mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1578 lines
60 KiB
1578 lines
60 KiB
/* |
|
* Wmapro compatible decoder |
|
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion |
|
* Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file libavcodec/wmaprodec.c |
|
* @brief wmapro decoder implementation |
|
* Wmapro is an MDCT based codec comparable to wma standard or AAC. |
|
* The decoding therefore consists of the following steps: |
|
* - bitstream decoding |
|
* - reconstruction of per-channel data |
|
* - rescaling and inverse quantization |
|
* - IMDCT |
|
* - windowing and overlapp-add |
|
* |
|
* The compressed wmapro bitstream is split into individual packets. |
|
* Every such packet contains one or more wma frames. |
|
* The compressed frames may have a variable length and frames may |
|
* cross packet boundaries. |
|
* Common to all wmapro frames is the number of samples that are stored in |
|
* a frame. |
|
* The number of samples and a few other decode flags are stored |
|
* as extradata that has to be passed to the decoder. |
|
* |
|
* The wmapro frames themselves are again split into a variable number of |
|
* subframes. Every subframe contains the data for 2^N time domain samples |
|
* where N varies between 7 and 12. |
|
* |
|
* Example wmapro bitstream (in samples): |
|
* |
|
* || packet 0 || packet 1 || packet 2 packets |
|
* --------------------------------------------------- |
|
* || frame 0 || frame 1 || frame 2 || frames |
|
* --------------------------------------------------- |
|
* || | | || | | | || || subframes of channel 0 |
|
* --------------------------------------------------- |
|
* || | | || | | | || || subframes of channel 1 |
|
* --------------------------------------------------- |
|
* |
|
* The frame layouts for the individual channels of a wma frame does not need |
|
* to be the same. |
|
* |
|
* However, if the offsets and lengths of several subframes of a frame are the |
|
* same, the subframes of the channels can be grouped. |
|
* Every group may then use special coding techniques like M/S stereo coding |
|
* to improve the compression ratio. These channel transformations do not |
|
* need to be applied to a whole subframe. Instead, they can also work on |
|
* individual scale factor bands (see below). |
|
* The coefficients that carry the audio signal in the frequency domain |
|
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements. |
|
* In addition to that, the encoder can switch to a runlevel coding scheme |
|
* by transmitting subframe_length / 128 zero coefficients. |
|
* |
|
* Before the audio signal can be converted to the time domain, the |
|
* coefficients have to be rescaled and inverse quantized. |
|
* A subframe is therefore split into several scale factor bands that get |
|
* scaled individually. |
|
* Scale factors are submitted for every frame but they might be shared |
|
* between the subframes of a channel. Scale factors are initially DPCM-coded. |
|
* Once scale factors are shared, the differences are transmitted as runlevel |
|
* codes. |
|
* Every subframe length and offset combination in the frame layout shares a |
|
* common quantization factor that can be adjusted for every channel by a |
|
* modifier. |
|
* After the inverse quantization, the coefficients get processed by an IMDCT. |
|
* The resulting values are then windowed with a sine window and the first half |
|
* of the values are added to the second half of the output from the previous |
|
* subframe in order to reconstruct the output samples. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "internal.h" |
|
#include "get_bits.h" |
|
#include "put_bits.h" |
|
#include "wmaprodata.h" |
|
#include "dsputil.h" |
|
#include "wma.h" |
|
|
|
/** current decoder limitations */ |
|
#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels |
|
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel |
|
#define MAX_BANDS 29 ///< max number of scale factor bands |
|
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size |
|
|
|
#define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size |
|
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size |
|
#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes |
|
|
|
|
|
#define VLCBITS 9 |
|
#define SCALEVLCBITS 8 |
|
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) |
|
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) |
|
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) |
|
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) |
|
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) |
|
|
|
static VLC sf_vlc; ///< scale factor DPCM vlc |
|
static VLC sf_rl_vlc; ///< scale factor run length vlc |
|
static VLC vec4_vlc; ///< 4 coefficients per symbol |
|
static VLC vec2_vlc; ///< 2 coefficients per symbol |
|
static VLC vec1_vlc; ///< 1 coefficient per symbol |
|
static VLC coef_vlc[2]; ///< coefficient run length vlc codes |
|
static float sin64[33]; ///< sinus table for decorrelation |
|
|
|
/** |
|
* @brief frame specific decoder context for a single channel |
|
*/ |
|
typedef struct { |
|
int16_t prev_block_len; ///< length of the previous block |
|
uint8_t transmit_coefs; |
|
uint8_t num_subframes; |
|
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples |
|
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame |
|
uint8_t cur_subframe; ///< current subframe number |
|
uint16_t decoded_samples; ///< number of already processed samples |
|
uint8_t grouped; ///< channel is part of a group |
|
int quant_step; ///< quantization step for the current subframe |
|
int8_t reuse_sf; ///< share scale factors between subframes |
|
int8_t scale_factor_step; ///< scaling step for the current subframe |
|
int max_scale_factor; ///< maximum scale factor for the current subframe |
|
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values |
|
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling) |
|
int* scale_factors; ///< pointer to the scale factor values used for decoding |
|
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block |
|
float* coeffs; ///< pointer to the subframe decode buffer |
|
DECLARE_ALIGNED_16(float, out[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]); ///< output buffer |
|
} WMAProChannelCtx; |
|
|
|
/** |
|
* @brief channel group for channel transformations |
|
*/ |
|
typedef struct { |
|
uint8_t num_channels; ///< number of channels in the group |
|
int8_t transform; ///< transform on / off |
