mirror of https://github.com/FFmpeg/FFmpeg.git
780 lines
29 KiB
780 lines
29 KiB
/* |
|
* G.729, G729 Annex D decoders |
|
* Copyright (c) 2008 Vladimir Voroshilov |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include <inttypes.h> |
|
#include <string.h> |
|
|
|
#include "avcodec.h" |
|
#include "libavutil/avutil.h" |
|
#include "get_bits.h" |
|
#include "audiodsp.h" |
|
#include "codec_internal.h" |
|
#include "internal.h" |
|
|
|
|
|
#include "g729.h" |
|
#include "lsp.h" |
|
#include "celp_math.h" |
|
#include "celp_filters.h" |
|
#include "acelp_filters.h" |
|
#include "acelp_pitch_delay.h" |
|
#include "acelp_vectors.h" |
|
#include "g729data.h" |
|
#include "g729postfilter.h" |
|
|
|
/** |
|
* minimum quantized LSF value (3.2.4) |
|
* 0.005 in Q13 |
|
*/ |
|
#define LSFQ_MIN 40 |
|
|
|
/** |
|
* maximum quantized LSF value (3.2.4) |
|
* 3.135 in Q13 |
|
*/ |
|
#define LSFQ_MAX 25681 |
|
|
|
/** |
|
* minimum LSF distance (3.2.4) |
|
* 0.0391 in Q13 |
|
*/ |
|
#define LSFQ_DIFF_MIN 321 |
|
|
|
/// interpolation filter length |
|
#define INTERPOL_LEN 11 |
|
|
|
/** |
|
* minimum gain pitch value (3.8, Equation 47) |
|
* 0.2 in (1.14) |
|
*/ |
|
#define SHARP_MIN 3277 |
|
|
|
/** |
|
* maximum gain pitch value (3.8, Equation 47) |
|
* (EE) This does not comply with the specification. |
|
* Specification says about 0.8, which should be |
|
* 13107 in (1.14), but reference C code uses |
|
* 13017 (equals to 0.7945) instead of it. |
|
*/ |
|
#define SHARP_MAX 13017 |
|
|
|
/** |
|
* MR_ENERGY (mean removed energy) = mean_energy + 10 * log10(2^26 * subframe_size) in (7.13) |
|
*/ |
|
#define MR_ENERGY 1018156 |
|
|
|
#define DECISION_NOISE 0 |
|
#define DECISION_INTERMEDIATE 1 |
|
#define DECISION_VOICE 2 |
|
|
|
typedef enum { |
|
FORMAT_G729_8K = 0, |
|
FORMAT_G729D_6K4, |
|
FORMAT_COUNT, |
|
} G729Formats; |
|
|
|
typedef struct { |
|
uint8_t ac_index_bits[2]; ///< adaptive codebook index for second subframe (size in bits) |
|
uint8_t parity_bit; ///< parity bit for pitch delay |
|
uint8_t gc_1st_index_bits; ///< gain codebook (first stage) index (size in bits) |
|
uint8_t gc_2nd_index_bits; ///< gain codebook (second stage) index (size in bits) |
|
uint8_t fc_signs_bits; ///< number of pulses in fixed-codebook vector |
|
uint8_t fc_indexes_bits; ///< size (in bits) of fixed-codebook index entry |
|
uint8_t block_size; |
|
} G729FormatDescription; |
|
|
|
typedef struct { |
|
/// past excitation signal buffer |
|
int16_t exc_base[2*SUBFRAME_SIZE+PITCH_DELAY_MAX+INTERPOL_LEN]; |
|
|
|
int16_t* exc; ///< start of past excitation data in buffer |
|
int pitch_delay_int_prev; ///< integer part of previous subframe's pitch delay (4.1.3) |
|
|
|
/// (2.13) LSP quantizer outputs |
|
int16_t past_quantizer_output_buf[MA_NP + 1][10]; |
|
int16_t* past_quantizer_outputs[MA_NP + 1]; |
|
|
|
int16_t lsfq[10]; ///< (2.13) quantized LSF coefficients from previous frame |
|
int16_t lsp_buf[2][10]; ///< (0.15) LSP coefficients (previous and current frames) (3.2.5) |
|
int16_t *lsp[2]; ///< pointers to lsp_buf |
|
|
|
