext *s, |
|
GranuleDef *g, |
|
INTFLOAT *sb_samples, |
|
INTFLOAT *mdct_buf) |
|
{ |
|
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; |
|
INTFLOAT out2[12]; |
|
int i, j, mdct_long_end, sblimit; |
|
|
|
/* find last non zero block */ |
|
ptr = g->sb_hybrid + 576; |
|
ptr1 = g->sb_hybrid + 2 * 18; |
|
while (ptr >= ptr1) { |
|
int32_t *p; |
|
ptr -= 6; |
|
p= (int32_t*)ptr; |
|
if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5]) |
|
break; |
|
} |
|
sblimit = ((ptr - g->sb_hybrid) / 18) + 1; |
|
|
|
if (g->block_type == 2) { |
|
/* XXX: check for 8000 Hz */ |
|
if (g->switch_point) |
|
mdct_long_end = 2; |
|
else |
|
mdct_long_end = 0; |
|
} else { |
|
mdct_long_end = sblimit; |
|
} |
|
|
|
buf = mdct_buf; |
|
ptr = g->sb_hybrid; |
|
for(j=0;j<mdct_long_end;j++) { |
|
/* apply window & overlap with previous buffer */ |
|
out_ptr = sb_samples + j; |
|
/* select window */ |
|
if (g->switch_point && j < 2) |
|
win1 = mdct_win[0]; |
|
else |
|
win1 = mdct_win[g->block_type]; |
|
/* select frequency inversion */ |
|
win = win1 + ((4 * 36) & -(j & 1)); |
|
imdct36(out_ptr, buf, ptr, win); |
|
out_ptr += 18*SBLIMIT; |
|
ptr += 18; |
|
buf += 18; |
|
} |
|
for(j=mdct_long_end;j<sblimit;j++) { |
|
/* select frequency inversion */ |
|
win = mdct_win[2] + ((4 * 36) & -(j & 1)); |
|
out_ptr = sb_samples + j; |
|
|
|
for(i=0; i<6; i++){ |
|
*out_ptr = buf[i]; |
|
out_ptr += SBLIMIT; |
|
} |
|
imdct12(out2, ptr + 0); |
|
for(i=0;i<6;i++) { |
|
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1]; |
|
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1); |
|
out_ptr += SBLIMIT; |
|
} |
|
imdct12(out2, ptr + 1); |
|
for(i=0;i<6;i++) { |
|
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2]; |
|
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1); |
|
out_ptr += SBLIMIT; |
|
} |
|
imdct12(out2, ptr + 2); |
|
for(i=0;i<6;i++) { |
|
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0]; |
|
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1); |
|
buf[i + 6*2] = 0; |
|
} |
|
ptr += 18; |
|
buf += 18; |
|
} |
|
/* zero bands */ |
|
for(j=sblimit;j<SBLIMIT;j++) { |
|
/* overlap */ |
|
out_ptr = sb_samples + j; |
|
for(i=0;i<18;i++) { |
|
*out_ptr = buf[i]; |
|
buf[i] = 0; |
|
out_ptr += SBLIMIT; |
|
} |
|
buf += 18; |
|
} |
|
} |
|
|
|
/* main layer3 decoding function */ |
|
static int mp_decode_layer3(MPADecodeContext *s) |
|
{ |
|
int nb_granules, main_data_begin, private_bits; |
|
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos; |
|
GranuleDef *g; |
|
int16_t exponents[576]; //FIXME try INTFLOAT |
|
|
|
/* read side info */ |
|
if (s->lsf) { |
|
main_data_begin = get_bits(&s->gb, 8); |
|
private_bits = get_bits(&s->gb, s->nb_channels); |
|
nb_granules = 1; |
|
} else { |
|
main_data_begin = get_bits(&s->gb, 9); |
|
if (s->nb_channels == 2) |
|
private_bits = get_bits(&s->gb, 3); |
|
else |
|
private_bits = get_bits(&s->gb, 5); |
|
nb_granules = 2; |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ |
|
s->granules[ch][1].scfsi = get_bits(&s->gb, 4); |
|
} |
|
} |
|
|
|
for(gr=0;gr<nb_granules;gr++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch); |
|
g = &s->granules[ch][gr]; |
|
g->part2_3_length = get_bits(&s->gb, 12); |
|
g->big_values = get_bits(&s->gb, 9); |
|
if(g->big_values > 288){ |
|
av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n"); |
|
return -1; |
|
} |
|
|
|
g->global_gain = get_bits(&s->gb, 8); |
|
/* if MS stereo only is selected, we precompute the |
