You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

978 lines
36 KiB

/*
* Apple ProRes encoder
*
* Copyright (c) 2011 Anatoliy Wasserman
* Copyright (c) 2012 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Apple ProRes encoder (Anatoliy Wasserman version)
* Known FOURCCs: 'ap4h' (444), 'apch' (HQ), 'apcn' (422), 'apcs' (LT), 'acpo' (Proxy)
*/
#include "libavutil/mem_internal.h"
#include "libavutil/opt.h"
#include "avcodec.h"
#include "dct.h"
#include "encode.h"
#include "internal.h"
#include "profiles.h"
#include "proresdata.h"
#include "put_bits.h"
#include "bytestream.h"
#include "fdctdsp.h"
#define DEFAULT_SLICE_MB_WIDTH 8
static const AVProfile profiles[] = {
{ FF_PROFILE_PRORES_PROXY, "apco"},
{ FF_PROFILE_PRORES_LT, "apcs"},
{ FF_PROFILE_PRORES_STANDARD, "apcn"},
{ FF_PROFILE_PRORES_HQ, "apch"},
{ FF_PROFILE_PRORES_4444, "ap4h"},
{ FF_PROFILE_PRORES_XQ, "ap4x"},
{ FF_PROFILE_UNKNOWN }
};
static const int qp_start_table[] = { 8, 3, 2, 1, 1, 1};
static const int qp_end_table[] = { 13, 9, 6, 6, 5, 4};
static const int bitrate_table[] = { 1000, 2100, 3500, 5400, 7000, 10000};
static const int valid_primaries[] = { AVCOL_PRI_RESERVED0, AVCOL_PRI_BT709, AVCOL_PRI_UNSPECIFIED, AVCOL_PRI_BT470BG,
AVCOL_PRI_SMPTE170M, AVCOL_PRI_BT2020, AVCOL_PRI_SMPTE431, AVCOL_PRI_SMPTE432, INT_MAX };
static const int valid_trc[] = { AVCOL_TRC_RESERVED0, AVCOL_TRC_BT709, AVCOL_TRC_UNSPECIFIED, AVCOL_TRC_SMPTE2084,
AVCOL_TRC_ARIB_STD_B67, INT_MAX };
static const int valid_colorspace[] = { AVCOL_SPC_BT709, AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_SMPTE170M,
AVCOL_SPC_BT2020_NCL, INT_MAX };
static const uint8_t QMAT_LUMA[6][64] = {
{
4, 7, 9, 11, 13, 14, 15, 63,
7, 7, 11, 12, 14, 15, 63, 63,
9, 11, 13, 14, 15, 63, 63, 63,
11, 11, 13, 14, 63, 63, 63, 63,
11, 13, 14, 63, 63, 63, 63, 63,
13, 14, 63, 63, 63, 63, 63, 63,
13, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63, 63
}, {
4, 5, 6, 7, 9, 11, 13, 15,
5, 5, 7, 8, 11, 13, 15, 17,
6, 7, 9, 11, 13, 15, 15, 17,
7, 7, 9, 11, 13, 15, 17, 19,
7, 9, 11, 13, 14, 16, 19, 23,
9, 11, 13, 14, 16, 19, 23, 29,
9, 11, 13, 15, 17, 21, 28, 35,
11, 13, 16, 17, 21, 28, 35, 41
}, {
4, 4, 5, 5, 6, 7, 7, 9,
4, 4, 5, 6, 7, 7, 9, 9,
5, 5, 6, 7, 7, 9, 9, 10,
5, 5, 6, 7, 7, 9, 9, 10,
5, 6, 7, 7, 8, 9, 10, 12,
6, 7, 7, 8, 9, 10, 12, 15,
6, 7, 7, 9, 10, 11, 14, 17,
7, 7, 9, 10, 11, 14, 17, 21
}, {
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 */
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 XQ */
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 3,
2, 2, 2, 2, 2, 2, 3, 3,
2, 2, 2, 2, 2, 3, 3, 3,
2, 2, 2, 2, 3, 3, 3, 4,
2, 2, 2, 2, 3, 3, 4, 4,
}
};
static const uint8_t QMAT_CHROMA[6][64] = {
{
4, 7, 9, 11, 13, 14, 63, 63,
7, 7, 11, 12, 14, 63, 63, 63,
9, 11, 13, 14, 63, 63, 63, 63,
11, 11, 13, 14, 63, 63, 63, 63,
11, 13, 14, 63, 63, 63, 63, 63,
13, 14, 63, 63, 63, 63, 63, 63,
13, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63, 63
}, {
4, 5, 6, 7, 9, 11, 13, 15,
5, 5, 7, 8, 11, 13, 15, 17,
6, 7, 9, 11, 13, 15, 15, 17,
7, 7, 9, 11, 13, 15, 17, 19,
7, 9, 11, 13, 14, 16, 19, 23,
9, 11, 13, 14, 16, 19, 23, 29,
9, 11, 13, 15, 17, 21, 28, 35,
11, 13, 16, 17, 21, 28, 35, 41
}, {
4, 4, 5, 5, 6, 7, 7, 9,
4, 4, 5, 6, 7, 7, 9, 9,
5, 5, 6, 7, 7, 9, 9, 10,
5, 5, 6, 7, 7, 9, 9, 10,
5, 6, 7, 7, 8, 9, 10, 12,
6, 7, 7, 8, 9, 10, 12, 15,
6, 7, 7, 9, 10, 11, 14, 17,
7, 7, 9, 10, 11, 14, 17, 21
}, {