|
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band |
|
float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS]; |
|
float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients |
|
} WMAProChannelGrp; |
|
|
|
/** |
|
* @brief main decoder context |
|
*/ |
|
typedef struct WMAProDecodeCtx { |
|
/* generic decoder variables */ |
|
AVCodecContext* avctx; ///< codec context for av_log |
|
DSPContext dsp; ///< accelerated DSP functions |
|
uint8_t frame_data[MAX_FRAMESIZE + |
|
FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data |
|
PutBitContext pb; ///< context for filling the frame_data buffer |
|
FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size |
|
DECLARE_ALIGNED_16(float, tmp[WMAPRO_BLOCK_MAX_SIZE]); ///< IMDCT output buffer |
|
float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes |
|
|
|
/* frame size dependent frame information (set during initialization) */ |
|
uint32_t decode_flags; ///< used compression features |
|
uint8_t len_prefix; ///< frame is prefixed with its length |
|
uint8_t dynamic_range_compression; ///< frame contains DRC data |
|
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0]) |
|
uint16_t samples_per_frame; ///< number of samples to output |
|
uint16_t log2_frame_size; |
|
int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels) |
|
int8_t lfe_channel; ///< lfe channel index |
|
uint8_t max_num_subframes; |
|
uint8_t subframe_len_bits; ///< number of bits used for the subframe length |
|
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1 |
|
uint16_t min_samples_per_subframe; |
|
int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size |
|
int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4) |
|
int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix |
|
int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values |
|
|
|
/* packet decode state */ |
|
GetBitContext pgb; ///< bitstream reader context for the packet |
|
uint8_t packet_offset; ///< frame offset in the packet |
|
uint8_t packet_sequence_number; ///< current packet number |
|
int num_saved_bits; ///< saved number of bits |
|
int frame_offset; ///< frame offset in the bit reservoir |
|
int subframe_offset; ///< subframe offset in the bit reservoir |
|
uint8_t packet_loss; ///< set in case of bitstream error |
|
uint8_t packet_done; ///< set when a packet is fully decoded |
|
|
|
/* frame decode state */ |
|
uint32_t frame_num; ///< current frame number (not used for decoding) |
|
GetBitContext gb; ///< bitstream reader context |
|
int buf_bit_size; ///< buffer size in bits |
|
float* samples; ///< current samplebuffer pointer |
|
float* samples_end; ///< maximum samplebuffer pointer |
|
uint8_t drc_gain; ///< gain for the DRC tool |
|
int8_t skip_frame; ///< skip output step |
|
int8_t parsed_all_subframes; ///< all subframes decoded? |
|
|
|
/* subframe/block decode state */ |
|
int16_t subframe_len; ///< current subframe length |
|
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe |
|
int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS]; |
|
int8_t num_bands; ///< number of scale factor bands |
|
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block |
|
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables |
|
int8_t esc_len; ///< length of escaped coefficients |
|
|
|
uint8_t num_chgroups; ///< number of channel groups |
|
WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information |
|
|
|
WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data |
|
} WMAProDecodeCtx; |
|
|
|
|
|
/** |
|
*@brief helper function to print the most important members of the context |
|
*@param s context |
|
*/ |
|
static void av_cold dump_context(WMAProDecodeCtx *s) |
|
{ |
|
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); |
|
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b); |
|
|
|
PRINT("ed sample bit depth", s->bits_per_sample); |
|
PRINT_HEX("ed decode flags", s->decode_flags); |
|
PRINT("samples per frame", s->samples_per_frame); |
|
PRINT("log2 frame size", s->log2_frame_size); |
|
PRINT("max num subframes", s->max_num_subframes); |
|
PRINT("len prefix", s->len_prefix); |
|
PRINT("num channels", s->num_channels); |
|
} |
|
|
|
/** |
|
*@brief Uninitialize the decoder and free all resources. |
|
*@param avctx codec context |
|
*@return 0 on success, < 0 otherwise |
|
*/ |
|
static av_cold int decode_end(AVCodecContext *avctx) |
|
{ |
|
WMAProDecodeCtx *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
|
ff_mdct_end(&s->mdct_ctx[i]); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Initialize the decoder. |
|
*@param avctx codec context |
|
*@return 0 on success, -1 otherwise |
|
*/ |
|
static av_cold int decode_init(AVCodecContext *avctx) |
|
{ |
|
WMAProDecodeCtx *s = avctx->priv_data; |
|
uint8_t *edata_ptr = avctx->extradata; |
|
unsigned int channel_mask; |
|
int i; |
|
int log2_max_num_subframes; |
|
int num_possible_block_sizes; |
|
|
|
s->avctx = avctx; |
|
dsputil_init(&s->dsp, avctx); |
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
|
|
|
avctx->sample_fmt = SAMPLE_FMT_FLT; |
|
|
|
if (avctx->extradata_size >= 18) { |
|
s->decode_flags = AV_RL16(edata_ptr+14); |
|
channel_mask = AV_RL32(edata_ptr+2); |
|
s->bits_per_sample = AV_RL16(edata_ptr); |
|
/** dump the extradata */ |
|
for (i = 0; i < avctx->extradata_size; i++) |
|
dprintf(avctx, "[%x] ", avctx->extradata[i]); |
|
dprintf(avctx, "\n"); |
|
|
|
} else { |
|
av_log_ask_for_sample(avctx, "Unknown extradata size\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/** generic init */ |
|
s->log2_frame_size = av_log2(avctx->block_align) + 4; |
|
|
|
/** frame info */ |
|
s->skip_frame = 1; /** skip first frame */ |
|
s->packet_loss = 1; |
|
s->len_prefix = (s->decode_flags & 0x40); |
|
|
|
if (!s->len_prefix) { |
|
av_log_ask_for_sample(avctx, "no length prefix\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/** get frame len */ |
|
s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate, |
|
3, s->decode_flags); |
|
|
|
/** init previous block len */ |
|
for (i = 0; i < avctx->channels; i++) |
|
s->channel[i].prev_block_len = s->samples_per_frame; |
|
|
|
/** subframe info */ |
|
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); |
|
s->max_num_subframes = 1 << log2_max_num_subframes; |
|
if (s->max_num_subframes == 16) |
|
s->max_subframe_len_bit = 1; |
|
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; |
|
|
|