int16_t quant_energy[4]; ///< (5.10) past quantized energy |
|
|
|
/// previous speech data for LP synthesis filter |
|
int16_t syn_filter_data[10]; |
|
|
|
|
|
/// residual signal buffer (used in long-term postfilter) |
|
int16_t residual[SUBFRAME_SIZE + RES_PREV_DATA_SIZE]; |
|
|
|
/// previous speech data for residual calculation filter |
|
int16_t res_filter_data[SUBFRAME_SIZE+10]; |
|
|
|
/// previous speech data for short-term postfilter |
|
int16_t pos_filter_data[SUBFRAME_SIZE+10]; |
|
|
|
/// (1.14) pitch gain of current and five previous subframes |
|
int16_t past_gain_pitch[6]; |
|
|
|
/// (14.1) gain code from current and previous subframe |
|
int16_t past_gain_code[2]; |
|
|
|
/// voice decision on previous subframe (0-noise, 1-intermediate, 2-voice), G.729D |
|
int16_t voice_decision; |
|
|
|
int16_t onset; ///< detected onset level (0-2) |
|
int16_t was_periodic; ///< whether previous frame was declared as periodic or not (4.4) |
|
int16_t ht_prev_data; ///< previous data for 4.2.3, equation 86 |
|
int gain_coeff; ///< (1.14) gain coefficient (4.2.4) |
|
uint16_t rand_value; ///< random number generator value (4.4.4) |
|
int ma_predictor_prev; ///< switched MA predictor of LSP quantizer from last good frame |
|
|
|
/// (14.14) high-pass filter data (past input) |
|
int hpf_f[2]; |
|
|
|
/// high-pass filter data (past output) |
|
int16_t hpf_z[2]; |
|
} G729ChannelContext; |
|
|
|
typedef struct { |
|
AudioDSPContext adsp; |
|
|
|
G729ChannelContext *channel_context; |
|
} G729Context; |
|
|
|
static const G729FormatDescription format_g729_8k = { |
|
.ac_index_bits = {8,5}, |
|
.parity_bit = 1, |
|
.gc_1st_index_bits = GC_1ST_IDX_BITS_8K, |
|
.gc_2nd_index_bits = GC_2ND_IDX_BITS_8K, |
|
.fc_signs_bits = 4, |
|
.fc_indexes_bits = 13, |
|
.block_size = G729_8K_BLOCK_SIZE, |
|
}; |
|
|
|
static const G729FormatDescription format_g729d_6k4 = { |
|
.ac_index_bits = {8,4}, |
|
.parity_bit = 0, |
|
.gc_1st_index_bits = GC_1ST_IDX_BITS_6K4, |
|
.gc_2nd_index_bits = GC_2ND_IDX_BITS_6K4, |
|
.fc_signs_bits = 2, |
|
.fc_indexes_bits = 9, |
|
.block_size = G729D_6K4_BLOCK_SIZE, |
|
}; |
|
|
|
/** |
|
* @brief pseudo random number generator |
|
*/ |
|
static inline uint16_t g729_prng(uint16_t value) |
|
{ |
|
return 31821 * value + 13849; |
|
} |
|
|
|
/** |
|
* Decodes LSF (Line Spectral Frequencies) from L0-L3 (3.2.4). |
|
* @param[out] lsfq (2.13) quantized LSF coefficients |
|
* @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames |
|
* @param ma_predictor switched MA predictor of LSP quantizer |
|
* @param vq_1st first stage vector of quantizer |
|
* @param vq_2nd_low second stage lower vector of LSP quantizer |
|
* @param vq_2nd_high second stage higher vector of LSP quantizer |
|
*/ |
|
static void lsf_decode(int16_t* lsfq, int16_t* past_quantizer_outputs[MA_NP + 1], |
|
int16_t ma_predictor, |
|
int16_t vq_1st, int16_t vq_2nd_low, int16_t vq_2nd_high) |
|
{ |
|
int i,j; |
|
static const uint8_t min_distance[2]={10, 5}; //(2.13) |
|
int16_t* quantizer_output = past_quantizer_outputs[MA_NP]; |
|
|
|
for (i = 0; i < 5; i++) { |
|