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 */
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}, { /* 444 xq */
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7
}
};
typedef struct {
AVClass *class;
FDCTDSPContext fdsp;
uint8_t* fill_y;
uint8_t* fill_u;
uint8_t* fill_v;
uint8_t* fill_a;
int qmat_luma[16][64];
int qmat_chroma[16][64];
const uint8_t *scantable;
int is_422;
int need_alpha;
int is_interlaced;
char *vendor;
} ProresContext;
static void encode_codeword(PutBitContext *pb, int val, int codebook)
{
unsigned int rice_order, exp_order, switch_bits, first_exp, exp, zeros;
/* number of bits to switch between rice and exp golomb */
switch_bits = codebook & 3;
rice_order = codebook >> 5;
exp_order = (codebook >> 2) & 7;
first_exp = ((switch_bits + 1) << rice_order);
if (val >= first_exp) { /* exp golomb */
val -= first_exp;
val += (1 << exp_order);
exp = av_log2(val);
zeros = exp - exp_order + switch_bits + 1;
put_bits(pb, zeros, 0);
put_bits(pb, exp + 1, val);
} else if (rice_order) {
put_bits(pb, (val >> rice_order), 0);
put_bits(pb, 1, 1);
put_sbits(pb, rice_order, val);
} else {
put_bits(pb, val, 0);
put_bits(pb, 1, 1);
}
}
#define QSCALE(qmat,ind,val) ((val) / ((qmat)[ind]))
#define TO_GOLOMB(val) (((val) * 2) ^ ((val) >> 31))
#define DIFF_SIGN(val, sign) (((val) >> 31) ^ (sign))
#define IS_NEGATIVE(val) ((((val) >> 31) ^ -1) + 1)
#define TO_GOLOMB2(val,sign) ((val)==0 ? 0 : ((val) << 1) + (sign))
static av_always_inline int get_level(int val)
{
int sign = (val >> 31);
return (val ^ sign) - sign;
}
#define FIRST_DC_CB 0xB8
static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};
static void encode_dc_coeffs(PutBitContext *pb, int16_t *in,
int blocks_per_slice, int *qmat)
{
int prev_dc, code;
int i, sign, idx;
int new_dc, delta, diff_sign, new_code;
prev_dc = QSCALE(qmat, 0, in[0] - 16384);
code = TO_GOLOMB(prev_dc);
encode_codeword(pb, code, FIRST_DC_CB);
code = 5; sign = 0; idx = 64;
for (i = 1; i < blocks_per_slice; i++, idx += 64) {
new_dc = QSCALE(qmat, 0, in[idx] - 16384);
delta = new_dc - prev_dc;
diff_sign = DIFF_SIGN(delta, sign);
new_code = TO_GOLOMB2(get_level(delta), diff_sign);
encode_codeword(pb, new_code, dc_codebook[FFMIN(code, 6)]);
code = new_code;
sign = delta >> 31;
prev_dc = new_dc;
}
}
static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29,
0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28,
0x28, 0x28, 0x28, 0x4C };
static void encode_ac_coeffs(PutBitContext *pb,
int16_t *in, int blocks_per_slice, int *qmat, const uint8_t ff_prores_scan[64])
{
int prev_run = 4;
int prev_level = 2;
int run = 0, level, code, i, j;
for (i = 1; i < 64; i++) {
int indp = ff_prores_scan[i];
for (j = 0; j < blocks_per_slice; j++) {
int val = QSCALE(qmat, indp, in[(j << 6) + indp]);
if (val) {
encode_codeword(pb, run, run_to_cb[FFMIN(prev_run, 15)]);
prev_run = run;
run = 0;
level = get_level(val);
code = level - 1;
encode_codeword(pb, code, lev_to_cb[FFMIN(prev_level, 9)]);
prev_level = level;
put_bits(pb, 1, IS_NEGATIVE(val));
} else {
++run;
}
}
}
}
static void get(uint8_t *pixels, int stride, int16_t* block)
{
int i;
for (i = 0; i < 8; i++) {
AV_WN64(block, AV_RN64(pixels));
AV_WN64(block+4, AV_RN64(pixels+8));
pixels += stride;
block += 8;
}
}
static void fdct_get(FDCTDSPContext *fdsp, uint8_t *pixels, int stride, int16_t* block)
{
get(pixels, stride, block);
fdsp->fdct(block);
}