|
1/sqrt(2) renormalization factor */ |
|
if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == |
|
MODE_EXT_MS_STEREO) |
|
g->global_gain -= 2; |
|
if (s->lsf) |
|
g->scalefac_compress = get_bits(&s->gb, 9); |
|
else |
|
g->scalefac_compress = get_bits(&s->gb, 4); |
|
blocksplit_flag = get_bits1(&s->gb); |
|
if (blocksplit_flag) { |
|
g->block_type = get_bits(&s->gb, 2); |
|
if (g->block_type == 0){ |
|
av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n"); |
|
return -1; |
|
} |
|
g->switch_point = get_bits1(&s->gb); |
|
for(i=0;i<2;i++) |
|
g->table_select[i] = get_bits(&s->gb, 5); |
|
for(i=0;i<3;i++) |
|
g->subblock_gain[i] = get_bits(&s->gb, 3); |
|
ff_init_short_region(s, g); |
|
} else { |
|
int region_address1, region_address2; |
|
g->block_type = 0; |
|
g->switch_point = 0; |
|
for(i=0;i<3;i++) |
|
g->table_select[i] = get_bits(&s->gb, 5); |
|
/* compute huffman coded region sizes */ |
|
region_address1 = get_bits(&s->gb, 4); |
|
region_address2 = get_bits(&s->gb, 3); |
|
av_dlog(s->avctx, "region1=%d region2=%d\n", |
|
region_address1, region_address2); |
|
ff_init_long_region(s, g, region_address1, region_address2); |
|
} |
|
ff_region_offset2size(g); |
|
ff_compute_band_indexes(s, g); |
|
|
|
g->preflag = 0; |
|
if (!s->lsf) |
|
g->preflag = get_bits1(&s->gb); |
|
g->scalefac_scale = get_bits1(&s->gb); |
|
g->count1table_select = get_bits1(&s->gb); |
|
av_dlog(s->avctx, "block_type=%d switch_point=%d\n", |
|
g->block_type, g->switch_point); |
|
} |
|
} |
|
|
|
if (!s->adu_mode) { |
|
const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3); |
|
assert((get_bits_count(&s->gb) & 7) == 0); |
|
/* now we get bits from the main_data_begin offset */ |
|
av_dlog(s->avctx, "seekback: %d\n", main_data_begin); |
|
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size); |
|
|
|
memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES); |
|
s->in_gb= s->gb; |
|
init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8); |
|
skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin)); |
|
} |
|
|
|
for(gr=0;gr<nb_granules;gr++) { |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
g = &s->granules[ch][gr]; |
|
if(get_bits_count(&s->gb)<0){ |
|
av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n", |
|
main_data_begin, s->last_buf_size, gr); |
|
skip_bits_long(&s->gb, g->part2_3_length); |
|
memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid)); |
|
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){ |
|
skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits); |
|
s->gb= s->in_gb; |
|
s->in_gb.buffer=NULL; |
|
} |
|
continue; |
|
} |
|
|
|
bits_pos = get_bits_count(&s->gb); |
|
|
|
if (!s->lsf) { |
|
uint8_t *sc; |
|
int slen, slen1, slen2; |
|
|
|
/* MPEG1 scale factors */ |
|
slen1 = slen_table[0][g->scalefac_compress]; |
|
slen2 = slen_table[1][g->scalefac_compress]; |
|
av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2); |
|
if (g->block_type == 2) { |
|
n = g->switch_point ? 17 : 18; |
|
j = 0; |
|
if(slen1){ |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = get_bits(&s->gb, slen1); |
|
}else{ |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = 0; |
|
} |
|
if(slen2){ |
|
for(i=0;i<18;i++) |
|
g->scale_factors[j++] = get_bits(&s->gb, slen2); |
|
for(i=0;i<3;i++) |
|
g->scale_factors[j++] = 0; |
|
}else{ |
|
for(i=0;i<21;i++) |
|
g->scale_factors[j++] = 0; |
|
} |
|
} else { |
|
sc = s->granules[ch][0].scale_factors; |