num_possible_block_sizes = log2_max_num_subframes + 1; |
|
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; |
|
s->dynamic_range_compression = (s->decode_flags & 0x80); |
|
|
|
if (s->max_num_subframes > MAX_SUBFRAMES) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n", |
|
s->max_num_subframes); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->num_channels = avctx->channels; |
|
|
|
/** extract lfe channel position */ |
|
s->lfe_channel = -1; |
|
|
|
if (channel_mask & 8) { |
|
unsigned int mask; |
|
for (mask = 1; mask < 16; mask <<= 1) { |
|
if (channel_mask & mask) |
|
++s->lfe_channel; |
|
} |
|
} |
|
|
|
if (s->num_channels < 0 || s->num_channels > WMAPRO_MAX_CHANNELS) { |
|
av_log_ask_for_sample(avctx, "invalid number of channels\n"); |
|
return AVERROR_NOTSUPP; |
|
} |
|
|
|
INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, |
|
scale_huffbits, 1, 1, |
|
scale_huffcodes, 2, 2, 616); |
|
|
|
INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, |
|
scale_rl_huffbits, 1, 1, |
|
scale_rl_huffcodes, 4, 4, 1406); |
|
|
|
INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE, |
|
coef0_huffbits, 1, 1, |
|
coef0_huffcodes, 4, 4, 2108); |
|
|
|
INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE, |
|
coef1_huffbits, 1, 1, |
|
coef1_huffcodes, 4, 4, 3912); |
|
|
|
INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, |
|
vec4_huffbits, 1, 1, |
|
vec4_huffcodes, 2, 2, 604); |
|
|
|
INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, |
|
vec2_huffbits, 1, 1, |
|
vec2_huffcodes, 2, 2, 562); |
|
|
|
INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, |
|
vec1_huffbits, 1, 1, |
|
vec1_huffcodes, 2, 2, 562); |
|
|
|
/** calculate number of scale factor bands and their offsets |
|
for every possible block size */ |
|
for (i = 0; i < num_possible_block_sizes; i++) { |
|
int subframe_len = s->samples_per_frame >> i; |
|
int x; |
|
int band = 1; |
|
|
|
s->sfb_offsets[i][0] = 0; |
|
|
|
for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { |
|
int offset = (subframe_len * 2 * critical_freq[x]) |
|
/ s->avctx->sample_rate + 2; |
|
offset &= ~3; |
|
if (offset > s->sfb_offsets[i][band - 1]) |
|
s->sfb_offsets[i][band++] = offset; |
|
} |
|
s->sfb_offsets[i][band - 1] = subframe_len; |
|
s->num_sfb[i] = band - 1; |
|
} |
|
|
|
|
|
/** Scale factors can be shared between blocks of different size |
|
as every block has a different scale factor band layout. |
|
The matrix sf_offsets is needed to find the correct scale factor. |
|
*/ |
|
|
|
for (i = 0; i < num_possible_block_sizes; i++) { |
|
int b; |
|
for (b = 0; b < s->num_sfb[i]; b++) { |
|
int x; |
|
int offset = ((s->sfb_offsets[i][b] |
|
+ s->sfb_offsets[i][b + 1] - 1) << i) >> 1; |
|
for (x = 0; x < num_possible_block_sizes; x++) { |
|
int v = 0; |
|
while (s->sfb_offsets[x][v + 1] << x < offset) |
|
++v; |
|
s->sf_offsets[i][x][b] = v; |
|
} |
|
} |
|
} |
|
|
|
/** init MDCT, FIXME: only init needed sizes */ |
|
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
|
ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1, |
|
1.0 / (1 << (BLOCK_MIN_BITS + i - 1)) |
|
/ (1 << (s->bits_per_sample - 1))); |
|
|
|
/** init MDCT windows: simple sinus window */ |
|
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { |
|
const int n = 1 << (WMAPRO_BLOCK_MAX_BITS - i); |
|
const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; |
|
ff_sine_window_init(ff_sine_windows[win_idx], n); |
|
s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx]; |
|
} |
|
|
|
/** calculate subwoofer cutoff values */ |
|
for (i = 0; i < num_possible_block_sizes; i++) { |
|
int block_size = s->samples_per_frame >> i; |
|
int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1) |
|
/ s->avctx->sample_rate; |
|
s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size); |
|
} |
|
|
|
/** calculate sine values for the decorrelation matrix */ |
|
for (i = 0; i < 33; i++) |
|
sin64[i] = sin(i*M_PI / 64.0); |
|
|
|
if (avctx->debug & FF_DEBUG_BITSTREAM) |
|
dump_context(s); |
|
|
|
avctx->channel_layout = channel_mask; |
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Decode the subframe length. |
|
*@param s context |
|
*@param offset sample offset in the frame |
|
*@return decoded subframe length on success, < 0 in case of an error |
|
*/ |
|
static int decode_subframe_length(WMAProDecodeCtx *s, int offset) |
|
{ |
|
int frame_len_shift = 0; |
|
int subframe_len; |
|
|
|
/** no need to read from the bitstream when only one length is possible */ |
|
if (offset == s->samples_per_frame - s->min_samples_per_subframe) |
|
return s->min_samples_per_subframe; |
|
|
|
/** 1 bit indicates if the subframe is of maximum length */ |
|
if (s->max_subframe_len_bit) { |
|
if (get_bits1(&s->gb)) |
|
frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1); |
|
} else |
|
frame_len_shift = get_bits(&s->gb, s->subframe_len_bits); |
|
|
|
subframe_len = s->samples_per_frame >> frame_len_shift; |
|
|
|
/** sanity check the length */ |
|
if (subframe_len < s->min_samples_per_subframe || |
|
subframe_len > s->samples_per_frame) { |
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n", |
|
subframe_len); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
return subframe_len; |
|
} |
|
|
|
/** |
|
*@brief Decode how the data in the frame is split into subframes. |
|
* Every WMA frame contains the encoded data for a fixed number of |
|
* samples per channel. The data for every channel might be split |
|
* into several subframes. This function will reconstruct the list of |
|
* subframes for every channel. |
|
* |
|
* If the subframes are not evenly split, the algorithm estimates the |
|
* channels with the lowest number of total samples. |
|
* Afterwards, for each of these channels a bit is read from the |
|
* bitstream that indicates if the channel contains a subframe with the |
|
* next subframe size that is going to be read from the bitstream or not. |
|
* If a channel contains such a subframe, the subframe size gets added to |
|
* the channel's subframe list. |
|
* The algorithm repeats these steps until the frame is properly divided |
|
* between the individual channels. |
|
* |
|
*@param s context |
|
*@return 0 on success, < 0 in case of an error |
|
*/ |
|
static int decode_tilehdr(WMAProDecodeCtx *s) |
|
{ |
|
uint16_t num_samples[WMAPRO_MAX_CHANNELS]; /** sum of samples for all currently known subframes of a channel */ |
|
uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /** flag indicating if a channel contains the current subframe */ |
