mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1104 lines
39 KiB
1104 lines
39 KiB
/* |
|
* Indeo Video v3 compatible decoder |
|
* Copyright (c) 2009 - 2011 Maxim Poliakovski |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* This is a decoder for Intel Indeo Video v3. |
|
* It is based on vector quantization, run-length coding and motion compensation. |
|
* Known container formats: .avi and .mov |
|
* Known FOURCCs: 'IV31', 'IV32' |
|
* |
|
* @see http://wiki.multimedia.cx/index.php?title=Indeo_3 |
|
*/ |
|
|
|
#include "libavutil/imgutils.h" |
|
#include "libavutil/intreadwrite.h" |
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "bytestream.h" |
|
#include "get_bits.h" |
|
|
|
#include "indeo3data.h" |
|
|
|
/* RLE opcodes. */ |
|
enum { |
|
RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block |
|
RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference |
|
RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks |
|
RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block |
|
RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block |
|
RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line |
|
RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line |
|
}; |
|
|
|
|
|
/* Some constants for parsing frame bitstream flags. */ |
|
#define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator |
|
#define BS_KEYFRAME (1 << 2) ///< intra frame indicator |
|
#define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator |
|
#define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator |
|
#define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator |
|
#define BS_BUFFER 9 ///< indicates which of two frame buffers should be used |
|
|
|
|
|
typedef struct Plane { |
|
uint8_t *buffers[2]; |
|
uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above |
|
uint32_t width; |
|
uint32_t height; |
|
uint32_t pitch; |
|
} Plane; |
|
|
|
#define CELL_STACK_MAX 20 |
|
|
|
typedef struct Cell { |
|
int16_t xpos; ///< cell coordinates in 4x4 blocks |
|
int16_t ypos; |
|
int16_t width; ///< cell width in 4x4 blocks |
|
int16_t height; ///< cell height in 4x4 blocks |
|
uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree |
|
const int8_t *mv_ptr; ///< ptr to the motion vector if any |
|
} Cell; |
|
|
|
typedef struct Indeo3DecodeContext { |
|
AVCodecContext *avctx; |
|
AVFrame frame; |
|
DSPContext dsp; |
|
|
|
GetBitContext gb; |
|
int need_resync; |
|
int skip_bits; |
|
const uint8_t *next_cell_data; |
|
const uint8_t *last_byte; |
|
const int8_t *mc_vectors; |
|
unsigned num_vectors; ///< number of motion vectors in mc_vectors |
|
|
|
int16_t width, height; |
|
uint32_t frame_num; ///< current frame number (zero-based) |
|
uint32_t data_size; ///< size of the frame data in bytes |
|
uint16_t frame_flags; ///< frame properties |
|
uint8_t cb_offset; ///< needed for selecting VQ tables |
|
uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary |
|
const uint8_t *y_data_ptr; |
|
const uint8_t *v_data_ptr; |
|
const uint8_t *u_data_ptr; |
|
int32_t y_data_size; |
|
int32_t v_data_size; |
|
int32_t u_data_size; |
|
const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4 |
|
Plane planes[3]; |
|
} Indeo3DecodeContext; |
|
|
|
|
|
static uint8_t requant_tab[8][128]; |
|
|
|
/* |
|
* Build the static requantization table. |
|
* This table is used to remap pixel values according to a specific |
|
* quant index and thus avoid overflows while adding deltas. |
