mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
751 lines
27 KiB
751 lines
27 KiB
/* |
|
* Opus encoder |
|
* Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "encode.h" |
|
#include "opusenc.h" |
|
#include "opus_pvq.h" |
|
#include "opusenc_psy.h" |
|
#include "opustab.h" |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/float_dsp.h" |
|
#include "libavutil/mem_internal.h" |
|
#include "libavutil/opt.h" |
|
#include "bytestream.h" |
|
#include "audio_frame_queue.h" |
|
#include "codec_internal.h" |
|
|
|
typedef struct OpusEncContext { |
|
AVClass *av_class; |
|
OpusEncOptions options; |
|
OpusPsyContext psyctx; |
|
AVCodecContext *avctx; |
|
AudioFrameQueue afq; |
|
AVFloatDSPContext *dsp; |
|
MDCT15Context *mdct[CELT_BLOCK_NB]; |
|
CeltPVQ *pvq; |
|
struct FFBufQueue bufqueue; |
|
|
|
uint8_t enc_id[64]; |
|
int enc_id_bits; |
|
|
|
OpusPacketInfo packet; |
|
|
|
int channels; |
|
|
|
CeltFrame *frame; |
|
OpusRangeCoder *rc; |
|
|
|
/* Actual energy the decoder will have */ |
|
float last_quantized_energy[OPUS_MAX_CHANNELS][CELT_MAX_BANDS]; |
|
|
|
DECLARE_ALIGNED(32, float, scratch)[2048]; |
|
} OpusEncContext; |
|
|
|
static void opus_write_extradata(AVCodecContext *avctx) |
|
{ |
|
uint8_t *bs = avctx->extradata; |
|
|
|
bytestream_put_buffer(&bs, "OpusHead", 8); |
|
bytestream_put_byte (&bs, 0x1); |
|
bytestream_put_byte (&bs, avctx->ch_layout.nb_channels); |
|
bytestream_put_le16 (&bs, avctx->initial_padding); |
|
bytestream_put_le32 (&bs, avctx->sample_rate); |
|
bytestream_put_le16 (&bs, 0x0); |
|
bytestream_put_byte (&bs, 0x0); /* Default layout */ |
|
} |
|
|
|
static int opus_gen_toc(OpusEncContext *s, uint8_t *toc, int *size, int *fsize_needed) |
|
{ |
|
int tmp = 0x0, extended_toc = 0; |
|
static const int toc_cfg[][OPUS_MODE_NB][OPUS_BANDWITH_NB] = { |
|
/* Silk Hybrid Celt Layer */ |
|
/* NB MB WB SWB FB NB MB WB SWB FB NB MB WB SWB FB Bandwidth */ |
|
{ { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 17, 0, 21, 25, 29 } }, /* 2.5 ms */ |
|
{ { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 }, { 18, 0, 22, 26, 30 } }, /* 5 ms */ |
|
{ { 1, 5, 9, 0, 0 }, { 0, 0, 0, 13, 15 }, { 19, 0, 23, 27, 31 } }, /* 10 ms */ |
|
{ { 2, 6, 10, 0, 0 }, { 0, 0, 0, 14, 16 }, { 20, 0, 24, 28, 32 } }, /* 20 ms */ |
|
{ { 3, 7, 11, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }, /* 40 ms */ |
|
{ { 4, 8, 12, 0, 0 }, { 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0 } }, /* 60 ms */ |
|
}; |
|
int cfg = toc_cfg[s->packet.framesize][s->packet.mode][s->packet.bandwidth]; |
|
*fsize_needed = 0; |
|
if (!cfg) |
|
return 1; |
|
if (s->packet.frames == 2) { /* 2 packets */ |
|
if (s->frame[0].framebits == s->frame[1].framebits) { /* same size */ |
|
tmp = 0x1; |
|
} else { /* different size */ |
|
tmp = 0x2; |
|
*fsize_needed = 1; /* put frame sizes in the packet */ |
|
} |
|
} else if (s->packet.frames > 2) { |
|
tmp = 0x3; |
|
extended_toc = 1; |
|
} |
|
tmp |= (s->channels > 1) << 2; /* Stereo or mono */ |
|
tmp |= (cfg - 1) << 3; /* codec configuration */ |
|
*toc++ = tmp; |
|