|
int channels_for_cur_subframe = s->num_channels; /** number of channels that contain the current subframe */ |
|
int fixed_channel_layout = 0; /** flag indicating that all channels use the same subframe offsets and sizes */ |
|
int min_channel_len = 0; /** smallest sum of samples (channels with this length will be processed first) */ |
|
int c; |
|
|
|
/* Should never consume more than 3073 bits (256 iterations for the |
|
* while loop when always the minimum amount of 128 samples is substracted |
|
* from missing samples in the 8 channel case). |
|
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4) |
|
*/ |
|
|
|
/** reset tiling information */ |
|
for (c = 0; c < s->num_channels; c++) |
|
s->channel[c].num_subframes = 0; |
|
|
|
memset(num_samples, 0, sizeof(num_samples)); |
|
|
|
if (s->max_num_subframes == 1 || get_bits1(&s->gb)) |
|
fixed_channel_layout = 1; |
|
|
|
/** loop until the frame data is split between the subframes */ |
|
do { |
|
int subframe_len; |
|
|
|
/** check which channels contain the subframe */ |
|
for (c = 0; c < s->num_channels; c++) { |
|
if (num_samples[c] == min_channel_len) { |
|
if (fixed_channel_layout || channels_for_cur_subframe == 1 || |
|
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) |
|
contains_subframe[c] = 1; |
|
else |
|
contains_subframe[c] = get_bits1(&s->gb); |
|
} else |
|
contains_subframe[c] = 0; |
|
} |
|
|
|
/** get subframe length, subframe_len == 0 is not allowed */ |
|
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
/** add subframes to the individual channels and find new min_channel_len */ |
|
min_channel_len += subframe_len; |
|
for (c = 0; c < s->num_channels; c++) { |
|
WMAProChannelCtx* chan = &s->channel[c]; |
|
|
|
if (contains_subframe[c]) { |
|
if (chan->num_subframes >= MAX_SUBFRAMES) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"broken frame: num subframes > 31\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
chan->subframe_len[chan->num_subframes] = subframe_len; |
|
num_samples[c] += subframe_len; |
|
++chan->num_subframes; |
|
if (num_samples[c] > s->samples_per_frame) { |
|
av_log(s->avctx, AV_LOG_ERROR, "broken frame: " |
|
"channel len > samples_per_frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else if (num_samples[c] <= min_channel_len) { |
|
if (num_samples[c] < min_channel_len) { |
|
channels_for_cur_subframe = 0; |
|
min_channel_len = num_samples[c]; |
|
} |
|
++channels_for_cur_subframe; |
|
} |
|
} |
|
} while (min_channel_len < s->samples_per_frame); |
|
|
|
for (c = 0; c < s->num_channels; c++) { |
|
int i; |
|
int offset = 0; |
|
for (i = 0; i < s->channel[c].num_subframes; i++) { |
|
dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]" |
|
" len %i\n", s->frame_num, c, i, |
|
s->channel[c].subframe_len[i]); |
|
s->channel[c].subframe_offset[i] = offset; |
|
offset += s->channel[c].subframe_len[i]; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Calculate a decorrelation matrix from the bitstream parameters. |
|
*@param s codec context |
|
*@param chgroup channel group for which the matrix needs to be calculated |
|
*/ |
|
static void decode_decorrelation_matrix(WMAProDecodeCtx *s, |
|
WMAProChannelGrp *chgroup) |
|
{ |
|
int i; |
|
int offset = 0; |
|
int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS]; |
|
memset(chgroup->decorrelation_matrix, 0, s->num_channels * |
|
s->num_channels * sizeof(*chgroup->decorrelation_matrix)); |
|
|
|
for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++) |
|
rotation_offset[i] = get_bits(&s->gb, 6); |
|
|
|
for (i = 0; i < chgroup->num_channels; i++) |
|
chgroup->decorrelation_matrix[chgroup->num_channels * i + i] = |
|
get_bits1(&s->gb) ? 1.0 : -1.0; |
|
|
|
for (i = 1; i < chgroup->num_channels; i++) { |
|
int x; |
|
for (x = 0; x < i; x++) { |
|
int y; |
|
for (y = 0; y < i + 1; y++) { |
|
float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y]; |
|
float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y]; |
|
int n = rotation_offset[offset + x]; |
|
float sinv; |
|
float cosv; |
|
|
|
if (n < 32) { |
|
sinv = sin64[n]; |
|
cosv = sin64[32 - n]; |
|
} else { |
|
sinv = sin64[64 - n]; |
|
cosv = -sin64[n - 32]; |
|
} |
|
|
|
chgroup->decorrelation_matrix[y + x * chgroup->num_channels] = |
|
(v1 * sinv) - (v2 * cosv); |
|
chgroup->decorrelation_matrix[y + i * chgroup->num_channels] = |
|
(v1 * cosv) + (v2 * sinv); |
|
} |
|
} |
|
offset += i; |
|
} |
|
} |
|
|
|
/** |
|
*@brief Decode channel transformation parameters |
|
*@param s codec context |
|
*@return 0 in case of success, < 0 in case of bitstream errors |
|
*/ |
|
static int decode_channel_transform(WMAProDecodeCtx* s) |
|
{ |
|
int i; |
|
/* should never consume more than 1921 bits for the 8 channel case |
|
* 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS |
|
* + MAX_CHANNELS + MAX_BANDS + 1) |
|
*/ |
|
|
|
/** in the one channel case channel transforms are pointless */ |
|
s->num_chgroups = 0; |
|
if (s->num_channels > 1) { |
|
int remaining_channels = s->channels_for_cur_subframe; |
|
|
|
if (get_bits1(&s->gb)) { |
|
av_log_ask_for_sample(s->avctx, |
|
"unsupported channel transform bit\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
for (s->num_chgroups = 0; remaining_channels && |
|
s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) { |
|
WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups]; |
|
float** channel_data = chgroup->channel_data; |
|
chgroup->num_channels = 0; |
|
chgroup->transform = 0; |
|
|
|
/** decode channel mask */ |
|
if (remaining_channels > 2) { |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int channel_idx = s->channel_indexes_for_cur_subframe[i]; |
|
if (!s->channel[channel_idx].grouped |
|
&& get_bits1(&s->gb)) { |
|
++chgroup->num_channels; |
|
s->channel[channel_idx].grouped = 1; |
|
*channel_data++ = s->channel[channel_idx].coeffs; |
|
} |
|
} |
|
} else { |
|
chgroup->num_channels = remaining_channels; |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int channel_idx = s->channel_indexes_for_cur_subframe[i]; |
|
if (!s->channel[channel_idx].grouped) |
|
*channel_data++ = s->channel[channel_idx].coeffs; |
|
s->channel[channel_idx].grouped = 1; |
|
} |
|
} |
|
|
|
/** decode transform type */ |
|
if (chgroup->num_channels == 2) { |
|
if (get_bits1(&s->gb)) { |
|
if (get_bits1(&s->gb)) { |
|
av_log_ask_for_sample(s->avctx, |
|
"unsupported channel transform type\n"); |