static void calc_plane_dct(FDCTDSPContext *fdsp, uint8_t *src, int16_t * blocks, int src_stride, int mb_count, int chroma, int is_422)
{
int16_t *block;
int i;
block = blocks;
if (!chroma) { /* Luma plane */
for (i = 0; i < mb_count; i++) {
fdct_get(fdsp, src, src_stride, block + (0 << 6));
fdct_get(fdsp, src + 16, src_stride, block + (1 << 6));
fdct_get(fdsp, src + 8 * src_stride, src_stride, block + (2 << 6));
fdct_get(fdsp, src + 16 + 8 * src_stride, src_stride, block + (3 << 6));
block += 256;
src += 32;
}
} else if (chroma && is_422){ /* chroma plane 422 */
for (i = 0; i < mb_count; i++) {
fdct_get(fdsp, src, src_stride, block + (0 << 6));
fdct_get(fdsp, src + 8 * src_stride, src_stride, block + (1 << 6));
block += (256 >> 1);
src += (32 >> 1);
}
} else { /* chroma plane 444 */
for (i = 0; i < mb_count; i++) {
fdct_get(fdsp, src, src_stride, block + (0 << 6));
fdct_get(fdsp, src + 8 * src_stride, src_stride, block + (1 << 6));
fdct_get(fdsp, src + 16, src_stride, block + (2 << 6));
fdct_get(fdsp, src + 16 + 8 * src_stride, src_stride, block + (3 << 6));
block += 256;
src += 32;
}
}
}
static int encode_slice_plane(int16_t *blocks, int mb_count, uint8_t *buf, unsigned buf_size, int *qmat, int sub_sample_chroma,
const uint8_t ff_prores_scan[64])
{
int blocks_per_slice;
PutBitContext pb;
blocks_per_slice = mb_count << (2 - sub_sample_chroma);
init_put_bits(&pb, buf, buf_size);
encode_dc_coeffs(&pb, blocks, blocks_per_slice, qmat);
encode_ac_coeffs(&pb, blocks, blocks_per_slice, qmat, ff_prores_scan);
flush_put_bits(&pb);
return put_bits_ptr(&pb) - pb.buf;
}
static av_always_inline unsigned encode_slice_data(AVCodecContext *avctx,
int16_t * blocks_y, int16_t * blocks_u, int16_t * blocks_v,
unsigned mb_count, uint8_t *buf, unsigned data_size,
unsigned* y_data_size, unsigned* u_data_size, unsigned* v_data_size,
int qp)
{
ProresContext* ctx = avctx->priv_data;
*y_data_size = encode_slice_plane(blocks_y, mb_count,
buf, data_size, ctx->qmat_luma[qp - 1], 0, ctx->scantable);
if (!(avctx->flags & AV_CODEC_FLAG_GRAY)) {
*u_data_size = encode_slice_plane(blocks_u, mb_count, buf + *y_data_size, data_size - *y_data_size,
ctx->qmat_chroma[qp - 1], ctx->is_422, ctx->scantable);
*v_data_size = encode_slice_plane(blocks_v, mb_count, buf + *y_data_size + *u_data_size,
data_size - *y_data_size - *u_data_size,
ctx->qmat_chroma[qp - 1], ctx->is_422, ctx->scantable);
}
return *y_data_size + *u_data_size + *v_data_size;
}
static void put_alpha_diff(PutBitContext *pb, int cur, int prev)
{
const int abits = 16;
const int dbits = 7;
const int dsize = 1 << dbits - 1;
int diff = cur - prev;
diff = av_mod_uintp2(diff, abits);
if (diff >= (1 << abits) - dsize)
diff -= 1 << abits;
if (diff < -dsize || diff > dsize || !diff) {
put_bits(pb, 1, 1);
put_bits(pb, abits, diff);
} else {
put_bits(pb, 1, 0);
put_bits(pb, dbits - 1, FFABS(diff) - 1);
put_bits(pb, 1, diff < 0);
}
}
static inline void put_alpha_run(PutBitContext *pb, int run)
{
if (run) {
put_bits(pb, 1, 0);
if (run < 0x10)
put_bits(pb, 4, run);
else
put_bits(pb, 15, run);
} else {
put_bits(pb, 1, 1);
}
}
static av_always_inline int encode_alpha_slice_data(AVCodecContext *avctx, int8_t * src_a,
unsigned mb_count, uint8_t *buf, unsigned data_size, unsigned* a_data_size)
{
const int abits = 16;
const int mask = (1 << abits) - 1;
const int num_coeffs = mb_count * 256;
int prev = mask, cur;
int idx = 0;
int run = 0;
int16_t * blocks = (int16_t *)src_a;
PutBitContext pb;
init_put_bits(&pb, buf, data_size);