if (extended_toc) { |
|
for (int i = 0; i < (s->packet.frames - 1); i++) |
|
*fsize_needed |= (s->frame[i].framebits != s->frame[i + 1].framebits); |
|
tmp = (*fsize_needed) << 7; /* vbr flag */ |
|
tmp |= (0) << 6; /* padding flag */ |
|
tmp |= s->packet.frames; |
|
*toc++ = tmp; |
|
} |
|
*size = 1 + extended_toc; |
|
return 0; |
|
} |
|
|
|
static void celt_frame_setup_input(OpusEncContext *s, CeltFrame *f) |
|
{ |
|
AVFrame *cur = NULL; |
|
const int subframesize = s->avctx->frame_size; |
|
int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize; |
|
|
|
cur = ff_bufqueue_get(&s->bufqueue); |
|
|
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *b = &f->block[ch]; |
|
const void *input = cur->extended_data[ch]; |
|
size_t bps = av_get_bytes_per_sample(cur->format); |
|
memcpy(b->overlap, input, bps*cur->nb_samples); |
|
} |
|
|
|
av_frame_free(&cur); |
|
|
|
for (int sf = 0; sf < subframes; sf++) { |
|
if (sf != (subframes - 1)) |
|
cur = ff_bufqueue_get(&s->bufqueue); |
|
else |
|
cur = ff_bufqueue_peek(&s->bufqueue, 0); |
|
|
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *b = &f->block[ch]; |
|
const void *input = cur->extended_data[ch]; |
|
const size_t bps = av_get_bytes_per_sample(cur->format); |
|
const size_t left = (subframesize - cur->nb_samples)*bps; |
|
const size_t len = FFMIN(subframesize, cur->nb_samples)*bps; |
|
memcpy(&b->samples[sf*subframesize], input, len); |
|
memset(&b->samples[cur->nb_samples], 0, left); |
|
} |
|
|
|
/* Last frame isn't popped off and freed yet - we need it for overlap */ |
|
if (sf != (subframes - 1)) |
|
av_frame_free(&cur); |
|
} |
|
} |
|
|
|
/* Apply the pre emphasis filter */ |
|
static void celt_apply_preemph_filter(OpusEncContext *s, CeltFrame *f) |
|
{ |
|
const int subframesize = s->avctx->frame_size; |
|
const int subframes = OPUS_BLOCK_SIZE(s->packet.framesize) / subframesize; |
|
|
|
/* Filter overlap */ |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *b = &f->block[ch]; |
|
float m = b->emph_coeff; |
|
for (int i = 0; i < CELT_OVERLAP; i++) { |
|
float sample = b->overlap[i]; |
|
b->overlap[i] = sample - m; |
|
m = sample * CELT_EMPH_COEFF; |
|
} |
|
b->emph_coeff = m; |
|
} |
|
|
|
/* Filter the samples but do not update the last subframe's coeff - overlap ^^^ */ |
|
for (int sf = 0; sf < subframes; sf++) { |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *b = &f->block[ch]; |
|
float m = b->emph_coeff; |
|
for (int i = 0; i < subframesize; i++) { |
|
float sample = b->samples[sf*subframesize + i]; |
|
b->samples[sf*subframesize + i] = sample - m; |
|
m = sample * CELT_EMPH_COEFF; |
|
} |
|
if (sf != (subframes - 1)) |
|
b->emph_coeff = m; |
|
} |
|
} |
|
} |
|
|
|
/* Create the window and do the mdct */ |
|
static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f) |
|
{ |
|
float *win = s->scratch, *temp = s->scratch + 1920; |
|
|
|
if (f->transient) { |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *b = &f->block[ch]; |
|
float *src1 = b->overlap; |
|
for (int t = 0; t < f->blocks; t++) { |
|
float *src2 = &b->samples[CELT_OVERLAP*t]; |