|
j = 0; |
|
for(k=0;k<4;k++) { |
|
n = (k == 0 ? 6 : 5); |
|
if ((g->scfsi & (0x8 >> k)) == 0) { |
|
slen = (k < 2) ? slen1 : slen2; |
|
if(slen){ |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = get_bits(&s->gb, slen); |
|
}else{ |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = 0; |
|
} |
|
} else { |
|
/* simply copy from last granule */ |
|
for(i=0;i<n;i++) { |
|
g->scale_factors[j] = sc[j]; |
|
j++; |
|
} |
|
} |
|
} |
|
g->scale_factors[j++] = 0; |
|
} |
|
} else { |
|
int tindex, tindex2, slen[4], sl, sf; |
|
|
|
/* LSF scale factors */ |
|
if (g->block_type == 2) { |
|
tindex = g->switch_point ? 2 : 1; |
|
} else { |
|
tindex = 0; |
|
} |
|
sf = g->scalefac_compress; |
|
if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { |
|
/* intensity stereo case */ |
|
sf >>= 1; |
|
if (sf < 180) { |
|
lsf_sf_expand(slen, sf, 6, 6, 0); |
|
tindex2 = 3; |
|
} else if (sf < 244) { |
|
lsf_sf_expand(slen, sf - 180, 4, 4, 0); |
|
tindex2 = 4; |
|
} else { |
|
lsf_sf_expand(slen, sf - 244, 3, 0, 0); |
|
tindex2 = 5; |
|
} |
|
} else { |
|
/* normal case */ |
|
if (sf < 400) { |
|
lsf_sf_expand(slen, sf, 5, 4, 4); |
|
tindex2 = 0; |
|
} else if (sf < 500) { |
|
lsf_sf_expand(slen, sf - 400, 5, 4, 0); |
|
tindex2 = 1; |
|
} else { |
|
lsf_sf_expand(slen, sf - 500, 3, 0, 0); |
|
tindex2 = 2; |
|
g->preflag = 1; |
|
} |
|
} |
|
|
|
j = 0; |
|
for(k=0;k<4;k++) { |
|
n = lsf_nsf_table[tindex2][tindex][k]; |
|
sl = slen[k]; |
|
if(sl){ |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = get_bits(&s->gb, sl); |
|
}else{ |
|
for(i=0;i<n;i++) |
|
g->scale_factors[j++] = 0; |
|
} |
|
} |
|
/* XXX: should compute exact size */ |
|
for(;j<40;j++) |
|
g->scale_factors[j] = 0; |
|
} |
|
|
|
exponents_from_scale_factors(s, g, exponents); |
|
|
|
/* read Huffman coded residue */ |
|
huffman_decode(s, g, exponents, bits_pos + g->part2_3_length); |
|
} /* ch */ |
|
|
|
if (s->nb_channels == 2) |
|
compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]); |
|
|
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
g = &s->granules[ch][gr]; |
|
|
|
reorder_block(s, g); |
|
RENAME(compute_antialias)(s, g); |
|
compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); |
|
} |
|
} /* gr */ |
|
if(get_bits_count(&s->gb)<0) |
|
skip_bits_long(&s->gb, -get_bits_count(&s->gb)); |
|
return nb_granules * 18; |
|
} |
|
|
|
static int mp_decode_frame(MPADecodeContext *s, |
|
OUT_INT *samples, const uint8_t *buf, int buf_size) |
|
{ |
|
int i, nb_frames, ch; |
|
OUT_INT *samples_ptr; |
|
|
|
init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8); |
|
|
|
/* skip error protection field */ |
|
if (s->error_protection) |
|
skip_bits(&s->gb, 16); |
|
|
|
av_dlog(s->avctx, "frame %d:\n", s->frame_count); |
|
switch(s->layer) { |
|
case 1: |
|
s->avctx->frame_size = 384; |
|
nb_frames = mp_decode_layer1(s); |
|
break; |
|
case 2: |
|
s->avctx->frame_size = 1152; |
|
nb_frames = mp_decode_layer2(s); |
|
break; |
|
case 3: |
|
s->avctx->frame_size = s->lsf ? 576 : 1152; |
|
default: |
|
nb_frames = mp_decode_layer3(s); |
|
|
|
s->last_buf_size=0; |
|
if(s->in_gb.buffer){ |
|
align_get_bits(&s->gb); |
|
i= get_bits_left(&s->gb)>>3; |
|
if(i >= 0 && i <= BACKSTEP_SIZE){ |
|
memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i); |
|
s->last_buf_size=i; |
|
}else |
|
av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i); |
|
s->gb= s->in_gb; |
|
s->in_gb.buffer= NULL; |
|
} |