cur = blocks[idx++];
put_alpha_diff(&pb, cur, prev);
prev = cur;
do {
cur = blocks[idx++];
if (cur != prev) {
put_alpha_run (&pb, run);
put_alpha_diff(&pb, cur, prev);
prev = cur;
run = 0;
} else {
run++;
}
} while (idx < num_coeffs);
if (run)
put_alpha_run(&pb, run);
flush_put_bits(&pb);
*a_data_size = put_bytes_output(&pb);
if (put_bits_left(&pb) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Underestimated required buffer size.\n");
return AVERROR_BUG;
} else {
return 0;
}
}
static inline void subimage_with_fill_template(uint16_t *src, unsigned x, unsigned y,
unsigned stride, unsigned width, unsigned height, uint16_t *dst,
unsigned dst_width, unsigned dst_height, int is_alpha_plane,
int is_interlaced, int is_top_field)
{
int box_width = FFMIN(width - x, dst_width);
int i, j, src_stride, box_height;
uint16_t last_pix, *last_line;
if (!is_interlaced) {
src_stride = stride >> 1;
src += y * src_stride + x;
box_height = FFMIN(height - y, dst_height);
} else {
src_stride = stride; /* 2 lines stride */
src += y * src_stride + x;
box_height = FFMIN(height/2 - y, dst_height);
if (!is_top_field)
src += stride >> 1;
}
for (i = 0; i < box_height; ++i) {
for (j = 0; j < box_width; ++j) {
if (!is_alpha_plane) {
dst[j] = src[j];
} else {
dst[j] = src[j] << 6; /* alpha 10b to 16b */
}
}
if (!is_alpha_plane) {
last_pix = dst[j - 1];
} else {
last_pix = dst[j - 1] << 6; /* alpha 10b to 16b */
}
for (; j < dst_width; j++)
dst[j] = last_pix;
src += src_stride;
dst += dst_width;
}
last_line = dst - dst_width;
for (; i < dst_height; i++) {
for (j = 0; j < dst_width; ++j) {
dst[j] = last_line[j];
}
dst += dst_width;
}
}
static void subimage_with_fill(uint16_t *src, unsigned x, unsigned y,
unsigned stride, unsigned width, unsigned height, uint16_t *dst,
unsigned dst_width, unsigned dst_height, int is_interlaced, int is_top_field)
{
subimage_with_fill_template(src, x, y, stride, width, height, dst, dst_width, dst_height, 0, is_interlaced, is_top_field);
}
/* reorganize alpha data and convert 10b -> 16b */
static void subimage_alpha_with_fill(uint16_t *src, unsigned x, unsigned y,
unsigned stride, unsigned width, unsigned height, uint16_t *dst,
unsigned dst_width, unsigned dst_height, int is_interlaced, int is_top_field)
{
subimage_with_fill_template(src, x, y, stride, width, height, dst, dst_width, dst_height, 1, is_interlaced, is_top_field);
}
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic, int mb_x,
int mb_y, unsigned mb_count, uint8_t *buf, unsigned data_size,
int unsafe, int *qp, int is_interlaced, int is_top_field)
{
int luma_stride, chroma_stride, alpha_stride = 0;
ProresContext* ctx = avctx->priv_data;
int hdr_size = 6 + (ctx->need_alpha * 2); /* v data size is write when there is alpha */
int ret = 0, slice_size;
uint8_t *dest_y, *dest_u, *dest_v;
unsigned y_data_size = 0, u_data_size = 0, v_data_size = 0, a_data_size = 0;
FDCTDSPContext *fdsp = &ctx->fdsp;
int tgt_bits = (mb_count * bitrate_table[avctx->profile]) >> 2;
int low_bytes = (tgt_bits - (tgt_bits >> 3)) >> 3; // 12% bitrate fluctuation
int high_bytes = (tgt_bits + (tgt_bits >> 3)) >> 3;
LOCAL_ALIGNED(16, int16_t, blocks_y, [DEFAULT_SLICE_MB_WIDTH << 8]);
LOCAL_ALIGNED(16, int16_t, blocks_u, [DEFAULT_SLICE_MB_WIDTH << 8]);
LOCAL_ALIGNED(16, int16_t, blocks_v, [DEFAULT_SLICE_MB_WIDTH << 8]);
luma_stride = pic->linesize[0];
chroma_stride = pic->linesize[1];
if (ctx->need_alpha)