quantizer_output[i] = cb_lsp_1st[vq_1st][i ] + cb_lsp_2nd[vq_2nd_low ][i ]; |
|
quantizer_output[i + 5] = cb_lsp_1st[vq_1st][i + 5] + cb_lsp_2nd[vq_2nd_high][i + 5]; |
|
} |
|
|
|
for (j = 0; j < 2; j++) { |
|
for (i = 1; i < 10; i++) { |
|
int diff = (quantizer_output[i - 1] - quantizer_output[i] + min_distance[j]) >> 1; |
|
if (diff > 0) { |
|
quantizer_output[i - 1] -= diff; |
|
quantizer_output[i ] += diff; |
|
} |
|
} |
|
} |
|
|
|
for (i = 0; i < 10; i++) { |
|
int sum = quantizer_output[i] * cb_ma_predictor_sum[ma_predictor][i]; |
|
for (j = 0; j < MA_NP; j++) |
|
sum += past_quantizer_outputs[j][i] * cb_ma_predictor[ma_predictor][j][i]; |
|
|
|
lsfq[i] = sum >> 15; |
|
} |
|
|
|
ff_acelp_reorder_lsf(lsfq, LSFQ_DIFF_MIN, LSFQ_MIN, LSFQ_MAX, 10); |
|
} |
|
|
|
/** |
|
* Restores past LSP quantizer output using LSF from previous frame |
|
* @param[in,out] lsfq (2.13) quantized LSF coefficients |
|
* @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames |
|
* @param ma_predictor_prev MA predictor from previous frame |
|
* @param lsfq_prev (2.13) quantized LSF coefficients from previous frame |
|
*/ |
|
static void lsf_restore_from_previous(int16_t* lsfq, |
|
int16_t* past_quantizer_outputs[MA_NP + 1], |
|
int ma_predictor_prev) |
|
{ |
|
int16_t* quantizer_output = past_quantizer_outputs[MA_NP]; |
|
int i,k; |
|
|
|
for (i = 0; i < 10; i++) { |
|
int tmp = lsfq[i] << 15; |
|
|
|
for (k = 0; k < MA_NP; k++) |
|
tmp -= past_quantizer_outputs[k][i] * cb_ma_predictor[ma_predictor_prev][k][i]; |
|
|
|
quantizer_output[i] = ((tmp >> 15) * cb_ma_predictor_sum_inv[ma_predictor_prev][i]) >> 12; |
|
} |
|
} |
|
|
|
/** |
|
* Constructs new excitation signal and applies phase filter to it |
|
* @param[out] out constructed speech signal |
|
* @param in original excitation signal |
|
* @param fc_cur (2.13) original fixed-codebook vector |
|
* @param gain_code (14.1) gain code |
|
* @param subframe_size length of the subframe |
|
*/ |
|
static void g729d_get_new_exc( |
|
int16_t* out, |
|
const int16_t* in, |
|
const int16_t* fc_cur, |
|
int dstate, |
|
int gain_code, |
|
int subframe_size) |
|
{ |
|
int i; |
|
int16_t fc_new[SUBFRAME_SIZE]; |
|
|
|
ff_celp_convolve_circ(fc_new, fc_cur, phase_filter[dstate], subframe_size); |
|
|
|
for (i = 0; i < subframe_size; i++) { |
|
out[i] = in[i]; |
|
out[i] -= (gain_code * fc_cur[i] + 0x2000) >> 14; |
|
out[i] += (gain_code * fc_new[i] + 0x2000) >> 14; |
|
} |
|
} |
|
|
|
/** |
|
* Makes decision about onset in current subframe |
|
* @param past_onset decision result of previous subframe |
|
* @param past_gain_code gain code of current and previous subframe |
|
* |
|
* @return onset decision result for current subframe |
|
*/ |
|
static int g729d_onset_decision(int past_onset, const int16_t* past_gain_code) |
|
{ |
|
if ((past_gain_code[0] >> 1) > past_gain_code[1]) |
|
return 2; |
|
|
|
return FFMAX(past_onset-1, 0); |
|
} |
|
|
|
/** |
|
* Makes decision about voice presence in current subframe |
|
* @param onset onset level |
|
* @param prev_voice_decision voice decision result from previous subframe |