|
*/ |
|
static av_cold void build_requant_tab(void) |
|
{ |
|
static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 }; |
|
static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 }; |
|
|
|
int i, j, step; |
|
|
|
for (i = 0; i < 8; i++) { |
|
step = i + 2; |
|
for (j = 0; j < 128; j++) |
|
requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i]; |
|
} |
|
|
|
/* some last elements calculated above will have values >= 128 */ |
|
/* pixel values shall never exceed 127 so set them to non-overflowing values */ |
|
/* according with the quantization step of the respective section */ |
|
requant_tab[0][127] = 126; |
|
requant_tab[1][119] = 118; |
|
requant_tab[1][120] = 118; |
|
requant_tab[2][126] = 124; |
|
requant_tab[2][127] = 124; |
|
requant_tab[6][124] = 120; |
|
requant_tab[6][125] = 120; |
|
requant_tab[6][126] = 120; |
|
requant_tab[6][127] = 120; |
|
|
|
/* Patch for compatibility with the Intel's binary decoders */ |
|
requant_tab[1][7] = 10; |
|
requant_tab[4][8] = 10; |
|
} |
|
|
|
|
|
static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx, |
|
AVCodecContext *avctx) |
|
{ |
|
int p, luma_width, luma_height, chroma_width, chroma_height; |
|
int luma_pitch, chroma_pitch, luma_size, chroma_size; |
|
|
|
luma_width = ctx->width; |
|
luma_height = ctx->height; |
|
|
|
if (luma_width < 16 || luma_width > 640 || |
|
luma_height < 16 || luma_height > 480 || |
|
luma_width & 3 || luma_height & 3) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n", |
|
luma_width, luma_height); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
chroma_width = FFALIGN(luma_width >> 2, 4); |
|
chroma_height = FFALIGN(luma_height >> 2, 4); |
|
|
|
luma_pitch = FFALIGN(luma_width, 16); |
|
chroma_pitch = FFALIGN(chroma_width, 16); |
|
|
|
/* Calculate size of the luminance plane. */ |
|
/* Add one line more for INTRA prediction. */ |
|
luma_size = luma_pitch * (luma_height + 1); |
|
|
|
/* Calculate size of a chrominance planes. */ |
|
/* Add one line more for INTRA prediction. */ |
|
chroma_size = chroma_pitch * (chroma_height + 1); |
|
|
|
/* allocate frame buffers */ |
|
for (p = 0; p < 3; p++) { |
|
ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch; |
|
ctx->planes[p].width = !p ? luma_width : chroma_width; |
|
ctx->planes[p].height = !p ? luma_height : chroma_height; |
|
|
|
ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size); |
|
ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size); |
|
|
|
/* fill the INTRA prediction lines with the middle pixel value = 64 */ |
|
memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch); |
|
memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch); |
|
|
|
/* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */ |
|
ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch; |
|
ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch; |
|
memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height); |
|
memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx) |
|
{ |
|
int p; |
|
|
|
for (p = 0; p < 3; p++) { |
|
av_freep(&ctx->planes[p].buffers[0]); |
|
av_freep(&ctx->planes[p].buffers[1]); |
|
ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into |
|
* the cell(x, y) in the current frame. |
|
* |
|
* @param ctx pointer to the decoder context |
|
* @param plane pointer to the plane descriptor |
|
* @param cell pointer to the cell descriptor |
|
*/ |
|