|
s->dsp->vector_fmul(win, src1, ff_celt_window, 128); |
|
s->dsp->vector_fmul_reverse(&win[CELT_OVERLAP], src2, |
|
ff_celt_window - 8, 128); |
|
src1 = src2; |
|
s->mdct[0]->mdct(s->mdct[0], b->coeffs + t, win, f->blocks); |
|
} |
|
} |
|
} else { |
|
int blk_len = OPUS_BLOCK_SIZE(f->size), wlen = OPUS_BLOCK_SIZE(f->size + 1); |
|
int rwin = blk_len - CELT_OVERLAP, lap_dst = (wlen - blk_len - CELT_OVERLAP) >> 1; |
|
memset(win, 0, wlen*sizeof(float)); |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *b = &f->block[ch]; |
|
|
|
/* Overlap */ |
|
s->dsp->vector_fmul(temp, b->overlap, ff_celt_window, 128); |
|
memcpy(win + lap_dst, temp, CELT_OVERLAP*sizeof(float)); |
|
|
|
/* Samples, flat top window */ |
|
memcpy(&win[lap_dst + CELT_OVERLAP], b->samples, rwin*sizeof(float)); |
|
|
|
/* Samples, windowed */ |
|
s->dsp->vector_fmul_reverse(temp, b->samples + rwin, |
|
ff_celt_window - 8, 128); |
|
memcpy(win + lap_dst + blk_len, temp, CELT_OVERLAP*sizeof(float)); |
|
|
|
s->mdct[f->size]->mdct(s->mdct[f->size], b->coeffs, win, 1); |
|
} |
|
} |
|
|
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *block = &f->block[ch]; |
|
for (int i = 0; i < CELT_MAX_BANDS; i++) { |
|
float ener = 0.0f; |
|
int band_offset = ff_celt_freq_bands[i] << f->size; |
|
int band_size = ff_celt_freq_range[i] << f->size; |
|
float *coeffs = &block->coeffs[band_offset]; |
|
|
|
for (int j = 0; j < band_size; j++) |
|
ener += coeffs[j]*coeffs[j]; |
|
|
|
block->lin_energy[i] = sqrtf(ener) + FLT_EPSILON; |
|
ener = 1.0f/block->lin_energy[i]; |
|
|
|
for (int j = 0; j < band_size; j++) |
|
coeffs[j] *= ener; |
|
|
|
block->energy[i] = log2f(block->lin_energy[i]) - ff_celt_mean_energy[i]; |
|
|
|
/* CELT_ENERGY_SILENCE is what the decoder uses and its not -infinity */ |
|
block->energy[i] = FFMAX(block->energy[i], CELT_ENERGY_SILENCE); |
|
} |
|
} |
|
} |
|
|
|
static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
int tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed; |
|
int bits = f->transient ? 2 : 4; |
|
|
|
tf_select_needed = ((f->size && (opus_rc_tell(rc) + bits + 1) <= f->framebits)); |
|
|
|
for (int i = f->start_band; i < f->end_band; i++) { |
|
if ((opus_rc_tell(rc) + bits + tf_select_needed) <= f->framebits) { |
|
const int tbit = (diff ^ 1) == f->tf_change[i]; |
|
ff_opus_rc_enc_log(rc, tbit, bits); |
|
diff ^= tbit; |
|
tf_changed |= diff; |
|
} |
|
bits = f->transient ? 4 : 5; |
|
} |
|
|
|
if (tf_select_needed && ff_celt_tf_select[f->size][f->transient][0][tf_changed] != |
|
ff_celt_tf_select[f->size][f->transient][1][tf_changed]) { |
|
ff_opus_rc_enc_log(rc, f->tf_select, 1); |
|
tf_select = f->tf_select; |
|
} |
|
|
|
for (int i = f->start_band; i < f->end_band; i++) |
|
f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; |
|
} |
|
|
|
static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f) |
|
{ |
|
float gain = f->pf_gain; |
|
int txval, octave = f->pf_octave, period = f->pf_period, tapset = f->pf_tapset; |
|
|
|
ff_opus_rc_enc_log(rc, f->pfilter, 1); |
|
if (!f->pfilter) |