|
* @param past_gain_pitch pitch gain of current and previous subframes |
|
* |
|
* @return voice decision result for current subframe |
|
*/ |
|
static int16_t g729d_voice_decision(int onset, int prev_voice_decision, const int16_t* past_gain_pitch) |
|
{ |
|
int i, low_gain_pitch_cnt, voice_decision; |
|
|
|
if (past_gain_pitch[0] >= 14745) { // 0.9 |
|
voice_decision = DECISION_VOICE; |
|
} else if (past_gain_pitch[0] <= 9830) { // 0.6 |
|
voice_decision = DECISION_NOISE; |
|
} else { |
|
voice_decision = DECISION_INTERMEDIATE; |
|
} |
|
|
|
for (i = 0, low_gain_pitch_cnt = 0; i < 6; i++) |
|
if (past_gain_pitch[i] < 9830) |
|
low_gain_pitch_cnt++; |
|
|
|
if (low_gain_pitch_cnt > 2 && !onset) |
|
voice_decision = DECISION_NOISE; |
|
|
|
if (!onset && voice_decision > prev_voice_decision + 1) |
|
voice_decision--; |
|
|
|
if (onset && voice_decision < DECISION_VOICE) |
|
voice_decision++; |
|
|
|
return voice_decision; |
|
} |
|
|
|
static int32_t scalarproduct_int16_c(const int16_t * v1, const int16_t * v2, int order) |
|
{ |
|
int64_t res = 0; |
|
|
|
while (order--) |
|
res += *v1++ * *v2++; |
|
|
|
if (res > INT32_MAX) return INT32_MAX; |
|
else if (res < INT32_MIN) return INT32_MIN; |
|
|
|
return res; |
|
} |
|
|
|
static av_cold int decoder_init(AVCodecContext * avctx) |
|
{ |
|
G729Context *s = avctx->priv_data; |
|
G729ChannelContext *ctx; |
|
int channels = avctx->ch_layout.nb_channels; |
|
int c,i,k; |
|
|
|
if (channels < 1 || channels > 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n", channels); |
|
return AVERROR(EINVAL); |
|
} |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16P; |
|
|
|
/* Both 8kbit/s and 6.4kbit/s modes uses two subframes per frame. */ |
|
avctx->frame_size = SUBFRAME_SIZE << 1; |
|
|
|
ctx = |
|
s->channel_context = av_mallocz(sizeof(G729ChannelContext) * channels); |
|
if (!ctx) |
|
return AVERROR(ENOMEM); |
|
|
|
for (c = 0; c < channels; c++) { |
|
ctx->gain_coeff = 16384; // 1.0 in (1.14) |
|
|
|
for (k = 0; k < MA_NP + 1; k++) { |
|
ctx->past_quantizer_outputs[k] = ctx->past_quantizer_output_buf[k]; |
|
for (i = 1; i < 11; i++) |
|
ctx->past_quantizer_outputs[k][i - 1] = (18717 * i) >> 3; |
|
} |
|
|
|
ctx->lsp[0] = ctx->lsp_buf[0]; |
|
ctx->lsp[1] = ctx->lsp_buf[1]; |
|
memcpy(ctx->lsp[0], lsp_init, 10 * sizeof(int16_t)); |
|
|
|
ctx->exc = &ctx->exc_base[PITCH_DELAY_MAX+INTERPOL_LEN]; |
|
|
|
ctx->pitch_delay_int_prev = PITCH_DELAY_MIN; |
|
|
|
/* random seed initialization */ |
|
ctx->rand_value = 21845; |
|
|
|
/* quantized prediction error */ |
|
for (i = 0; i < 4; i++) |
|
ctx->quant_energy[i] = -14336; // -14 in (5.10) |
|
|
|
ctx++; |
|
} |
|
|
|
ff_audiodsp_init(&s->adsp); |
|
s->adsp.scalarproduct_int16 = scalarproduct_int16_c; |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
int16_t *out_frame; |
|
GetBitContext gb; |
|
const G729FormatDescription *format; |
|
int c, i; |
|
int16_t *tmp; |
|
G729Formats packet_type; |
|
G729Context *s = avctx->priv_data; |
|
G729ChannelContext *ctx = s->channel_context; |
|
int channels = avctx->ch_layout.nb_channels; |