static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell) |
|
{ |
|
int h, w, mv_x, mv_y, offset, offset_dst; |
|
uint8_t *src, *dst; |
|
|
|
/* setup output and reference pointers */ |
|
offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2); |
|
dst = plane->pixels[ctx->buf_sel] + offset_dst; |
|
mv_y = cell->mv_ptr[0]; |
|
mv_x = cell->mv_ptr[1]; |
|
offset = offset_dst + mv_y * plane->pitch + mv_x; |
|
src = plane->pixels[ctx->buf_sel ^ 1] + offset; |
|
|
|
h = cell->height << 2; |
|
|
|
for (w = cell->width; w > 0;) { |
|
/* copy using 16xH blocks */ |
|
if (!((cell->xpos << 2) & 15) && w >= 4) { |
|
for (; w >= 4; src += 16, dst += 16, w -= 4) |
|
ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h); |
|
} |
|
|
|
/* copy using 8xH blocks */ |
|
if (!((cell->xpos << 2) & 7) && w >= 2) { |
|
ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h); |
|
w -= 2; |
|
src += 8; |
|
dst += 8; |
|
} |
|
|
|
if (w >= 1) { |
|
copy_block4(dst, src, plane->pitch, plane->pitch, h); |
|
w--; |
|
src += 4; |
|
dst += 4; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* Average 4/8 pixels at once without rounding using SWAR */ |
|
#define AVG_32(dst, src, ref) \ |
|
AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL) |
|
|
|
#define AVG_64(dst, src, ref) \ |
|
AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL) |
|
|
|
|
|
/* |
|
* Replicate each even pixel as follows: |
|
* ABCDEFGH -> AACCEEGG |
|
*/ |
|
static inline uint64_t replicate64(uint64_t a) { |
|
#if HAVE_BIGENDIAN |
|
a &= 0xFF00FF00FF00FF00ULL; |
|
a |= a >> 8; |
|
#else |
|
a &= 0x00FF00FF00FF00FFULL; |
|
a |= a << 8; |
|
#endif |
|
return a; |
|
} |
|
|
|
static inline uint32_t replicate32(uint32_t a) { |
|
#if HAVE_BIGENDIAN |
|
a &= 0xFF00FF00UL; |
|
a |= a >> 8; |
|
#else |
|
a &= 0x00FF00FFUL; |
|
a |= a << 8; |
|
#endif |
|
return a; |
|
} |
|
|
|
|
|
/* Fill n lines with 64bit pixel value pix */ |
|
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n, |
|
int32_t row_offset) |
|
{ |
|
for (; n > 0; dst += row_offset, n--) |
|
AV_WN64A(dst, pix); |
|
} |
|
|
|
|
|
/* Error codes for cell decoding. */ |
|
enum { |
|
IV3_NOERR = 0, |
|
IV3_BAD_RLE = 1, |
|
IV3_BAD_DATA = 2, |
|
IV3_BAD_COUNTER = 3, |
|
IV3_UNSUPPORTED = 4, |
|
IV3_OUT_OF_DATA = 5 |
|
}; |
|
|
|
|
|
#define BUFFER_PRECHECK \ |
|
if (*data_ptr >= last_ptr) \ |
|
return IV3_OUT_OF_DATA; \ |
|
|
|
#define RLE_BLOCK_COPY \ |
|
if (cell->mv_ptr || !skip_flag) \ |
|
copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom) |
|
|
|
#define RLE_BLOCK_COPY_8 \ |
|
pix64 = AV_RN64A(ref);\ |
|
if (is_first_row) {/* special prediction case: top line of a cell */\ |
|
pix64 = replicate64(pix64);\ |
|
fill_64(dst + row_offset, pix64, 7, row_offset);\ |
|
AVG_64(dst, ref, dst + row_offset);\ |
|
} else \ |
|
fill_64(dst, pix64, 8, row_offset) |
|
|
|
#define RLE_LINES_COPY \ |
|
copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom) |
|
|
|
#define RLE_LINES_COPY_M10 \ |
|
pix64 = AV_RN64A(ref);\ |
|
if (is_top_of_cell) {\ |
|
pix64 = replicate64(pix64);\ |
|
fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\ |
|
AVG_64(dst, ref, dst + row_offset);\ |
|
} else \ |
|
fill_64(dst, pix64, num_lines << 1, row_offset) |
|
|
|
#define APPLY_DELTA_4 \ |
|
AV_WN16A(dst + line_offset ,\ |
|
(AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ |
|
AV_WN16A(dst + line_offset + 2,\ |
|
(AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\ |
|