alpha_stride = pic->linesize[3];
if (!is_interlaced) {
dest_y = pic->data[0] + (mb_y << 4) * luma_stride + (mb_x << 5);
dest_u = pic->data[1] + (mb_y << 4) * chroma_stride + (mb_x << (5 - ctx->is_422));
dest_v = pic->data[2] + (mb_y << 4) * chroma_stride + (mb_x << (5 - ctx->is_422));
} else {
dest_y = pic->data[0] + (mb_y << 4) * luma_stride * 2 + (mb_x << 5);
dest_u = pic->data[1] + (mb_y << 4) * chroma_stride * 2 + (mb_x << (5 - ctx->is_422));
dest_v = pic->data[2] + (mb_y << 4) * chroma_stride * 2 + (mb_x << (5 - ctx->is_422));
if (!is_top_field){ /* bottom field, offset dest */
dest_y += luma_stride;
dest_u += chroma_stride;
dest_v += chroma_stride;
}
}
if (unsafe) {
subimage_with_fill((uint16_t *) pic->data[0], mb_x << 4, mb_y << 4,
luma_stride, avctx->width, avctx->height,
(uint16_t *) ctx->fill_y, mb_count << 4, 16, is_interlaced, is_top_field);
subimage_with_fill((uint16_t *) pic->data[1], mb_x << (4 - ctx->is_422), mb_y << 4,
chroma_stride, avctx->width >> ctx->is_422, avctx->height,
(uint16_t *) ctx->fill_u, mb_count << (4 - ctx->is_422), 16, is_interlaced, is_top_field);
subimage_with_fill((uint16_t *) pic->data[2], mb_x << (4 - ctx->is_422), mb_y << 4,
chroma_stride, avctx->width >> ctx->is_422, avctx->height,
(uint16_t *) ctx->fill_v, mb_count << (4 - ctx->is_422), 16, is_interlaced, is_top_field);
/* no need for interlaced special case, data already reorganized in subimage_with_fill */
calc_plane_dct(fdsp, ctx->fill_y, blocks_y, mb_count << 5, mb_count, 0, 0);
calc_plane_dct(fdsp, ctx->fill_u, blocks_u, mb_count << (5 - ctx->is_422), mb_count, 1, ctx->is_422);
calc_plane_dct(fdsp, ctx->fill_v, blocks_v, mb_count << (5 - ctx->is_422), mb_count, 1, ctx->is_422);
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
} else {
if (!is_interlaced) {
calc_plane_dct(fdsp, dest_y, blocks_y, luma_stride, mb_count, 0, 0);
calc_plane_dct(fdsp, dest_u, blocks_u, chroma_stride, mb_count, 1, ctx->is_422);
calc_plane_dct(fdsp, dest_v, blocks_v, chroma_stride, mb_count, 1, ctx->is_422);
} else {
calc_plane_dct(fdsp, dest_y, blocks_y, luma_stride * 2, mb_count, 0, 0);
calc_plane_dct(fdsp, dest_u, blocks_u, chroma_stride * 2, mb_count, 1, ctx->is_422);
calc_plane_dct(fdsp, dest_v, blocks_v, chroma_stride * 2, mb_count, 1, ctx->is_422);
}
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
if (slice_size > high_bytes && *qp < qp_end_table[avctx->profile]) {
do {
*qp += 1;
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
} while (slice_size > high_bytes && *qp < qp_end_table[avctx->profile]);
} else if (slice_size < low_bytes && *qp
> qp_start_table[avctx->profile]) {
do {
*qp -= 1;
slice_size = encode_slice_data(avctx, blocks_y, blocks_u, blocks_v,
mb_count, buf + hdr_size, data_size - hdr_size,
&y_data_size, &u_data_size, &v_data_size,
*qp);
} while (slice_size < low_bytes && *qp > qp_start_table[avctx->profile]);
}
}
buf[0] = hdr_size << 3;
buf[1] = *qp;
AV_WB16(buf + 2, y_data_size);
AV_WB16(buf + 4, u_data_size);
if (ctx->need_alpha) {
AV_WB16(buf + 6, v_data_size); /* write v data size only if there is alpha */
subimage_alpha_with_fill((uint16_t *) pic->data[3], mb_x << 4, mb_y << 4,
alpha_stride, avctx->width, avctx->height,
(uint16_t *) ctx->fill_a, mb_count << 4, 16, is_interlaced, is_top_field);
ret = encode_alpha_slice_data(avctx, ctx->fill_a, mb_count,
buf + hdr_size + slice_size,
data_size - hdr_size - slice_size, &a_data_size);
}
if (ret != 0) {
return ret;
}