|
int16_t lp[2][11]; // (3.12) |
|
uint8_t ma_predictor; ///< switched MA predictor of LSP quantizer |
|
uint8_t quantizer_1st; ///< first stage vector of quantizer |
|
uint8_t quantizer_2nd_lo; ///< second stage lower vector of quantizer (size in bits) |
|
uint8_t quantizer_2nd_hi; ///< second stage higher vector of quantizer (size in bits) |
|
|
|
int pitch_delay_int[2]; // pitch delay, integer part |
|
int pitch_delay_3x; // pitch delay, multiplied by 3 |
|
int16_t fc[SUBFRAME_SIZE]; // fixed-codebook vector |
|
int16_t synth[SUBFRAME_SIZE+10]; // fixed-codebook vector |
|
int j, ret; |
|
int gain_before, gain_after; |
|
AVFrame *frame = data; |
|
|
|
frame->nb_samples = SUBFRAME_SIZE<<1; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
|
|
if (buf_size && buf_size % ((G729_8K_BLOCK_SIZE + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * channels) == 0) { |
|
packet_type = FORMAT_G729_8K; |
|
format = &format_g729_8k; |
|
//Reset voice decision |
|
ctx->onset = 0; |
|
ctx->voice_decision = DECISION_VOICE; |
|
av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729 @ 8kbit/s"); |
|
} else if (buf_size == G729D_6K4_BLOCK_SIZE * channels && avctx->codec_id != AV_CODEC_ID_ACELP_KELVIN) { |
|
packet_type = FORMAT_G729D_6K4; |
|
format = &format_g729d_6k4; |
|
av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729D @ 6.4kbit/s"); |
|
} else { |
|
av_log(avctx, AV_LOG_ERROR, "Packet size %d is unknown.\n", buf_size); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
for (c = 0; c < channels; c++) { |
|
int frame_erasure = 0; ///< frame erasure detected during decoding |
|
int bad_pitch = 0; ///< parity check failed |
|
int is_periodic = 0; ///< whether one of the subframes is declared as periodic or not |
|
out_frame = (int16_t*)frame->data[c]; |
|
if (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN) { |
|
if (*buf != ((avctx->ch_layout.nb_channels - 1 - c) * 0x80 | 2)) |
|
avpriv_request_sample(avctx, "First byte value %x for channel %d", *buf, c); |
|
buf++; |
|
} |
|
|
|
for (i = 0; i < format->block_size; i++) |
|
frame_erasure |= buf[i]; |
|
frame_erasure = !frame_erasure; |
|
|
|
init_get_bits8(&gb, buf, format->block_size); |
|
|
|
ma_predictor = get_bits(&gb, 1); |
|
quantizer_1st = get_bits(&gb, VQ_1ST_BITS); |
|
quantizer_2nd_lo = get_bits(&gb, VQ_2ND_BITS); |
|
quantizer_2nd_hi = get_bits(&gb, VQ_2ND_BITS); |
|
|
|
if (frame_erasure) { |
|
lsf_restore_from_previous(ctx->lsfq, ctx->past_quantizer_outputs, |
|
ctx->ma_predictor_prev); |
|
} else { |
|
lsf_decode(ctx->lsfq, ctx->past_quantizer_outputs, |
|
ma_predictor, |
|
quantizer_1st, quantizer_2nd_lo, quantizer_2nd_hi); |
|
ctx->ma_predictor_prev = ma_predictor; |
|
} |
|
|
|
tmp = ctx->past_quantizer_outputs[MA_NP]; |
|
memmove(ctx->past_quantizer_outputs + 1, ctx->past_quantizer_outputs, |
|
MA_NP * sizeof(int16_t*)); |
|
ctx->past_quantizer_outputs[0] = tmp; |
|
|
|
ff_acelp_lsf2lsp(ctx->lsp[1], ctx->lsfq, 10); |
|
|
|
ff_acelp_lp_decode(&lp[0][0], &lp[1][0], ctx->lsp[1], ctx->lsp[0], 10); |
|
|
|
FFSWAP(int16_t*, ctx->lsp[1], ctx->lsp[0]); |