|
return; |
|
|
|
/* Octave */ |
|
txval = FFMIN(octave, 6); |
|
ff_opus_rc_enc_uint(rc, txval, 6); |
|
octave = txval; |
|
/* Period */ |
|
txval = av_clip(period - (16 << octave) + 1, 0, (1 << (4 + octave)) - 1); |
|
ff_opus_rc_put_raw(rc, period, 4 + octave); |
|
period = txval + (16 << octave) - 1; |
|
/* Gain */ |
|
txval = FFMIN(((int)(gain / 0.09375f)) - 1, 7); |
|
ff_opus_rc_put_raw(rc, txval, 3); |
|
gain = 0.09375f * (txval + 1); |
|
/* Tapset */ |
|
if ((opus_rc_tell(rc) + 2) <= f->framebits) |
|
ff_opus_rc_enc_cdf(rc, tapset, ff_celt_model_tapset); |
|
else |
|
tapset = 0; |
|
/* Finally create the coeffs */ |
|
for (int i = 0; i < 2; i++) { |
|
CeltBlock *block = &f->block[i]; |
|
|
|
block->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD); |
|
block->pf_gains_new[0] = gain * ff_celt_postfilter_taps[tapset][0]; |
|
block->pf_gains_new[1] = gain * ff_celt_postfilter_taps[tapset][1]; |
|
block->pf_gains_new[2] = gain * ff_celt_postfilter_taps[tapset][2]; |
|
} |
|
} |
|
|
|
static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f, |
|
float last_energy[][CELT_MAX_BANDS], int intra) |
|
{ |
|
float alpha, beta, prev[2] = { 0, 0 }; |
|
const uint8_t *pmod = ff_celt_coarse_energy_dist[f->size][intra]; |
|
|
|
/* Inter is really just differential coding */ |
|
if (opus_rc_tell(rc) + 3 <= f->framebits) |
|
ff_opus_rc_enc_log(rc, intra, 3); |
|
else |
|
intra = 0; |
|
|
|
if (intra) { |
|
alpha = 0.0f; |
|
beta = 1.0f - (4915.0f/32768.0f); |
|
} else { |
|
alpha = ff_celt_alpha_coef[f->size]; |
|
beta = ff_celt_beta_coef[f->size]; |
|
} |
|
|
|
for (int i = f->start_band; i < f->end_band; i++) { |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *block = &f->block[ch]; |
|
const int left = f->framebits - opus_rc_tell(rc); |
|
const float last = FFMAX(-9.0f, last_energy[ch][i]); |
|
float diff = block->energy[i] - prev[ch] - last*alpha; |
|
int q_en = lrintf(diff); |
|
if (left >= 15) { |
|
ff_opus_rc_enc_laplace(rc, &q_en, pmod[i << 1] << 7, pmod[(i << 1) + 1] << 6); |
|
} else if (left >= 2) { |
|
q_en = av_clip(q_en, -1, 1); |
|
ff_opus_rc_enc_cdf(rc, 2*q_en + 3*(q_en < 0), ff_celt_model_energy_small); |
|
} else if (left >= 1) { |
|
q_en = av_clip(q_en, -1, 0); |
|
ff_opus_rc_enc_log(rc, (q_en & 1), 1); |
|
} else q_en = -1; |
|
|
|
block->error_energy[i] = q_en - diff; |
|
prev[ch] += beta * q_en; |
|
} |
|
} |
|
} |
|
|
|
static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc, |
|
float last_energy[][CELT_MAX_BANDS]) |
|
{ |
|
uint32_t inter, intra; |
|
OPUS_RC_CHECKPOINT_SPAWN(rc); |
|
|
|
exp_quant_coarse(rc, f, last_energy, 1); |
|
intra = OPUS_RC_CHECKPOINT_BITS(rc); |
|
|
|
OPUS_RC_CHECKPOINT_ROLLBACK(rc); |
|
|
|
exp_quant_coarse(rc, f, last_energy, 0); |
|
inter = OPUS_RC_CHECKPOINT_BITS(rc); |
|
|
|
if (inter > intra) { /* Unlikely */ |
|
OPUS_RC_CHECKPOINT_ROLLBACK(rc); |
|
exp_quant_coarse(rc, f, last_energy, 1); |
|
} |
|
} |
|
|
|
static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc) |
|
{ |
|
for (int i = f->start_band; i < f->end_band; i++) { |
|
if (!f->fine_bits[i]) |