return hdr_size + y_data_size + u_data_size + v_data_size + a_data_size;
}
static int prores_encode_picture(AVCodecContext *avctx, const AVFrame *pic,
uint8_t *buf, const int buf_size, const int picture_index, const int is_top_field)
{
ProresContext *ctx = avctx->priv_data;
int mb_width = (avctx->width + 15) >> 4;
int hdr_size, sl_size, i;
int mb_y, sl_data_size, qp, mb_height, picture_height, unsafe_mb_height_limit;
int unsafe_bot, unsafe_right;
uint8_t *sl_data, *sl_data_sizes;
int slice_per_line = 0, rem = mb_width;
if (!ctx->is_interlaced) { /* progressive encoding */
mb_height = (avctx->height + 15) >> 4;
unsafe_mb_height_limit = mb_height;
} else {
if (is_top_field) {
picture_height = (avctx->height + 1) / 2;
} else {
picture_height = avctx->height / 2;
}
mb_height = (picture_height + 15) >> 4;
unsafe_mb_height_limit = mb_height;
}
for (i = av_log2(DEFAULT_SLICE_MB_WIDTH); i >= 0; --i) {
slice_per_line += rem >> i;
rem &= (1 << i) - 1;
}
qp = qp_start_table[avctx->profile];
hdr_size = 8; sl_data_size = buf_size - hdr_size;
sl_data_sizes = buf + hdr_size;
sl_data = sl_data_sizes + (slice_per_line * mb_height * 2);
for (mb_y = 0; mb_y < mb_height; mb_y++) {
int mb_x = 0;
int slice_mb_count = DEFAULT_SLICE_MB_WIDTH;
while (mb_x < mb_width) {
while (mb_width - mb_x < slice_mb_count)
slice_mb_count >>= 1;
unsafe_bot = (avctx->height & 0xf) && (mb_y == unsafe_mb_height_limit - 1);
unsafe_right = (avctx->width & 0xf) && (mb_x + slice_mb_count == mb_width);
sl_size = encode_slice(avctx, pic, mb_x, mb_y, slice_mb_count,
sl_data, sl_data_size, unsafe_bot || unsafe_right, &qp, ctx->is_interlaced, is_top_field);
if (sl_size < 0){
return sl_size;
}
bytestream_put_be16(&sl_data_sizes, sl_size);
sl_data += sl_size;
sl_data_size -= sl_size;
mb_x += slice_mb_count;
}
}
buf[0] = hdr_size << 3;
AV_WB32(buf + 1, sl_data - buf);
AV_WB16(buf + 5, slice_per_line * mb_height); /* picture size */
buf[7] = av_log2(DEFAULT_SLICE_MB_WIDTH) << 4; /* number of slices */
return sl_data - buf;
}
static int prores_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pict, int *got_packet)
{
ProresContext *ctx = avctx->priv_data;
int header_size = 148;
uint8_t *buf;
int compress_frame_size, pic_size, ret, is_top_field_first = 0;
uint8_t frame_flags;
int frame_size = FFALIGN(avctx->width, 16) * FFALIGN(avctx->height, 16)*16 + 500 + AV_INPUT_BUFFER_MIN_SIZE; //FIXME choose tighter limit
if ((ret = ff_alloc_packet(avctx, pkt, frame_size + AV_INPUT_BUFFER_MIN_SIZE)) < 0)
return ret;
buf = pkt->data;
compress_frame_size = 8 + header_size;
bytestream_put_be32(&buf, compress_frame_size);/* frame size will be update after picture(s) encoding */
bytestream_put_buffer(&buf, "icpf", 4);
bytestream_put_be16(&buf, header_size);
bytestream_put_be16(&buf, 0); /* version */
bytestream_put_buffer(&buf, ctx->vendor, 4);
bytestream_put_be16(&buf, avctx->width);
bytestream_put_be16(&buf, avctx->height);
frame_flags = 0x82; /* 422 not interlaced */
if (avctx->profile >= FF_PROFILE_PRORES_4444) /* 4444 or 4444 Xq */
frame_flags |= 0x40; /* 444 chroma */
if (ctx->is_interlaced) {
if (pict->top_field_first || !pict->interlaced_frame) { /* tff frame or progressive frame interpret as tff */
av_log(avctx, AV_LOG_DEBUG, "use interlaced encoding, top field first\n");
frame_flags |= 0x04; /* interlaced tff */
is_top_field_first = 1;
} else {
av_log(avctx, AV_LOG_DEBUG, "use interlaced encoding, bottom field first\n");