|
|
|
for (i = 0; i < 2; i++) { |
|
int gain_corr_factor; |
|
|
|
uint8_t ac_index; ///< adaptive codebook index |
|
uint8_t pulses_signs; ///< fixed-codebook vector pulse signs |
|
int fc_indexes; ///< fixed-codebook indexes |
|
uint8_t gc_1st_index; ///< gain codebook (first stage) index |
|
uint8_t gc_2nd_index; ///< gain codebook (second stage) index |
|
|
|
ac_index = get_bits(&gb, format->ac_index_bits[i]); |
|
if (!i && format->parity_bit) |
|
bad_pitch = av_parity(ac_index >> 2) == get_bits1(&gb); |
|
fc_indexes = get_bits(&gb, format->fc_indexes_bits); |
|
pulses_signs = get_bits(&gb, format->fc_signs_bits); |
|
gc_1st_index = get_bits(&gb, format->gc_1st_index_bits); |
|
gc_2nd_index = get_bits(&gb, format->gc_2nd_index_bits); |
|
|
|
if (frame_erasure) { |
|
pitch_delay_3x = 3 * ctx->pitch_delay_int_prev; |
|
} else if (!i) { |
|
if (bad_pitch) { |
|
pitch_delay_3x = 3 * ctx->pitch_delay_int_prev; |
|
} else { |
|
pitch_delay_3x = ff_acelp_decode_8bit_to_1st_delay3(ac_index); |
|
} |
|
} else { |
|
int pitch_delay_min = av_clip(ctx->pitch_delay_int_prev - 5, |
|
PITCH_DELAY_MIN, PITCH_DELAY_MAX - 9); |
|
|
|
if (packet_type == FORMAT_G729D_6K4) { |
|
pitch_delay_3x = ff_acelp_decode_4bit_to_2nd_delay3(ac_index, pitch_delay_min); |
|
} else { |
|
pitch_delay_3x = ff_acelp_decode_5_6_bit_to_2nd_delay3(ac_index, pitch_delay_min); |
|
} |
|
} |
|
|
|
/* Round pitch delay to nearest (used everywhere except ff_acelp_interpolate). */ |
|
pitch_delay_int[i] = (pitch_delay_3x + 1) / 3; |
|
if (pitch_delay_int[i] > PITCH_DELAY_MAX) { |
|
av_log(avctx, AV_LOG_WARNING, "pitch_delay_int %d is too large\n", pitch_delay_int[i]); |
|
pitch_delay_int[i] = PITCH_DELAY_MAX; |
|
} |
|
|
|
if (frame_erasure) { |
|
ctx->rand_value = g729_prng(ctx->rand_value); |
|
fc_indexes = av_mod_uintp2(ctx->rand_value, format->fc_indexes_bits); |
|
|
|
ctx->rand_value = g729_prng(ctx->rand_value); |
|
pulses_signs = ctx->rand_value; |
|
} |
|
|
|
|
|
memset(fc, 0, sizeof(int16_t) * SUBFRAME_SIZE); |
|
switch (packet_type) { |
|
case FORMAT_G729_8K: |
|
ff_acelp_fc_pulse_per_track(fc, ff_fc_4pulses_8bits_tracks_13, |
|
ff_fc_4pulses_8bits_track_4, |
|
fc_indexes, pulses_signs, 3, 3); |
|
break; |
|
case FORMAT_G729D_6K4: |
|
ff_acelp_fc_pulse_per_track(fc, ff_fc_2pulses_9bits_track1_gray, |
|
ff_fc_2pulses_9bits_track2_gray, |
|
fc_indexes, pulses_signs, 1, 4); |
|
break; |
|
} |
|
|
|
/* |
|
This filter enhances harmonic components of the fixed-codebook vector to |
|
improve the quality of the reconstructed speech. |
|
|
|
/ fc_v[i], i < pitch_delay |
|
fc_v[i] = < |
|
\ fc_v[i] + gain_pitch * fc_v[i-pitch_delay], i >= pitch_delay |
|
*/ |
|
if (SUBFRAME_SIZE > pitch_delay_int[i]) |
|
ff_acelp_weighted_vector_sum(fc + pitch_delay_int[i], |
|
fc + pitch_delay_int[i], |
|
fc, 1 << 14, |
|
av_clip(ctx->past_gain_pitch[0], SHARP_MIN, SHARP_MAX), |
|
0, 14, |
|
SUBFRAME_SIZE - pitch_delay_int[i]); |
|
|
|
memmove(ctx->past_gain_pitch+1, ctx->past_gain_pitch, 5 * sizeof(int16_t)); |
|
ctx->past_gain_code[1] = ctx->past_gain_code[0]; |
|