|
|
|
align_get_bits(&s->gb); |
|
assert((get_bits_count(&s->gb) & 7) == 0); |
|
i= get_bits_left(&s->gb)>>3; |
|
|
|
if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){ |
|
if(i<0) |
|
av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i); |
|
i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE); |
|
} |
|
assert(i <= buf_size - HEADER_SIZE && i>= 0); |
|
memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i); |
|
s->last_buf_size += i; |
|
|
|
break; |
|
} |
|
|
|
/* apply the synthesis filter */ |
|
for(ch=0;ch<s->nb_channels;ch++) { |
|
samples_ptr = samples + ch; |
|
for(i=0;i<nb_frames;i++) { |
|
RENAME(ff_mpa_synth_filter)( |
|
#if CONFIG_FLOAT |
|
s, |
|
#endif |
|
s->synth_buf[ch], &(s->synth_buf_offset[ch]), |
|
RENAME(ff_mpa_synth_window), &s->dither_state, |
|
samples_ptr, s->nb_channels, |
|
s->sb_samples[ch][i]); |
|
samples_ptr += 32 * s->nb_channels; |
|
} |
|
} |
|
|
|
return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels; |
|
} |
|
|
|
static int decode_frame(AVCodecContext * avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
MPADecodeContext *s = avctx->priv_data; |
|
uint32_t header; |
|
int out_size; |
|
OUT_INT *out_samples = data; |
|
|
|
if(buf_size < HEADER_SIZE) |
|
return -1; |
|
|
|
header = AV_RB32(buf); |
|
if(ff_mpa_check_header(header) < 0){ |
|
av_log(avctx, AV_LOG_ERROR, "Header missing\n"); |
|
return -1; |
|
} |
|
|
|
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { |
|
/* free format: prepare to compute frame size */ |
|
s->frame_size = -1; |
|
return -1; |
|
} |
|
/* update codec info */ |
|
avctx->channels = s->nb_channels; |
|
avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO; |
|
if (!avctx->bit_rate) |
|
avctx->bit_rate = s->bit_rate; |
|
avctx->sub_id = s->layer; |
|
|
|
if(*data_size < 1152*avctx->channels*sizeof(OUT_INT)) |
|
return -1; |
|
*data_size = 0; |
|
|
|
if(s->frame_size<=0 || s->frame_size > buf_size){ |
|
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n"); |
|
return -1; |
|
}else if(s->frame_size < buf_size){ |
|
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n"); |
|
buf_size= s->frame_size; |
|
} |
|
|
|
out_size = mp_decode_frame(s, out_samples, buf, buf_size); |
|
if(out_size>=0){ |
|
*data_size = out_size; |
|
avctx->sample_rate = s->sample_rate; |
|
//FIXME maybe move the other codec info stuff from above here too |
|
}else |
|
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed |
|
s->frame_size = 0; |
|
return buf_size; |
|
} |
|
|
|
static void flush(AVCodecContext *avctx){ |
|
MPADecodeContext *s = avctx->priv_data; |
|
memset(s->synth_buf, 0, sizeof(s->synth_buf)); |
|
s->last_buf_size= 0; |
|
} |
|
|
|
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER |
|
static int decode_frame_adu(AVCodecContext * avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
MPADecodeContext *s = avctx->priv_data; |
|
uint32_t header; |
|
int len, out_size; |
|
OUT_INT *out_samples = data; |
|
|
|
len = buf_size; |
|
|
|
// Discard too short frames |
|
if (buf_size < HEADER_SIZE) { |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
|
|
if (len > MPA_MAX_CODED_FRAME_SIZE) |
|
len = MPA_MAX_CODED_FRAME_SIZE; |
|
|
|
// Get header and restore sync word |
|
header = AV_RB32(buf) | 0xffe00000; |
|
|
|
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header); |
|
/* update codec info */ |
|
avctx->sample_rate = s->sample_rate; |
|
avctx->channels = s->nb_channels; |
|