if (mode >= 3) {\ |
|
if (is_top_of_cell && !cell->ypos) {\ |
|
AV_COPY32(dst, dst + row_offset);\ |
|
} else {\ |
|
AVG_32(dst, ref, dst + row_offset);\ |
|
}\ |
|
} |
|
|
|
#define APPLY_DELTA_8 \ |
|
/* apply two 32-bit VQ deltas to next even line */\ |
|
if (is_top_of_cell) { \ |
|
AV_WN32A(dst + row_offset , \ |
|
(replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ |
|
AV_WN32A(dst + row_offset + 4, \ |
|
(replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ |
|
} else { \ |
|
AV_WN32A(dst + row_offset , \ |
|
(AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ |
|
AV_WN32A(dst + row_offset + 4, \ |
|
(AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ |
|
} \ |
|
/* odd lines are not coded but rather interpolated/replicated */\ |
|
/* first line of the cell on the top of image? - replicate */\ |
|
/* otherwise - interpolate */\ |
|
if (is_top_of_cell && !cell->ypos) {\ |
|
AV_COPY64(dst, dst + row_offset);\ |
|
} else \ |
|
AVG_64(dst, ref, dst + row_offset); |
|
|
|
|
|
#define APPLY_DELTA_1011_INTER \ |
|
if (mode == 10) { \ |
|
AV_WN32A(dst , \ |
|
(AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ |
|
AV_WN32A(dst + 4 , \ |
|
(AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ |
|
AV_WN32A(dst + row_offset , \ |
|
(AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ |
|
AV_WN32A(dst + row_offset + 4, \ |
|
(AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ |
|
} else { \ |
|
AV_WN16A(dst , \ |
|
(AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ |
|
AV_WN16A(dst + 2 , \ |
|
(AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\ |
|
AV_WN16A(dst + row_offset , \ |
|
(AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ |
|
AV_WN16A(dst + row_offset + 2, \ |
|
(AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\ |
|
} |
|
|
|
|
|
static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block, |
|
int pitch, int h_zoom, int v_zoom, int mode, |
|
const vqEntry *delta[2], int swap_quads[2], |
|
const uint8_t **data_ptr, const uint8_t *last_ptr) |
|
{ |
|
int x, y, line, num_lines; |
|
int rle_blocks = 0; |
|
uint8_t code, *dst, *ref; |
|
const vqEntry *delta_tab; |
|
unsigned int dyad1, dyad2; |
|
uint64_t pix64; |
|
int skip_flag = 0, is_top_of_cell, is_first_row = 1; |
|
int row_offset, blk_row_offset, line_offset; |
|
|
|
row_offset = pitch; |
|
blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2); |
|
line_offset = v_zoom ? row_offset : 0; |
|
|
|
for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) { |
|
for (x = 0; x < cell->width; x += 1 + h_zoom) { |
|
ref = ref_block; |
|
dst = block; |
|
|
|
if (rle_blocks > 0) { |
|
if (mode <= 4) { |
|
RLE_BLOCK_COPY; |
|
} else if (mode == 10 && !cell->mv_ptr) { |
|
RLE_BLOCK_COPY_8; |
|
} |
|
rle_blocks--; |
|
} else { |
|
for (line = 0; line < 4;) { |
|
num_lines = 1; |
|
is_top_of_cell = is_first_row && !line; |
|
|
|
/* select primary VQ table for odd, secondary for even lines */ |
|
if (mode <= 4) |
|
delta_tab = delta[line & 1]; |
|
else |
|
delta_tab = delta[1]; |
|
BUFFER_PRECHECK; |
|
code = bytestream_get_byte(data_ptr); |
|
if (code < 248) { |
|
if (code < delta_tab->num_dyads) { |
|
BUFFER_PRECHECK; |
|
dyad1 = bytestream_get_byte(data_ptr); |
|
dyad2 = code; |
|
if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248) |
|
return IV3_BAD_DATA; |
|
} else { |
|
/* process QUADS */ |
|
code -= delta_tab->num_dyads; |
|
dyad1 = code / delta_tab->quad_exp; |