|
} |
|
} else { |
|
chgroup->transform = 1; |
|
if (s->num_channels == 2) { |
|
chgroup->decorrelation_matrix[0] = 1.0; |
|
chgroup->decorrelation_matrix[1] = -1.0; |
|
chgroup->decorrelation_matrix[2] = 1.0; |
|
chgroup->decorrelation_matrix[3] = 1.0; |
|
} else { |
|
/** cos(pi/4) */ |
|
chgroup->decorrelation_matrix[0] = 0.70703125; |
|
chgroup->decorrelation_matrix[1] = -0.70703125; |
|
chgroup->decorrelation_matrix[2] = 0.70703125; |
|
chgroup->decorrelation_matrix[3] = 0.70703125; |
|
} |
|
} |
|
} else if (chgroup->num_channels > 2) { |
|
if (get_bits1(&s->gb)) { |
|
chgroup->transform = 1; |
|
if (get_bits1(&s->gb)) { |
|
decode_decorrelation_matrix(s, chgroup); |
|
} else { |
|
/** FIXME: more than 6 coupled channels not supported */ |
|
if (chgroup->num_channels > 6) { |
|
av_log_ask_for_sample(s->avctx, |
|
"coupled channels > 6\n"); |
|
} else { |
|
memcpy(chgroup->decorrelation_matrix, |
|
default_decorrelation[chgroup->num_channels], |
|
chgroup->num_channels * chgroup->num_channels * |
|
sizeof(*chgroup->decorrelation_matrix)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** decode transform on / off */ |
|
if (chgroup->transform) { |
|
if (!get_bits1(&s->gb)) { |
|
int i; |
|
/** transform can be enabled for individual bands */ |
|
for (i = 0; i < s->num_bands; i++) { |
|
chgroup->transform_band[i] = get_bits1(&s->gb); |
|
} |
|
} else { |
|
memset(chgroup->transform_band, 1, s->num_bands); |
|
} |
|
} |
|
remaining_channels -= chgroup->num_channels; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Extract the coefficients from the bitstream. |
|
*@param s codec context |
|
*@param c current channel number |
|
*@return 0 on success, < 0 in case of bitstream errors |
|
*/ |
|
static int decode_coeffs(WMAProDecodeCtx *s, int c) |
|
{ |
|
/* Integers 0..15 as single-precision floats. The table saves a |
|
costly int to float conversion, and storing the values as |
|
integers allows fast sign-flipping. */ |
|
static const int fval_tab[16] = { |
|
0x00000000, 0x3f800000, 0x40000000, 0x40400000, |
|
0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, |
|
0x41000000, 0x41100000, 0x41200000, 0x41300000, |
|
0x41400000, 0x41500000, 0x41600000, 0x41700000, |
|
}; |
|
int vlctable; |
|
VLC* vlc; |
|
WMAProChannelCtx* ci = &s->channel[c]; |
|
int rl_mode = 0; |
|
int cur_coeff = 0; |
|
int num_zeros = 0; |
|
const uint16_t* run; |
|
const float* level; |
|
|
|
dprintf(s->avctx, "decode coefficients for channel %i\n", c); |
|
|
|
vlctable = get_bits1(&s->gb); |
|
vlc = &coef_vlc[vlctable]; |
|
|
|
if (vlctable) { |
|
run = coef1_run; |
|
level = coef1_level; |
|
} else { |
|
run = coef0_run; |
|
level = coef0_level; |
|
} |
|
|
|
/** decode vector coefficients (consumes up to 167 bits per iteration for |
|
4 vector coded large values) */ |
|
while (!rl_mode && cur_coeff + 3 < s->subframe_len) { |
|
int vals[4]; |
|
int i; |
|
unsigned int idx; |
|
|
|
idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH); |
|
|
|
if (idx == HUFF_VEC4_SIZE - 1) { |
|
for (i = 0; i < 4; i += 2) { |
|
idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); |
|
if (idx == HUFF_VEC2_SIZE - 1) { |
|
int v0, v1; |
|
v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
|
if (v0 == HUFF_VEC1_SIZE - 1) |
|
v0 += ff_wma_get_large_val(&s->gb); |
|
v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
|
if (v1 == HUFF_VEC1_SIZE - 1) |
|
v1 += ff_wma_get_large_val(&s->gb); |
|
((float*)vals)[i ] = v0; |
|
((float*)vals)[i+1] = v1; |
|
} else { |
|
vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ]; |
|
vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; |
|
} |
|
} |
|
} else { |
|
vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; |
|
vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; |
|
vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; |
|
vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; |
|
} |
|
|
|
/** decode sign */ |
|
for (i = 0; i < 4; i++) { |
|
if (vals[i]) { |
|
int sign = get_bits1(&s->gb) - 1; |
|
*(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31; |
|
num_zeros = 0; |
|
} else { |
|
ci->coeffs[cur_coeff] = 0; |
|
/** switch to run level mode when subframe_len / 128 zeros |
|
were found in a row */ |
|
rl_mode |= (++num_zeros > s->subframe_len >> 8); |
|
} |
|
++cur_coeff; |
|
} |
|
} |
|
|
|
/** decode run level coded coefficients */ |
|
if (rl_mode) { |
|
memset(&ci->coeffs[cur_coeff], 0, |
|
sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff)); |
|
if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc, |
|
level, run, 1, ci->coeffs, |
|
cur_coeff, s->subframe_len, |
|
s->subframe_len, s->esc_len, 0)) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Extract scale factors from the bitstream. |
|
*@param s codec context |
|
*@return 0 on success, < 0 in case of bitstream errors |
|
*/ |
|
static int decode_scale_factors(WMAProDecodeCtx* s) |
|
{ |
|
int i; |
|
|
|
/** should never consume more than 5344 bits |
|
* MAX_CHANNELS * (1 + MAX_BANDS * 23) |
|
*/ |
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
int* sf; |
|
int* sf_end; |
|
s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx]; |
|
sf_end = s->channel[c].scale_factors + s->num_bands; |
|
|
|
/** resample scale factors for the new block size |
|
* as the scale factors might need to be resampled several times |
|
* before some new values are transmitted, a backup of the last |
|
* transmitted scale factors is kept in saved_scale_factors |
|
*/ |
|
if (s->channel[c].reuse_sf) { |
|
const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx]; |
|
int b; |
|
for (b = 0; b < s->num_bands; b++) |
|
s->channel[c].scale_factors[b] = |
|
s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++]; |
|
} |
|
|
|
if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) { |
|
|
|
if (!s->channel[c].reuse_sf) { |
|
int val; |
|
/** decode DPCM coded scale factors */ |
|
s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1; |
|
val = 45 / s->channel[c].scale_factor_step; |
|
for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) { |
|
val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60; |
|
*sf = val; |
|
} |
|
} else { |
|
int i; |
|
/** run level decode differences to the resampled factors */ |
|
for (i = 0; i < s->num_bands; i++) { |
|
int idx; |
|
int skip; |
|
int val; |
|
int sign; |
|
|
|
idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH); |
|
|
|
if (!idx) { |
|
uint32_t code = get_bits(&s->gb, 14); |