frame_flags |= 0x08; /* interlaced bff */
}
} else {
av_log(avctx, AV_LOG_DEBUG, "use progressive encoding\n");
}
*buf++ = frame_flags;
*buf++ = 0; /* reserved */
/* only write color properties, if valid value. set to unspecified otherwise */
*buf++ = ff_int_from_list_or_default(avctx, "frame color primaries", pict->color_primaries, valid_primaries, 0);
*buf++ = ff_int_from_list_or_default(avctx, "frame color trc", pict->color_trc, valid_trc, 0);
*buf++ = ff_int_from_list_or_default(avctx, "frame colorspace", pict->colorspace, valid_colorspace, 0);
if (avctx->profile >= FF_PROFILE_PRORES_4444) {
if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10) {
*buf++ = 0xA0;/* src b64a and no alpha */
} else {
*buf++ = 0xA2;/* src b64a and 16b alpha */
}
} else {
*buf++ = 32;/* src v210 and no alpha */
}
*buf++ = 0; /* reserved */
*buf++ = 3; /* luma and chroma matrix present */
bytestream_put_buffer(&buf, QMAT_LUMA[avctx->profile], 64);
bytestream_put_buffer(&buf, QMAT_CHROMA[avctx->profile], 64);
pic_size = prores_encode_picture(avctx, pict, buf,
pkt->size - compress_frame_size, 0, is_top_field_first);/* encode progressive or first field */
if (pic_size < 0) {
return pic_size;
}
compress_frame_size += pic_size;
if (ctx->is_interlaced) { /* encode second field */
pic_size = prores_encode_picture(avctx, pict, pkt->data + compress_frame_size,
pkt->size - compress_frame_size, 1, !is_top_field_first);
if (pic_size < 0) {
return pic_size;
}
compress_frame_size += pic_size;
}
AV_WB32(pkt->data, compress_frame_size);/* update frame size */
pkt->flags |= AV_PKT_FLAG_KEY;
pkt->size = compress_frame_size;
*got_packet = 1;
return 0;
}
static void scale_mat(const uint8_t* src, int* dst, int scale)
{
int i;
for (i = 0; i < 64; i++)
dst[i] = src[i] * scale;
}
static av_cold int prores_encode_init(AVCodecContext *avctx)
{
int i;
ProresContext* ctx = avctx->priv_data;
avctx->bits_per_raw_sample = 10;
ctx->need_alpha = 0;
ctx->is_interlaced = !!(avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT);
if (ctx->is_interlaced) {
ctx->scantable = ff_prores_interlaced_scan;
} else {
ctx->scantable = ff_prores_progressive_scan;
}
if (avctx->width & 0x1) {
av_log(avctx, AV_LOG_ERROR,
"frame width needs to be multiple of 2\n");
return AVERROR(EINVAL);
}
if (avctx->width > 65534 || avctx->height > 65535) {
av_log(avctx, AV_LOG_ERROR,
"The maximum dimensions are 65534x65535\n");
return AVERROR(EINVAL);
}
if (strlen(ctx->vendor) != 4) {
av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n");
return AVERROR(EINVAL);
}
if (avctx->profile == FF_PROFILE_UNKNOWN) {
if (avctx->pix_fmt == AV_PIX_FMT_YUV422P10) {
avctx->profile = FF_PROFILE_PRORES_STANDARD;
av_log(avctx, AV_LOG_INFO,
"encoding with ProRes standard (apcn) profile\n");
} else if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10) {
avctx->profile = FF_PROFILE_PRORES_4444;
av_log(avctx, AV_LOG_INFO,
"encoding with ProRes 4444 (ap4h) profile\n");
} else if (avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
avctx->profile = FF_PROFILE_PRORES_4444;
av_log(avctx, AV_LOG_INFO,
"encoding with ProRes 4444+ (ap4h) profile\n");
} else {
av_log(avctx, AV_LOG_ERROR, "Unknown pixel format\n");
return AVERROR(EINVAL);
}
} else if (avctx->profile < FF_PROFILE_PRORES_PROXY
|| avctx->profile > FF_PROFILE_PRORES_XQ) {
av_log(
avctx,
AV_LOG_ERROR,
"unknown profile %d, use [0 - apco, 1 - apcs, 2 - apcn (default), 3 - apch, 4 - ap4h, 5 - ap4x]\n",