if (!avctx->bit_rate) |
|
avctx->bit_rate = s->bit_rate; |
|
avctx->sub_id = s->layer; |
|
|
|
s->frame_size = len; |
|
|
|
if (avctx->parse_only) { |
|
out_size = buf_size; |
|
} else { |
|
out_size = mp_decode_frame(s, out_samples, buf, buf_size); |
|
} |
|
|
|
*data_size = out_size; |
|
return buf_size; |
|
} |
|
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */ |
|
|
|
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER |
|
|
|
/** |
|
* Context for MP3On4 decoder |
|
*/ |
|
typedef struct MP3On4DecodeContext { |
|
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) |
|
int syncword; ///< syncword patch |
|
const uint8_t *coff; ///< channels offsets in output buffer |
|
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance |
|
} MP3On4DecodeContext; |
|
|
|
#include "mpeg4audio.h" |
|
|
|
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */ |
|
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */ |
|
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */ |
|
static const uint8_t chan_offset[8][5] = { |
|
{0}, |
|
{0}, // C |
|
{0}, // FLR |
|
{2,0}, // C FLR |
|
{2,0,3}, // C FLR BS |
|
{4,0,2}, // C FLR BLRS |
|
{4,0,2,5}, // C FLR BLRS LFE |
|
{4,0,2,6,5}, // C FLR BLRS BLR LFE |
|
}; |
|
|
|
|
|
static int decode_init_mp3on4(AVCodecContext * avctx) |
|
{ |
|
MP3On4DecodeContext *s = avctx->priv_data; |
|
MPEG4AudioConfig cfg; |
|
int i; |
|
|
|
if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) { |
|
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n"); |
|
return -1; |
|
} |
|
|
|
ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size); |
|
if (!cfg.chan_config || cfg.chan_config > 7) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n"); |
|
return -1; |
|
} |
|
s->frames = mp3Frames[cfg.chan_config]; |
|
s->coff = chan_offset[cfg.chan_config]; |
|
avctx->channels = ff_mpeg4audio_channels[cfg.chan_config]; |
|
|
|
if (cfg.sample_rate < 16000) |
|
s->syncword = 0xffe00000; |
|
else |
|
s->syncword = 0xfff00000; |
|
|
|
/* Init the first mp3 decoder in standard way, so that all tables get builded |
|
* We replace avctx->priv_data with the context of the first decoder so that |
|
* decode_init() does not have to be changed. |
|
* Other decoders will be initialized here copying data from the first context |
|
*/ |
|
// Allocate zeroed memory for the first decoder context |
|
s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); |
|
// Put decoder context in place to make init_decode() happy |
|
avctx->priv_data = s->mp3decctx[0]; |
|
decode_init(avctx); |
|
// Restore mp3on4 context pointer |
|
avctx->priv_data = s; |
|
s->mp3decctx[0]->adu_mode = 1; // Set adu mode |
|
|
|
/* Create a separate codec/context for each frame (first is already ok). |
|
* Each frame is 1 or 2 channels - up to 5 frames allowed |
|
*/ |
|
for (i = 1; i < s->frames; i++) { |
|
s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext)); |
|
s->mp3decctx[i]->adu_mode = 1; |
|
s->mp3decctx[i]->avctx = avctx; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static av_cold int decode_close_mp3on4(AVCodecContext * avctx) |
|
{ |
|
MP3On4DecodeContext *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < s->frames; i++) |
|
av_free(s->mp3decctx[i]); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int decode_frame_mp3on4(AVCodecContext * avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
MP3On4DecodeContext *s = avctx->priv_data; |
|
MPADecodeContext *m; |