|
continue; |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *block = &f->block[ch]; |
|
int quant, lim = (1 << f->fine_bits[i]); |
|
float offset, diff = 0.5f - block->error_energy[i]; |
|
quant = av_clip(floor(diff*lim), 0, lim - 1); |
|
ff_opus_rc_put_raw(rc, quant, f->fine_bits[i]); |
|
offset = 0.5f - ((quant + 0.5f) * (1 << (14 - f->fine_bits[i])) / 16384.0f); |
|
block->error_energy[i] -= offset; |
|
} |
|
} |
|
} |
|
|
|
static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f) |
|
{ |
|
for (int priority = 0; priority < 2; priority++) { |
|
for (int i = f->start_band; i < f->end_band && (f->framebits - opus_rc_tell(rc)) >= f->channels; i++) { |
|
if (f->fine_priority[i] != priority || f->fine_bits[i] >= CELT_MAX_FINE_BITS) |
|
continue; |
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *block = &f->block[ch]; |
|
const float err = block->error_energy[i]; |
|
const float offset = 0.5f * (1 << (14 - f->fine_bits[i] - 1)) / 16384.0f; |
|
const int sign = FFABS(err + offset) < FFABS(err - offset); |
|
ff_opus_rc_put_raw(rc, sign, 1); |
|
block->error_energy[i] -= offset*(1 - 2*sign); |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, |
|
CeltFrame *f, int index) |
|
{ |
|
ff_opus_rc_enc_init(rc); |
|
|
|
ff_opus_psy_celt_frame_init(&s->psyctx, f, index); |
|
|
|
celt_frame_setup_input(s, f); |
|
|
|
if (f->silence) { |
|
if (f->framebits >= 16) |
|
ff_opus_rc_enc_log(rc, 1, 15); /* Silence (if using explicit singalling) */ |
|
for (int ch = 0; ch < s->channels; ch++) |
|
memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS); |
|
return; |
|
} |
|
|
|
/* Filters */ |
|
celt_apply_preemph_filter(s, f); |
|
if (f->pfilter) { |
|
ff_opus_rc_enc_log(rc, 0, 15); |
|
celt_enc_quant_pfilter(rc, f); |
|
} |
|
|
|
/* Transform */ |
|
celt_frame_mdct(s, f); |
|
|
|
/* Need to handle transient/non-transient switches at any point during analysis */ |
|
while (ff_opus_psy_celt_frame_process(&s->psyctx, f, index)) |
|
celt_frame_mdct(s, f); |
|
|
|
ff_opus_rc_enc_init(rc); |
|
|
|
/* Silence */ |
|
ff_opus_rc_enc_log(rc, 0, 15); |
|
|
|
/* Pitch filter */ |
|
if (!f->start_band && opus_rc_tell(rc) + 16 <= f->framebits) |
|
celt_enc_quant_pfilter(rc, f); |
|
|
|
/* Transient flag */ |
|
if (f->size && opus_rc_tell(rc) + 3 <= f->framebits) |
|
ff_opus_rc_enc_log(rc, f->transient, 3); |
|
|
|
/* Main encoding */ |
|
celt_quant_coarse (f, rc, s->last_quantized_energy); |
|
celt_enc_tf (f, rc); |
|
ff_celt_bitalloc (f, rc, 1); |
|
celt_quant_fine (f, rc); |
|
ff_celt_quant_bands(f, rc); |
|
|
|
/* Anticollapse bit */ |
|
if (f->anticollapse_needed) |
|
ff_opus_rc_put_raw(rc, f->anticollapse, 1); |
|
|
|
/* Final per-band energy adjustments from leftover bits */ |
|
celt_quant_final(s, rc, f); |
|
|
|
for (int ch = 0; ch < f->channels; ch++) { |
|
CeltBlock *block = &f->block[ch]; |
|
for (int i = 0; i < CELT_MAX_BANDS; i++) |
|
s->last_quantized_energy[ch][i] = block->energy[i] + block->error_energy[i]; |
|
} |
|
} |
|
|
|
static inline int write_opuslacing(uint8_t *dst, int v) |
|
{ |
|