|
dyad2 = code % delta_tab->quad_exp; |
|
if (swap_quads[line & 1]) |
|
FFSWAP(unsigned int, dyad1, dyad2); |
|
} |
|
if (mode <= 4) { |
|
APPLY_DELTA_4; |
|
} else if (mode == 10 && !cell->mv_ptr) { |
|
APPLY_DELTA_8; |
|
} else { |
|
APPLY_DELTA_1011_INTER; |
|
} |
|
} else { |
|
/* process RLE codes */ |
|
switch (code) { |
|
case RLE_ESC_FC: |
|
skip_flag = 0; |
|
rle_blocks = 1; |
|
code = 253; |
|
/* FALLTHROUGH */ |
|
case RLE_ESC_FF: |
|
case RLE_ESC_FE: |
|
case RLE_ESC_FD: |
|
num_lines = 257 - code - line; |
|
if (num_lines <= 0) |
|
return IV3_BAD_RLE; |
|
if (mode <= 4) { |
|
RLE_LINES_COPY; |
|
} else if (mode == 10 && !cell->mv_ptr) { |
|
RLE_LINES_COPY_M10; |
|
} |
|
break; |
|
case RLE_ESC_FB: |
|
BUFFER_PRECHECK; |
|
code = bytestream_get_byte(data_ptr); |
|
rle_blocks = (code & 0x1F) - 1; /* set block counter */ |
|
if (code >= 64 || rle_blocks < 0) |
|
return IV3_BAD_COUNTER; |
|
skip_flag = code & 0x20; |
|
num_lines = 4 - line; /* enforce next block processing */ |
|
if (mode >= 10 || (cell->mv_ptr || !skip_flag)) { |
|
if (mode <= 4) { |
|
RLE_LINES_COPY; |
|
} else if (mode == 10 && !cell->mv_ptr) { |
|
RLE_LINES_COPY_M10; |
|
} |
|
} |
|
break; |
|
case RLE_ESC_F9: |
|
skip_flag = 1; |
|
rle_blocks = 1; |
|
/* FALLTHROUGH */ |
|
case RLE_ESC_FA: |
|
if (line) |
|
return IV3_BAD_RLE; |
|
num_lines = 4; /* enforce next block processing */ |
|
if (cell->mv_ptr) { |
|
if (mode <= 4) { |
|
RLE_LINES_COPY; |
|
} else if (mode == 10 && !cell->mv_ptr) { |
|
RLE_LINES_COPY_M10; |
|
} |
|
} |
|
break; |
|
default: |
|
return IV3_UNSUPPORTED; |
|
} |
|
} |
|
|
|
line += num_lines; |
|
ref += row_offset * (num_lines << v_zoom); |
|
dst += row_offset * (num_lines << v_zoom); |
|
} |
|
} |
|
|
|
/* move to next horizontal block */ |
|
block += 4 << h_zoom; |
|
ref_block += 4 << h_zoom; |
|
} |
|
|
|
/* move to next line of blocks */ |
|
ref_block += blk_row_offset; |
|
block += blk_row_offset; |
|
} |
|
return IV3_NOERR; |
|
} |
|
|
|
|
|
/** |
|
* Decode a vector-quantized cell. |
|
* It consists of several routines, each of which handles one or more "modes" |
|
* with which a cell can be encoded. |
|
* |
|
* @param ctx pointer to the decoder context |
|
* @param avctx ptr to the AVCodecContext |
|
* @param plane pointer to the plane descriptor |
|
* @param cell pointer to the cell descriptor |
|
* @param data_ptr pointer to the compressed data |
|
* @param last_ptr pointer to the last byte to catch reads past end of buffer |
|
* @return number of consumed bytes or negative number in case of error |
|
*/ |
|
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx, |
|
Plane *plane, Cell *cell, const uint8_t *data_ptr, |
|
const uint8_t *last_ptr) |
|
{ |
|
int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx; |
|
int zoom_fac; |
|
int offset, error = 0, swap_quads[2]; |
|
uint8_t code, *block, *ref_block = 0; |
|
const vqEntry *delta[2]; |
|
const uint8_t *data_start = data_ptr; |
|
|
|
/* get coding mode and VQ table index from the VQ descriptor byte */ |
|
code = *data_ptr++; |
|
mode = code >> 4; |
|
vq_index = code & 0xF; |
|
|
|
/* setup output and reference pointers */ |
|
offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2); |
|
block = plane->pixels[ctx->buf_sel] + offset; |
|
if (!cell->mv_ptr) { |
|
/* use previous line as reference for INTRA cells */ |
|
ref_block = block - plane->pitch; |
|
} else if (mode >= 10) { |
|