|
|
if (frame_erasure) { |
|
ctx->past_gain_pitch[0] = (29491 * ctx->past_gain_pitch[0]) >> 15; // 0.90 (0.15) |
|
ctx->past_gain_code[0] = ( 2007 * ctx->past_gain_code[0] ) >> 11; // 0.98 (0.11) |
|
|
|
gain_corr_factor = 0; |
|
} else { |
|
if (packet_type == FORMAT_G729D_6K4) { |
|
ctx->past_gain_pitch[0] = cb_gain_1st_6k4[gc_1st_index][0] + |
|
cb_gain_2nd_6k4[gc_2nd_index][0]; |
|
gain_corr_factor = cb_gain_1st_6k4[gc_1st_index][1] + |
|
cb_gain_2nd_6k4[gc_2nd_index][1]; |
|
|
|
/* Without check below overflow can occur in ff_acelp_update_past_gain. |
|
It is not issue for G.729, because gain_corr_factor in it's case is always |
|
greater than 1024, while in G.729D it can be even zero. */ |
|
gain_corr_factor = FFMAX(gain_corr_factor, 1024); |
|
#ifndef G729_BITEXACT |
|
gain_corr_factor >>= 1; |
|
#endif |
|
} else { |
|
ctx->past_gain_pitch[0] = cb_gain_1st_8k[gc_1st_index][0] + |
|
cb_gain_2nd_8k[gc_2nd_index][0]; |
|
gain_corr_factor = cb_gain_1st_8k[gc_1st_index][1] + |
|
cb_gain_2nd_8k[gc_2nd_index][1]; |
|
} |
|
|
|
/* Decode the fixed-codebook gain. */ |
|
ctx->past_gain_code[0] = ff_acelp_decode_gain_code(&s->adsp, gain_corr_factor, |
|
fc, MR_ENERGY, |
|
ctx->quant_energy, |
|
ma_prediction_coeff, |
|
SUBFRAME_SIZE, 4); |
|
#ifdef G729_BITEXACT |
|
/* |
|
This correction required to get bit-exact result with |
|
reference code, because gain_corr_factor in G.729D is |
|
two times larger than in original G.729. |
|
|
|
If bit-exact result is not issue then gain_corr_factor |
|
can be simpler divided by 2 before call to g729_get_gain_code |
|
instead of using correction below. |
|
*/ |
|
if (packet_type == FORMAT_G729D_6K4) { |
|
gain_corr_factor >>= 1; |
|
ctx->past_gain_code[0] >>= 1; |
|
} |
|
#endif |
|
} |
|
ff_acelp_update_past_gain(ctx->quant_energy, gain_corr_factor, 2, frame_erasure); |
|
|
|
/* Routine requires rounding to lowest. */ |
|
ff_acelp_interpolate(ctx->exc + i * SUBFRAME_SIZE, |
|
ctx->exc + i * SUBFRAME_SIZE - pitch_delay_3x / 3, |
|
ff_acelp_interp_filter, 6, |
|
(pitch_delay_3x % 3) << 1, |
|
10, SUBFRAME_SIZE); |
|
|
|
ff_acelp_weighted_vector_sum(ctx->exc + i * SUBFRAME_SIZE, |
|
ctx->exc + i * SUBFRAME_SIZE, fc, |
|
(!ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_pitch[0], |
|
( ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_code[0], |
|
1 << 13, 14, SUBFRAME_SIZE); |
|
|
|
memcpy(synth, ctx->syn_filter_data, 10 * sizeof(int16_t)); |
|
|
|
if (ff_celp_lp_synthesis_filter( |
|
synth+10, |
|
&lp[i][1], |
|
ctx->exc + i * SUBFRAME_SIZE, |
|
SUBFRAME_SIZE, |
|
10, |
|
1, |
|
0, |
|
0x800)) |
|
/* Overflow occurred, downscale excitation signal... */ |
|
for (j = 0; j < 2 * SUBFRAME_SIZE + PITCH_DELAY_MAX + INTERPOL_LEN; j++) |
|
ctx->exc_base[j] >>= 2; |
|
|
|
/* ... and make synthesis again. */ |
|
if (packet_type == FORMAT_G729D_6K4) { |
|
int16_t exc_new[SUBFRAME_SIZE]; |
|
|
|
ctx->onset = g729d_onset_decision(ctx->onset, ctx->past_gain_code); |
|
ctx->voice_decision = g729d_voice_decision(ctx->onset, ctx->voice_decision, ctx->past_gain_pitch); |
|
|
|