dst[0] = FFMIN(v - FFALIGN(v - 255, 4), v); |
|
dst[1] = v - dst[0] >> 2; |
|
return 1 + (v >= 252); |
|
} |
|
|
|
static void opus_packet_assembler(OpusEncContext *s, AVPacket *avpkt) |
|
{ |
|
int offset, fsize_needed; |
|
|
|
/* Write toc */ |
|
opus_gen_toc(s, avpkt->data, &offset, &fsize_needed); |
|
|
|
/* Frame sizes if needed */ |
|
if (fsize_needed) { |
|
for (int i = 0; i < s->packet.frames - 1; i++) { |
|
offset += write_opuslacing(avpkt->data + offset, |
|
s->frame[i].framebits >> 3); |
|
} |
|
} |
|
|
|
/* Packets */ |
|
for (int i = 0; i < s->packet.frames; i++) { |
|
ff_opus_rc_enc_end(&s->rc[i], avpkt->data + offset, |
|
s->frame[i].framebits >> 3); |
|
offset += s->frame[i].framebits >> 3; |
|
} |
|
|
|
avpkt->size = offset; |
|
} |
|
|
|
/* Used as overlap for the first frame and padding for the last encoded packet */ |
|
static AVFrame *spawn_empty_frame(OpusEncContext *s) |
|
{ |
|
AVFrame *f = av_frame_alloc(); |
|
int ret; |
|
if (!f) |
|
return NULL; |
|
f->format = s->avctx->sample_fmt; |
|
f->nb_samples = s->avctx->frame_size; |
|
ret = av_channel_layout_copy(&f->ch_layout, &s->avctx->ch_layout); |
|
if (ret < 0) { |
|
av_frame_free(&f); |
|
return NULL; |
|
} |
|
if (av_frame_get_buffer(f, 4)) { |
|
av_frame_free(&f); |
|
return NULL; |
|
} |
|
for (int i = 0; i < s->channels; i++) { |
|
size_t bps = av_get_bytes_per_sample(f->format); |
|
memset(f->extended_data[i], 0, bps*f->nb_samples); |
|
} |
|
return f; |
|
} |
|
|
|
static int opus_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
|
const AVFrame *frame, int *got_packet_ptr) |
|
{ |
|
OpusEncContext *s = avctx->priv_data; |
|
int ret, frame_size, alloc_size = 0; |
|
|
|
if (frame) { /* Add new frame to queue */ |
|
if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) |
|
return ret; |
|
ff_bufqueue_add(avctx, &s->bufqueue, av_frame_clone(frame)); |
|
} else { |
|
ff_opus_psy_signal_eof(&s->psyctx); |
|
if (!s->afq.remaining_samples || !avctx->frame_number) |
|
return 0; /* We've been flushed and there's nothing left to encode */ |
|
} |
|
|
|
/* Run the psychoacoustic system */ |
|
if (ff_opus_psy_process(&s->psyctx, &s->packet)) |
|
return 0; |
|
|
|
frame_size = OPUS_BLOCK_SIZE(s->packet.framesize); |
|
|
|
if (!frame) { |
|
/* This can go negative, that's not a problem, we only pad if positive */ |
|
int pad_empty = s->packet.frames*(frame_size/s->avctx->frame_size) - s->bufqueue.available + 1; |
|
/* Pad with empty 2.5 ms frames to whatever framesize was decided, |
|
* this should only happen at the very last flush frame. The frames |
|
* allocated here will be freed (because they have no other references) |
|
* after they get used by celt_frame_setup_input() */ |
|
for (int i = 0; i < pad_empty; i++) { |
|
AVFrame *empty = spawn_empty_frame(s); |
|
if (!empty) |
|
return AVERROR(ENOMEM); |
|
ff_bufqueue_add(avctx, &s->bufqueue, empty); |
|
} |
|
} |
|
|
|
for (int i = 0; i < s->packet.frames; i++) { |
|
celt_encode_frame(s, &s->rc[i], &s->frame[i], i); |
|
alloc_size += s->frame[i].framebits >> 3; |
|
} |
|
|
|