|
int fsize, len = buf_size, out_size = 0; |
|
uint32_t header; |
|
OUT_INT *out_samples = data; |
|
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; |
|
OUT_INT *outptr, *bp; |
|
int fr, j, n; |
|
|
|
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT)) |
|
return -1; |
|
|
|
*data_size = 0; |
|
// Discard too short frames |
|
if (buf_size < HEADER_SIZE) |
|
return -1; |
|
|
|
// If only one decoder interleave is not needed |
|
outptr = s->frames == 1 ? out_samples : decoded_buf; |
|
|
|
avctx->bit_rate = 0; |
|
|
|
for (fr = 0; fr < s->frames; fr++) { |
|
fsize = AV_RB16(buf) >> 4; |
|
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); |
|
m = s->mp3decctx[fr]; |
|
assert (m != NULL); |
|
|
|
header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header |
|
|
|
if (ff_mpa_check_header(header) < 0) // Bad header, discard block |
|
break; |
|
|
|
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header); |
|
out_size += mp_decode_frame(m, outptr, buf, fsize); |
|
buf += fsize; |
|
len -= fsize; |
|
|
|
if(s->frames > 1) { |
|
n = m->avctx->frame_size*m->nb_channels; |
|
/* interleave output data */ |
|
bp = out_samples + s->coff[fr]; |
|
if(m->nb_channels == 1) { |
|
for(j = 0; j < n; j++) { |
|
*bp = decoded_buf[j]; |
|
bp += avctx->channels; |
|
} |
|
} else { |
|
for(j = 0; j < n; j++) { |
|
bp[0] = decoded_buf[j++]; |
|
bp[1] = decoded_buf[j]; |
|
bp += avctx->channels; |
|
} |
|
} |
|
} |
|
avctx->bit_rate += m->bit_rate; |
|
} |
|
|
|
/* update codec info */ |
|
avctx->sample_rate = s->mp3decctx[0]->sample_rate; |
|
|
|
*data_size = out_size; |
|
return buf_size; |
|
} |
|
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */ |
|
|
|
#if !CONFIG_FLOAT |
|
#if CONFIG_MP1_DECODER |
|
AVCodec ff_mp1_decoder = |
|
{ |
|
"mp1", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_MP1, |
|
sizeof(MPADecodeContext), |
|
decode_init, |
|
NULL, |
|
NULL, |
|
decode_frame, |
|
CODEC_CAP_PARSE_ONLY, |
|
.flush= flush, |
|
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"), |
|
}; |
|
#endif |
|
#if CONFIG_MP2_DECODER |
|
AVCodec ff_mp2_decoder = |
|
{ |
|
"mp2", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_MP2, |
|
sizeof(MPADecodeContext), |
|
decode_init, |
|
NULL, |
|
NULL, |
|
decode_frame, |
|
CODEC_CAP_PARSE_ONLY, |
|
.flush= flush, |
|
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"), |
|
}; |
|
#endif |
|
#if CONFIG_MP3_DECODER |
|
AVCodec ff_mp3_decoder = |
|
{ |
|
"mp3", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_MP3, |
|
sizeof(MPADecodeContext), |
|
decode_init, |
|
NULL, |
|
NULL, |
|
decode_frame, |
|
CODEC_CAP_PARSE_ONLY, |
|
.flush= flush, |
|
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"), |
|
}; |
|
#endif |
|
#if CONFIG_MP3ADU_DECODER |
|
AVCodec ff_mp3adu_decoder = |
|
{ |
|
"mp3adu", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_MP3ADU, |
|
sizeof(MPADecodeContext), |
|
decode_init, |
|
NULL, |
|
NULL, |
|
decode_frame_adu, |
|
CODEC_CAP_PARSE_ONLY, |
|
.flush= flush, |
|
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"), |
|
}; |
|
#endif |
|
#if CONFIG_MP3ON4_DECODER |
|
AVCodec ff_mp3on4_decoder = |
|
{ |
|
"mp3on4", |
|
AVMEDIA_TYPE_AUDIO, |
|
CODEC_ID_MP3ON4, |
|
sizeof(MP3On4DecodeContext), |
|
decode_init_mp3on4, |
|
NULL, |
|
decode_close_mp3on4, |
|
decode_frame_mp3on4, |
|
.flush= flush, |
|
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"), |
|
}; |
|
#endif |
|
#endif
|
|
|