avctx->profile);
return AVERROR(EINVAL);
} else if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P10) && (avctx->profile > FF_PROFILE_PRORES_HQ)){
av_log(avctx, AV_LOG_ERROR,
"encoding with ProRes 444/Xq (ap4h/ap4x) profile, need YUV444P10 input\n");
return AVERROR(EINVAL);
} else if ((avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10)
&& (avctx->profile < FF_PROFILE_PRORES_4444)){
av_log(avctx, AV_LOG_ERROR,
"encoding with ProRes Proxy/LT/422/422 HQ (apco, apcs, apcn, ap4h) profile, need YUV422P10 input\n");
return AVERROR(EINVAL);
}
if (avctx->profile < FF_PROFILE_PRORES_4444) { /* 422 versions */
ctx->is_422 = 1;
if ((avctx->height & 0xf) || (avctx->width & 0xf)) {
ctx->fill_y = av_malloc(4 * (DEFAULT_SLICE_MB_WIDTH << 8));
if (!ctx->fill_y)
return AVERROR(ENOMEM);
ctx->fill_u = ctx->fill_y + (DEFAULT_SLICE_MB_WIDTH << 9);
ctx->fill_v = ctx->fill_u + (DEFAULT_SLICE_MB_WIDTH << 8);
}
} else { /* 444 */
ctx->is_422 = 0;
if ((avctx->height & 0xf) || (avctx->width & 0xf)) {
ctx->fill_y = av_malloc(3 * (DEFAULT_SLICE_MB_WIDTH << 9));
if (!ctx->fill_y)
return AVERROR(ENOMEM);
ctx->fill_u = ctx->fill_y + (DEFAULT_SLICE_MB_WIDTH << 9);
ctx->fill_v = ctx->fill_u + (DEFAULT_SLICE_MB_WIDTH << 9);
}
if (avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
ctx->need_alpha = 1;
ctx->fill_a = av_malloc(DEFAULT_SLICE_MB_WIDTH << 9); /* 8 blocks x 16px x 16px x sizeof (uint16) */
if (!ctx->fill_a)
return AVERROR(ENOMEM);
}
}
ff_fdctdsp_init(&ctx->fdsp, avctx);
avctx->codec_tag = AV_RL32((const uint8_t*)profiles[avctx->profile].name);
for (i = 1; i <= 16; i++) {
scale_mat(QMAT_LUMA[avctx->profile] , ctx->qmat_luma[i - 1] , i);
scale_mat(QMAT_CHROMA[avctx->profile], ctx->qmat_chroma[i - 1], i);
}
return 0;
}
static av_cold int prores_encode_close(AVCodecContext *avctx)
{
ProresContext* ctx = avctx->priv_data;
av_freep(&ctx->fill_y);
av_freep(&ctx->fill_a);
return 0;
}
#define OFFSET(x) offsetof(ProresContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "vendor", "vendor ID", OFFSET(vendor), AV_OPT_TYPE_STRING, { .str = "fmpg" }, 0, 0, VE },
{ NULL }
};
static const AVClass proresaw_enc_class = {
.class_name = "ProResAw encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
static const AVClass prores_enc_class = {
.class_name = "ProRes encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
const AVCodec ff_prores_aw_encoder = {
.name = "prores_aw",
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_PRORES,
.priv_data_size = sizeof(ProresContext),
.init = prores_encode_init,
.close = prores_encode_close,
.encode2 = prores_encode_frame,
.pix_fmts = (const enum AVPixelFormat[]){AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE},
.capabilities = AV_CODEC_CAP_FRAME_THREADS,
.priv_class = &proresaw_enc_class,
.profiles = NULL_IF_CONFIG_SMALL(ff_prores_profiles),
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};
const AVCodec ff_prores_encoder = {
.name = "prores",
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_PRORES,
.priv_data_size = sizeof(ProresContext),
.init = prores_encode_init,
.close = prores_encode_close,
.encode2 = prores_encode_frame,
.pix_fmts = (const enum AVPixelFormat[]){AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE},
.capabilities = AV_CODEC_CAP_FRAME_THREADS,
.priv_class = &prores_enc_class,
.profiles = NULL_IF_CONFIG_SMALL(ff_prores_profiles),
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
};