/* for mode 10 and 11 INTER first copy the predicted cell into the current one */ |
|
/* so we don't need to do data copying for each RLE code later */ |
|
copy_cell(ctx, plane, cell); |
|
} else { |
|
/* set the pointer to the reference pixels for modes 0-4 INTER */ |
|
mv_y = cell->mv_ptr[0]; |
|
mv_x = cell->mv_ptr[1]; |
|
offset += mv_y * plane->pitch + mv_x; |
|
ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset; |
|
} |
|
|
|
/* select VQ tables as follows: */ |
|
/* modes 0 and 3 use only the primary table for all lines in a block */ |
|
/* while modes 1 and 4 switch between primary and secondary tables on alternate lines */ |
|
if (mode == 1 || mode == 4) { |
|
code = ctx->alt_quant[vq_index]; |
|
prim_indx = (code >> 4) + ctx->cb_offset; |
|
second_indx = (code & 0xF) + ctx->cb_offset; |
|
} else { |
|
vq_index += ctx->cb_offset; |
|
prim_indx = second_indx = vq_index; |
|
} |
|
|
|
if (prim_indx >= 24 || second_indx >= 24) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n", |
|
prim_indx, second_indx); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
delta[0] = &vq_tab[second_indx]; |
|
delta[1] = &vq_tab[prim_indx]; |
|
swap_quads[0] = second_indx >= 16; |
|
swap_quads[1] = prim_indx >= 16; |
|
|
|
/* requantize the prediction if VQ index of this cell differs from VQ index */ |
|
/* of the predicted cell in order to avoid overflows. */ |
|
if (vq_index >= 8 && ref_block) { |
|
for (x = 0; x < cell->width << 2; x++) |
|
ref_block[x] = requant_tab[vq_index & 7][ref_block[x]]; |
|
} |
|
|
|
error = IV3_NOERR; |
|
|
|
switch (mode) { |
|
case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/ |
|
case 1: |
|
case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/ |
|
case 4: |
|
if (mode >= 3 && cell->mv_ptr) { |
|
av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
zoom_fac = mode >= 3; |
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac, |
|
mode, delta, swap_quads, &data_ptr, last_ptr); |
|
break; |
|
case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/ |
|
case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/ |
|
if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */ |
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1, |
|
mode, delta, swap_quads, &data_ptr, last_ptr); |
|
} else { /* mode 10 and 11 INTER processing */ |
|
if (mode == 11 && !cell->mv_ptr) { |
|
av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
zoom_fac = mode == 10; |
|
error = decode_cell_data(cell, block, ref_block, plane->pitch, |
|
zoom_fac, 1, mode, delta, swap_quads, |
|
&data_ptr, last_ptr); |
|
} |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode); |
|
return AVERROR_INVALIDDATA; |
|
}//switch mode |
|
|
|
switch (error) { |
|
case IV3_BAD_RLE: |
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n", |
|
mode, data_ptr[-1]); |
|
return AVERROR_INVALIDDATA; |
|
case IV3_BAD_DATA: |
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode); |
|
return AVERROR_INVALIDDATA; |
|
case IV3_BAD_COUNTER: |
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code); |
|
return AVERROR_INVALIDDATA; |
|
case IV3_UNSUPPORTED: |
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]); |
|
return AVERROR_INVALIDDATA; |
|
case IV3_OUT_OF_DATA: |
|
av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
return data_ptr - data_start; /* report number of bytes consumed from the input buffer */ |
|
} |
|
|
|
|
|
/* Binary tree codes. */ |
|
enum { |
|
H_SPLIT = 0, |
|