/* Worst case toc + the frame lengths if needed */ |
|
alloc_size += 2 + s->packet.frames*2; |
|
|
|
if ((ret = ff_alloc_packet(avctx, avpkt, alloc_size)) < 0) |
|
return ret; |
|
|
|
/* Assemble packet */ |
|
opus_packet_assembler(s, avpkt); |
|
|
|
/* Update the psychoacoustic system */ |
|
ff_opus_psy_postencode_update(&s->psyctx, s->frame, s->rc); |
|
|
|
/* Remove samples from queue and skip if needed */ |
|
ff_af_queue_remove(&s->afq, s->packet.frames*frame_size, &avpkt->pts, &avpkt->duration); |
|
if (s->packet.frames*frame_size > avpkt->duration) { |
|
uint8_t *side = av_packet_new_side_data(avpkt, AV_PKT_DATA_SKIP_SAMPLES, 10); |
|
if (!side) |
|
return AVERROR(ENOMEM); |
|
AV_WL32(&side[4], s->packet.frames*frame_size - avpkt->duration + 120); |
|
} |
|
|
|
*got_packet_ptr = 1; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int opus_encode_end(AVCodecContext *avctx) |
|
{ |
|
OpusEncContext *s = avctx->priv_data; |
|
|
|
for (int i = 0; i < CELT_BLOCK_NB; i++) |
|
ff_mdct15_uninit(&s->mdct[i]); |
|
|
|
ff_celt_pvq_uninit(&s->pvq); |
|
av_freep(&s->dsp); |
|
av_freep(&s->frame); |
|
av_freep(&s->rc); |
|
ff_af_queue_close(&s->afq); |
|
ff_opus_psy_end(&s->psyctx); |
|
ff_bufqueue_discard_all(&s->bufqueue); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int opus_encode_init(AVCodecContext *avctx) |
|
{ |
|
int ret, max_frames; |
|
OpusEncContext *s = avctx->priv_data; |
|
|
|
s->avctx = avctx; |
|
s->channels = avctx->ch_layout.nb_channels; |
|
|
|
/* Opus allows us to change the framesize on each packet (and each packet may |
|
* have multiple frames in it) but we can't change the codec's frame size on |
|
* runtime, so fix it to the lowest possible number of samples and use a queue |
|
* to accumulate AVFrames until we have enough to encode whatever the encoder |
|
* decides is the best */ |
|
avctx->frame_size = 120; |
|
/* Initial padding will change if SILK is ever supported */ |
|
avctx->initial_padding = 120; |
|
|
|
if (!avctx->bit_rate) { |
|
int coupled = ff_opus_default_coupled_streams[s->channels - 1]; |
|
avctx->bit_rate = coupled*(96000) + (s->channels - coupled*2)*(48000); |
|
} else if (avctx->bit_rate < 6000 || avctx->bit_rate > 255000 * s->channels) { |
|
int64_t clipped_rate = av_clip(avctx->bit_rate, 6000, 255000 * s->channels); |
|
av_log(avctx, AV_LOG_ERROR, "Unsupported bitrate %"PRId64" kbps, clipping to %"PRId64" kbps\n", |
|
avctx->bit_rate/1000, clipped_rate/1000); |
|
avctx->bit_rate = clipped_rate; |
|
} |
|
|
|
/* Extradata */ |
|
avctx->extradata_size = 19; |
|
avctx->extradata = av_malloc(avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); |
|
if (!avctx->extradata) |
|
return AVERROR(ENOMEM); |
|
opus_write_extradata(avctx); |
|
|
|
ff_af_queue_init(avctx, &s->afq); |
|
|
|
if ((ret = ff_celt_pvq_init(&s->pvq, 1)) < 0) |
|
return ret; |
|
|
|
if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT))) |
|
return AVERROR(ENOMEM); |
|
|
|
/* I have no idea why a base scaling factor of 68 works, could be the twiddles */ |
|
for (int i = 0; i < CELT_BLOCK_NB; i++) |
|