g729d_get_new_exc(exc_new, ctx->exc + i * SUBFRAME_SIZE, fc, ctx->voice_decision, ctx->past_gain_code[0], SUBFRAME_SIZE); |
|
|
|
ff_celp_lp_synthesis_filter( |
|
synth+10, |
|
&lp[i][1], |
|
exc_new, |
|
SUBFRAME_SIZE, |
|
10, |
|
0, |
|
0, |
|
0x800); |
|
} else { |
|
ff_celp_lp_synthesis_filter( |
|
synth+10, |
|
&lp[i][1], |
|
ctx->exc + i * SUBFRAME_SIZE, |
|
SUBFRAME_SIZE, |
|
10, |
|
0, |
|
0, |
|
0x800); |
|
} |
|
/* Save data (without postfilter) for use in next subframe. */ |
|
memcpy(ctx->syn_filter_data, synth+SUBFRAME_SIZE, 10 * sizeof(int16_t)); |
|
|
|
/* Calculate gain of unfiltered signal for use in AGC. */ |
|
gain_before = 0; |
|
for (j = 0; j < SUBFRAME_SIZE; j++) |
|
gain_before += FFABS(synth[j+10]); |
|
|
|
/* Call postfilter and also update voicing decision for use in next frame. */ |
|
ff_g729_postfilter( |
|
&s->adsp, |
|
&ctx->ht_prev_data, |
|
&is_periodic, |
|
&lp[i][0], |
|
pitch_delay_int[0], |
|
ctx->residual, |
|
ctx->res_filter_data, |
|
ctx->pos_filter_data, |
|
synth+10, |
|
SUBFRAME_SIZE); |
|
|
|
/* Calculate gain of filtered signal for use in AGC. */ |
|
gain_after = 0; |
|
for (j = 0; j < SUBFRAME_SIZE; j++) |
|
gain_after += FFABS(synth[j+10]); |
|
|
|
ctx->gain_coeff = ff_g729_adaptive_gain_control( |
|
gain_before, |
|
gain_after, |
|
synth+10, |
|
SUBFRAME_SIZE, |
|
ctx->gain_coeff); |
|
|
|
if (frame_erasure) { |
|
ctx->pitch_delay_int_prev = FFMIN(ctx->pitch_delay_int_prev + 1, PITCH_DELAY_MAX); |
|
} else { |
|
ctx->pitch_delay_int_prev = pitch_delay_int[i]; |
|
} |
|
|
|
memcpy(synth+8, ctx->hpf_z, 2*sizeof(int16_t)); |
|
ff_acelp_high_pass_filter( |
|
out_frame + i*SUBFRAME_SIZE, |
|
ctx->hpf_f, |
|
synth+10, |
|
SUBFRAME_SIZE); |
|
memcpy(ctx->hpf_z, synth+8+SUBFRAME_SIZE, 2*sizeof(int16_t)); |
|
} |
|
|
|
ctx->was_periodic = is_periodic; |
|
|
|
/* Save signal for use in next frame. */ |
|
memmove(ctx->exc_base, ctx->exc_base + 2 * SUBFRAME_SIZE, (PITCH_DELAY_MAX+INTERPOL_LEN)*sizeof(int16_t)); |
|
|
|
buf += format->block_size; |
|
ctx++; |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
return (format->block_size + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * channels; |
|
} |
|
|
|
static av_cold int decode_close(AVCodecContext *avctx) |
|
{ |
|
G729Context *s = avctx->priv_data; |
|
av_freep(&s->channel_context); |
|
|
|
return 0; |
|
} |
|
|
|
const FFCodec ff_g729_decoder = { |
|
.p.name = "g729", |
|
.p.long_name = NULL_IF_CONFIG_SMALL("G.729"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_G729, |
|
.priv_data_size = sizeof(G729Context), |
|
.init = decoder_init, |
|
.decode = decode_frame, |
|
.close = decode_close, |
|
.p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
}; |
|
|
|
const FFCodec ff_acelp_kelvin_decoder = { |
|
.p.name = "acelp.kelvin", |
|
.p.long_name = NULL_IF_CONFIG_SMALL("Sipro ACELP.KELVIN"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_ACELP_KELVIN, |
|
.priv_data_size = sizeof(G729Context), |
|
.init = decoder_init, |
|
.decode = decode_frame, |
|
.close = decode_close, |
|
.p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
};
|
|
|