|
val = code >> 6; |
|
sign = (code & 1) - 1; |
|
skip = (code & 0x3f) >> 1; |
|
} else if (idx == 1) { |
|
break; |
|
} else { |
|
skip = scale_rl_run[idx]; |
|
val = scale_rl_level[idx]; |
|
sign = get_bits1(&s->gb)-1; |
|
} |
|
|
|
i += skip; |
|
if (i >= s->num_bands) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"invalid scale factor coding\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->channel[c].scale_factors[i] += (val ^ sign) - sign; |
|
} |
|
} |
|
/** swap buffers */ |
|
s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx; |
|
s->channel[c].table_idx = s->table_idx; |
|
s->channel[c].reuse_sf = 1; |
|
} |
|
|
|
/** calculate new scale factor maximum */ |
|
s->channel[c].max_scale_factor = s->channel[c].scale_factors[0]; |
|
for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) { |
|
s->channel[c].max_scale_factor = |
|
FFMAX(s->channel[c].max_scale_factor, *sf); |
|
} |
|
|
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Reconstruct the individual channel data. |
|
*@param s codec context |
|
*/ |
|
static void inverse_channel_transform(WMAProDecodeCtx *s) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < s->num_chgroups; i++) { |
|
if (s->chgroup[i].transform) { |
|
float data[WMAPRO_MAX_CHANNELS]; |
|
const int num_channels = s->chgroup[i].num_channels; |
|
float** ch_data = s->chgroup[i].channel_data; |
|
float** ch_end = ch_data + num_channels; |
|
const int8_t* tb = s->chgroup[i].transform_band; |
|
int16_t* sfb; |
|
|
|
/** multichannel decorrelation */ |
|
for (sfb = s->cur_sfb_offsets; |
|
sfb < s->cur_sfb_offsets + s->num_bands; sfb++) { |
|
int y; |
|
if (*tb++ == 1) { |
|
/** multiply values with the decorrelation_matrix */ |
|
for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) { |
|
const float* mat = s->chgroup[i].decorrelation_matrix; |
|
const float* data_end = data + num_channels; |
|
float* data_ptr = data; |
|
float** ch; |
|
|
|
for (ch = ch_data; ch < ch_end; ch++) |
|
*data_ptr++ = (*ch)[y]; |
|
|
|
for (ch = ch_data; ch < ch_end; ch++) { |
|
float sum = 0; |
|
data_ptr = data; |
|
while (data_ptr < data_end) |
|
sum += *data_ptr++ * *mat++; |
|
|
|
(*ch)[y] = sum; |
|
} |
|
} |
|
} else if (s->num_channels == 2) { |
|
int len = FFMIN(sfb[1], s->subframe_len) - sfb[0]; |
|
s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0], |
|
ch_data[0] + sfb[0], |
|
181.0 / 128, len); |
|
s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0], |
|
ch_data[1] + sfb[0], |
|
181.0 / 128, len); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
*@brief Apply sine window and reconstruct the output buffer. |
|
*@param s codec context |
|
*/ |
|
static void wmapro_window(WMAProDecodeCtx *s) |
|
{ |
|
int i; |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
float* window; |
|
int winlen = s->channel[c].prev_block_len; |
|
float* start = s->channel[c].coeffs - (winlen >> 1); |
|
|
|
if (s->subframe_len < winlen) { |
|
start += (winlen - s->subframe_len) >> 1; |
|
winlen = s->subframe_len; |
|
} |
|
|
|
window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS]; |
|
|
|
winlen >>= 1; |
|
|
|
s->dsp.vector_fmul_window(start, start, start + winlen, |
|
window, 0, winlen); |
|
|
|
s->channel[c].prev_block_len = s->subframe_len; |
|
} |
|
} |
|
|
|
/** |
|
*@brief Decode a single subframe (block). |
|
*@param s codec context |
|
*@return 0 on success, < 0 when decoding failed |
|
*/ |
|
static int decode_subframe(WMAProDecodeCtx *s) |
|
{ |
|
int offset = s->samples_per_frame; |
|
int subframe_len = s->samples_per_frame; |
|
int i; |
|
int total_samples = s->samples_per_frame * s->num_channels; |
|
int transmit_coeffs = 0; |
|
int cur_subwoofer_cutoff; |
|
|
|
s->subframe_offset = get_bits_count(&s->gb); |
|
|
|
/** reset channel context and find the next block offset and size |
|
== the next block of the channel with the smallest number of |
|
decoded samples |
|
*/ |
|
for (i = 0; i < s->num_channels; i++) { |
|
s->channel[i].grouped = 0; |
|
if (offset > s->channel[i].decoded_samples) { |
|
offset = s->channel[i].decoded_samples; |
|
subframe_len = |
|
s->channel[i].subframe_len[s->channel[i].cur_subframe]; |
|
} |
|
} |
|
|
|
dprintf(s->avctx, |
|
"processing subframe with offset %i len %i\n", offset, subframe_len); |
|
|
|
/** get a list of all channels that contain the estimated block */ |
|
s->channels_for_cur_subframe = 0; |
|
for (i = 0; i < s->num_channels; i++) { |
|
const int cur_subframe = s->channel[i].cur_subframe; |
|
/** substract already processed samples */ |
|
total_samples -= s->channel[i].decoded_samples; |
|
|
|
/** and count if there are multiple subframes that match our profile */ |
|
if (offset == s->channel[i].decoded_samples && |
|
subframe_len == s->channel[i].subframe_len[cur_subframe]) { |
|
total_samples -= s->channel[i].subframe_len[cur_subframe]; |
|
s->channel[i].decoded_samples += |
|
s->channel[i].subframe_len[cur_subframe]; |
|
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; |
|
++s->channels_for_cur_subframe; |
|
} |
|
} |
|
|
|
/** check if the frame will be complete after processing the |
|
estimated block */ |
|
if (!total_samples) |
|
s->parsed_all_subframes = 1; |
|
|
|
|
|
dprintf(s->avctx, "subframe is part of %i channels\n", |
|
s->channels_for_cur_subframe); |
|
|
|
/** calculate number of scale factor bands and their offsets */ |
|
s->table_idx = av_log2(s->samples_per_frame/subframe_len); |
|
s->num_bands = s->num_sfb[s->table_idx]; |
|
s->cur_sfb_offsets = s->sfb_offsets[s->table_idx]; |
|
cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx]; |
|
|
|
/** configure the decoder for the current subframe */ |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
|
|
s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1) |
|
+ offset]; |
|
} |
|
|
|
s->subframe_len = subframe_len; |
|
s->esc_len = av_log2(s->subframe_len - 1) + 1; |
|
|
|
/** skip extended header if any */ |
|
if (get_bits1(&s->gb)) { |
|
int num_fill_bits; |
|
if (!(num_fill_bits = get_bits(&s->gb, 2))) { |
|
int len = get_bits(&s->gb, 4); |
|
num_fill_bits = get_bits(&s->gb, len) + 1; |
|
} |
|
|
|
if (num_fill_bits >= 0) { |
|
if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) { |
|
av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
skip_bits_long(&s->gb, num_fill_bits); |
|
} |
|
} |
|
|
|
/** no idea for what the following bit is used */ |
|
if (get_bits1(&s->gb)) { |
|