if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i)))) |
|
return AVERROR(ENOMEM); |
|
|
|
/* Zero out previous energy (matters for inter first frame) */ |
|
for (int ch = 0; ch < s->channels; ch++) |
|
memset(s->last_quantized_energy[ch], 0.0f, sizeof(float)*CELT_MAX_BANDS); |
|
|
|
/* Allocate an empty frame to use as overlap for the first frame of audio */ |
|
ff_bufqueue_add(avctx, &s->bufqueue, spawn_empty_frame(s)); |
|
if (!ff_bufqueue_peek(&s->bufqueue, 0)) |
|
return AVERROR(ENOMEM); |
|
|
|
if ((ret = ff_opus_psy_init(&s->psyctx, s->avctx, &s->bufqueue, &s->options))) |
|
return ret; |
|
|
|
/* Frame structs and range coder buffers */ |
|
max_frames = ceilf(FFMIN(s->options.max_delay_ms, 120.0f)/2.5f); |
|
s->frame = av_malloc(max_frames*sizeof(CeltFrame)); |
|
if (!s->frame) |
|
return AVERROR(ENOMEM); |
|
s->rc = av_malloc(max_frames*sizeof(OpusRangeCoder)); |
|
if (!s->rc) |
|
return AVERROR(ENOMEM); |
|
|
|
for (int i = 0; i < max_frames; i++) { |
|
s->frame[i].dsp = s->dsp; |
|
s->frame[i].avctx = s->avctx; |
|
s->frame[i].seed = 0; |
|
s->frame[i].pvq = s->pvq; |
|
s->frame[i].apply_phase_inv = s->options.apply_phase_inv; |
|
s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#define OPUSENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
|
static const AVOption opusenc_options[] = { |
|
{ "opus_delay", "Maximum delay in milliseconds", offsetof(OpusEncContext, options.max_delay_ms), AV_OPT_TYPE_FLOAT, { .dbl = OPUS_MAX_LOOKAHEAD }, 2.5f, OPUS_MAX_LOOKAHEAD, OPUSENC_FLAGS, "max_delay_ms" }, |
|
{ "apply_phase_inv", "Apply intensity stereo phase inversion", offsetof(OpusEncContext, options.apply_phase_inv), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, OPUSENC_FLAGS, "apply_phase_inv" }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass opusenc_class = { |
|
.class_name = "Opus encoder", |
|
.item_name = av_default_item_name, |
|
.option = opusenc_options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
static const FFCodecDefault opusenc_defaults[] = { |
|
{ "b", "0" }, |
|
{ "compression_level", "10" }, |
|
{ NULL }, |
|
}; |
|
|
|
const FFCodec ff_opus_encoder = { |
|
.p.name = "opus", |
|
.p.long_name = NULL_IF_CONFIG_SMALL("Opus"), |
|
.p.type = AVMEDIA_TYPE_AUDIO, |
|
.p.id = AV_CODEC_ID_OPUS, |
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | |
|
AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_EXPERIMENTAL, |
|
.defaults = opusenc_defaults, |
|
.p.priv_class = &opusenc_class, |
|
.priv_data_size = sizeof(OpusEncContext), |
|
.init = opus_encode_init, |
|
FF_CODEC_ENCODE_CB(opus_encode_frame), |
|
.close = opus_encode_end, |
|
.caps_internal = FF_CODEC_CAP_INIT_CLEANUP, |
|
.p.supported_samplerates = (const int []){ 48000, 0 }, |
|
#if FF_API_OLD_CHANNEL_LAYOUT |
|
.p.channel_layouts = (const uint64_t []){ AV_CH_LAYOUT_MONO, |
|
AV_CH_LAYOUT_STEREO, 0 }, |
|
#endif |
|
.p.ch_layouts = (const AVChannelLayout []){ AV_CHANNEL_LAYOUT_MONO, |
|
AV_CHANNEL_LAYOUT_STEREO, { 0 } }, |
|
.p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_NONE }, |
|
};
|
|
|