av_log_ask_for_sample(s->avctx, "reserved bit set\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
|
|
if (decode_channel_transform(s) < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
|
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
if ((s->channel[c].transmit_coefs = get_bits1(&s->gb))) |
|
transmit_coeffs = 1; |
|
} |
|
|
|
if (transmit_coeffs) { |
|
int step; |
|
int quant_step = 90 * s->bits_per_sample >> 4; |
|
if ((get_bits1(&s->gb))) { |
|
/** FIXME: might change run level mode decision */ |
|
av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
/** decode quantization step */ |
|
step = get_sbits(&s->gb, 6); |
|
quant_step += step; |
|
if (step == -32 || step == 31) { |
|
const int sign = (step == 31) - 1; |
|
int quant = 0; |
|
while (get_bits_count(&s->gb) + 5 < s->num_saved_bits && |
|
(step = get_bits(&s->gb, 5)) == 31) { |
|
quant += 31; |
|
} |
|
quant_step += ((quant + step) ^ sign) - sign; |
|
} |
|
if (quant_step < 0) { |
|
av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n"); |
|
} |
|
|
|
/** decode quantization step modifiers for every channel */ |
|
|
|
if (s->channels_for_cur_subframe == 1) { |
|
s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step; |
|
} else { |
|
int modifier_len = get_bits(&s->gb, 3); |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
s->channel[c].quant_step = quant_step; |
|
if (get_bits1(&s->gb)) { |
|
if (modifier_len) { |
|
s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1; |
|
} else |
|
++s->channel[c].quant_step; |
|
} |
|
} |
|
} |
|
|
|
/** decode scale factors */ |
|
if (decode_scale_factors(s) < 0) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n", |
|
get_bits_count(&s->gb) - s->subframe_offset); |
|
|
|
/** parse coefficients */ |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
if (s->channel[c].transmit_coefs && |
|
get_bits_count(&s->gb) < s->num_saved_bits) { |
|
decode_coeffs(s, c); |
|
} else |
|
memset(s->channel[c].coeffs, 0, |
|
sizeof(*s->channel[c].coeffs) * subframe_len); |
|
} |
|
|
|
dprintf(s->avctx, "BITSTREAM: subframe length was %i\n", |
|
get_bits_count(&s->gb) - s->subframe_offset); |
|
|
|
if (transmit_coeffs) { |
|
/** reconstruct the per channel data */ |
|
inverse_channel_transform(s); |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
const int* sf = s->channel[c].scale_factors; |
|
int b; |
|
|
|
if (c == s->lfe_channel) |
|
memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) * |
|
(subframe_len - cur_subwoofer_cutoff)); |
|
|
|
/** inverse quantization and rescaling */ |
|
for (b = 0; b < s->num_bands; b++) { |
|
const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len); |
|
const int exp = s->channel[c].quant_step - |
|
(s->channel[c].max_scale_factor - *sf++) * |
|
s->channel[c].scale_factor_step; |
|
const float quant = pow(10.0, exp / 20.0); |
|
int start = s->cur_sfb_offsets[b]; |
|
s->dsp.vector_fmul_scalar(s->tmp + start, |
|
s->channel[c].coeffs + start, |
|
quant, end - start); |
|
} |
|
|
|
/** apply imdct (ff_imdct_half == DCTIV with reverse) */ |
|
ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS], |
|
s->channel[c].coeffs, s->tmp); |
|
} |
|
} |
|
|
|
/** window and overlapp-add */ |
|
wmapro_window(s); |
|
|
|
/** handled one subframe */ |
|
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
|
int c = s->channel_indexes_for_cur_subframe[i]; |
|
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) { |
|
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
++s->channel[c].cur_subframe; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
*@brief Decode one WMA frame. |
|
*@param s codec context |
|
*@return 0 if the trailer bit indicates that this is the last frame, |
|
* 1 if there are additional frames |
|
*/ |
|
static int decode_frame(WMAProDecodeCtx *s) |
|
{ |
|
GetBitContext* gb = &s->gb; |
|
int more_frames = 0; |
|
int len = 0; |
|
int i; |
|
|
|
/** check for potential output buffer overflow */ |
|
if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) { |
|
/** return an error if no frame could be decoded at all */ |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"not enough space for the output samples\n"); |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
|
|
/** get frame length */ |
|
if (s->len_prefix) |
|
len = get_bits(gb, s->log2_frame_size); |
|
|
|
dprintf(s->avctx, "decoding frame with length %x\n", len); |
|
|
|
/** decode tile information */ |
|
if (decode_tilehdr(s)) { |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
|
|
/** read postproc transform */ |
|
if (s->num_channels > 1 && get_bits1(gb)) { |
|
av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n"); |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
|
|
/** read drc info */ |
|
if (s->dynamic_range_compression) { |
|
s->drc_gain = get_bits(gb, 8); |
|
dprintf(s->avctx, "drc_gain %i\n", s->drc_gain); |
|
} |
|
|
|
/** no idea what these are for, might be the number of samples |
|
that need to be skipped at the beginning or end of a stream */ |
|
if (get_bits1(gb)) { |
|
int skip; |
|
|
|
/** usually true for the first frame */ |
|
if (get_bits1(gb)) { |
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
|
dprintf(s->avctx, "start skip: %i\n", skip); |
|
} |
|
|
|
/** sometimes true for the last frame */ |
|
if (get_bits1(gb)) { |
|
skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); |
|
dprintf(s->avctx, "end skip: %i\n", skip); |
|
} |
|
|
|
} |
|
|
|
dprintf(s->avctx, "BITSTREAM: frame header length was %i\n", |
|
get_bits_count(gb) - s->frame_offset); |
|
|
|
/** reset subframe states */ |
|
s->parsed_all_subframes = 0; |
|
for (i = 0; i < s->num_channels; i++) { |
|
s->channel[i].decoded_samples = 0; |
|
s->channel[i].cur_subframe = 0; |
|
s->channel[i].reuse_sf = 0; |
|
} |
|
|
|
/** decode all subframes */ |
|
while (!s->parsed_all_subframes) { |
|
if (decode_subframe(s) < 0) { |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
} |
|
|
|
/** interleave samples and write them to the output buffer */ |
|
for (i = 0; i < s->num_channels; i++) { |
|
float* ptr; |
|
int incr = s->num_channels; |
|
float* iptr = s->channel[i].out; |
|
int x; |
|
|
|
ptr = s->samples + i; |
|
|
|
for (x = 0; x < s->samples_per_frame; x++) { |
|
*ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0); |
|
ptr += incr; |
|
} |
|
|
|
/** reuse second half of the IMDCT output for the next frame */ |
|
memcpy(&s->channel[i].out[0], |
|
&s->channel[i].out[s->samples_per_frame], |
|
s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); |
|
} |
|
|
|
if (s->skip_frame) { |
|
s->skip_frame = 0; |
|
} else |
|
s->samples += s->num_channels * s->samples_per_frame; |
|
|
|
if (len != (get_bits_count(gb) - s->frame_offset) + 2) { |
|
/** FIXME: not sure if this is always an error */ |
|
av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n", |
|
s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1); |
|
s->packet_loss = 1; |
|
return 0; |
|
} |
|
|
|
/** skip the rest of the frame data */ |
|
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1); |
|
|
|
/** decode trailer bit */ |
|
more_frames = get_bits1(gb); |
|
|
|
++s->frame_num; |
|
return more_frames; |
|
} |
|
|
|
/** |
|
*@brief Calculate remaining input buffer length. |
|
*@param s codec context |
|
*@param gb bitstream reader context |
|
*@return remaining size in bits |
|
*/ |
|
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb) |
|
{ |
|
return s->buf_bit_size - get_bits_count(gb); |
|
} |
|
|
|
/** |
|
*@brief Fill the bit reservoir with a (partial) frame. |
|
*@param s codec context |
|
*@param gb bitstream reader context |
|
*@param len length of the partial frame |
|
*@param append decides wether to reset the buffer or not |
|
*/ |
|
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len, |
|
int append) |
|
{ |
|
int buflen; |
|
|
|
/** when the frame data does not need to be concatenated, the input buffer |
|
is resetted and additional bits from the previous frame are copyed |
|
and skipped later so that a fast byte copy is possible */ |
|
|
|
if (!append) { |
|
s->frame_offset = get_bits_count(gb) & 7; |
|
s->num_saved_bits = s->frame_offset; |
|
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
|
} |
|
|
|
buflen = (s->num_saved_bits + len + 8) >> 3; |
|
|
|
if (len <= 0 || buflen > MAX_FRAMESIZE) { |
|
av_log_ask_for_sample(s->avctx, "input buffer too small\n"); |
|
s->packet_loss = 1; |
|
return; |
|
} |
|
|
|
s->num_saved_bits += len; |
|
if (!append) { |
|
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), |
|
s->num_saved_bits); |
|
} else { |
|
int align = 8 - (get_bits_count(gb) & 7); |
|
align = FFMIN(align, len); |
|
put_bits(&s->pb, align, get_bits(gb, align)); |
|
len -= align; |
|
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len); |
|
} |
|
skip_bits_long(gb, len); |
|
|
|
{ |
|
PutBitContext tmp = s->pb; |
|
flush_put_bits(&tmp); |
|
} |
|
|
|
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); |
|
skip_bits(&s->gb, s->frame_offset); |
|
} |
|
|
|
/** |
|
*@brief Decode a single WMA packet. |
|
*@param avctx codec context |
|
*@param data the output buffer |
|
*@param data_size number of bytes that were written to the output buffer |
|
*@param avpkt input packet |
|
*@return number of bytes that were read from the input buffer |
|
*/ |
|
static int decode_packet(AVCodecContext *avctx, |
|
void *data, int *data_size, AVPacket* avpkt) |
|
{ |
|
WMAProDecodeCtx *s = avctx->priv_data; |
|
GetBitContext* gb = &s->pgb; |
|
const uint8_t* buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
int num_bits_prev_frame; |
|
int packet_sequence_number; |
|
|
|
s->samples = data; |
|
s->samples_end = (float*)((int8_t*)data + *data_size); |
|
*data_size = 0; |
|
|
|
if (s->packet_done || s->packet_loss) { |
|
s->packet_done = 0; |
|
s->buf_bit_size = buf_size << 3; |
|
|
|
/** sanity check for the buffer length */ |
|
if (buf_size < avctx->block_align) |
|
return 0; |
|
|
|
buf_size = avctx->block_align; |
|
|
|
/** parse packet header */ |
|
init_get_bits(gb, buf, s->buf_bit_size); |
|
packet_sequence_number = get_bits(gb, 4); |
|
skip_bits(gb, 2); |
|
|
|
/** get number of bits that need to be added to the previous frame */ |
|
num_bits_prev_frame = get_bits(gb, s->log2_frame_size); |
|
dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number, |
|
num_bits_prev_frame); |
|
|
|
/** check for packet loss */ |
|
if (!s->packet_loss && |
|
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { |
|
s->packet_loss = 1; |
|
av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n", |
|
s->packet_sequence_number, packet_sequence_number); |
|
} |
|
s->packet_sequence_number = packet_sequence_number; |
|
|
|
if (num_bits_prev_frame > 0) { |
|
/** append the previous frame data to the remaining data from the |
|
previous packet to create a full frame */ |
|
save_bits(s, gb, num_bits_prev_frame, 1); |
|
dprintf(avctx, "accumulated %x bits of frame data\n", |
|
s->num_saved_bits - s->frame_offset); |
|
|
|
/** decode the cross packet frame if it is valid */ |
|
if (!s->packet_loss) |
|
decode_frame(s); |
|
} else if (s->num_saved_bits - s->frame_offset) { |
|
dprintf(avctx, "ignoring %x previously saved bits\n", |
|
s->num_saved_bits - s->frame_offset); |
|
} |
|
|
|
s->packet_loss = 0; |
|
|
|
} else { |
|
int frame_size; |
|
s->buf_bit_size = avpkt->size << 3; |
|
init_get_bits(gb, avpkt->data, s->buf_bit_size); |
|
skip_bits(gb, s->packet_offset); |
|
if (remaining_bits(s, gb) > s->log2_frame_size && |
|
(frame_size = show_bits(gb, s->log2_frame_size)) && |
|
frame_size <= remaining_bits(s, gb)) { |
|
save_bits(s, gb, frame_size, 0); |
|
s->packet_done = !decode_frame(s); |
|
} else |
|
s->packet_done = 1; |
|
} |
|
|
|
if (s->packet_done && !s->packet_loss && |
|
remaining_bits(s, gb) > 0) { |
|
/** save the rest of the data so that it can be decoded |
|
with the next packet */ |
|
save_bits(s, gb, remaining_bits(s, gb), 0); |
|
} |
|
|
|
*data_size = (int8_t *)s->samples - (int8_t *)data; |
|
s->packet_offset = get_bits_count(gb) & 7; |
|
|
|
return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3; |
|
} |
|
|
|
/** |
|
*@brief Clear decoder buffers (for seeking). |
|
*@param avctx codec context |
|
*/ |
|
static void flush(AVCodecContext *avctx) |
|
{ |
|
WMAProDecodeCtx *s = avctx->priv_data; |
|
int i; |
|
/** reset output buffer as a part of it is used during the windowing of a |
|
new frame */ |
|
for (i = 0; i < s->num_channels; i++) |
|
memset(s->channel[i].out, 0, s->samples_per_frame * |
|
sizeof(*s->channel[i].out)); |
|
s->packet_loss = 1; |
|
} |
|
|
|
|
|
/** |
|
*@brief wmapro decoder |
|
*/ |
|
AVCodec wmapro_decoder = { |
|
"wmapro", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_WMAPRO, |
|
sizeof(WMAProDecodeCtx), |
|
decode_init, |
|
NULL, |
|
decode_end, |
|
decode_packet, |
|
.capabilities = CODEC_CAP_SUBFRAMES, |
|
.flush= flush, |
|
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"), |
|
};
|
|
|