V_SPLIT = 1, |
|
INTRA_NULL = 2, |
|
INTER_DATA = 3 |
|
}; |
|
|
|
|
|
#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1 |
|
|
|
#define UPDATE_BITPOS(n) \ |
|
ctx->skip_bits += (n); \ |
|
ctx->need_resync = 1 |
|
|
|
#define RESYNC_BITSTREAM \ |
|
if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \ |
|
skip_bits_long(&ctx->gb, ctx->skip_bits); \ |
|
ctx->skip_bits = 0; \ |
|
ctx->need_resync = 0; \ |
|
} |
|
|
|
#define CHECK_CELL \ |
|
if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \ |
|
curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \ |
|
av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \ |
|
curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \ |
|
return AVERROR_INVALIDDATA; \ |
|
} |
|
|
|
|
|
static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx, |
|
Plane *plane, int code, Cell *ref_cell, |
|
const int depth, const int strip_width) |
|
{ |
|
Cell curr_cell; |
|
int bytes_used; |
|
|
|
if (depth <= 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n"); |
|
return AVERROR_INVALIDDATA; // unwind recursion |
|
} |
|
|
|
curr_cell = *ref_cell; // clone parent cell |
|
if (code == H_SPLIT) { |
|
SPLIT_CELL(ref_cell->height, curr_cell.height); |
|
ref_cell->ypos += curr_cell.height; |
|
ref_cell->height -= curr_cell.height; |
|
if (ref_cell->height <= 0 || curr_cell.height <= 0) |
|
return AVERROR_INVALIDDATA; |
|
} else if (code == V_SPLIT) { |
|
if (curr_cell.width > strip_width) { |
|
/* split strip */ |
|
curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width; |
|
} else |
|
SPLIT_CELL(ref_cell->width, curr_cell.width); |
|
ref_cell->xpos += curr_cell.width; |
|
ref_cell->width -= curr_cell.width; |
|
if (ref_cell->width <= 0 || curr_cell.width <= 0) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
while (1) { /* loop until return */ |
|
RESYNC_BITSTREAM; |
|
switch (code = get_bits(&ctx->gb, 2)) { |
|
case H_SPLIT: |
|
case V_SPLIT: |
|
if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width)) |
|
return AVERROR_INVALIDDATA; |
|
break; |
|
case INTRA_NULL: |
|
if (!curr_cell.tree) { /* MC tree INTRA code */ |
|
curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */ |
|
curr_cell.tree = 1; /* enter the VQ tree */ |
|
} else { /* VQ tree NULL code */ |
|
RESYNC_BITSTREAM; |
|
code = get_bits(&ctx->gb, 2); |
|
if (code >= 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (code == 1) |
|
av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n"); |
|
|
|
CHECK_CELL |
|
if (!curr_cell.mv_ptr) |
|
return AVERROR_INVALIDDATA; |
|
copy_cell(ctx, plane, &curr_cell); |
|
return 0; |
|
} |
|
break; |
|
case INTER_DATA: |
|
if (!curr_cell.tree) { /* MC tree INTER code */ |
|
unsigned mv_idx; |
|
/* get motion vector index and setup the pointer to the mv set */ |
|
if (!ctx->need_resync) |
|
ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3]; |
|
mv_idx = *(ctx->next_cell_data++); |
|
if (mv_idx >= ctx->num_vectors) { |
|
av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1]; |
|
curr_cell.tree = 1; /* enter the VQ tree */ |
|
UPDATE_BITPOS(8); |
|
} else { /* VQ tree DATA code */ |
|
if (!ctx->need_resync) |
|
ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3]; |
|
|
|
CHECK_CELL |
|
bytes_used = decode_cell(ctx, avctx, plane, &curr_cell, |
|
ctx->next_cell_data, ctx->last_byte); |
|
if (bytes_used < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
UPDATE_BITPOS(bytes_used << 3); |
|
ctx->next_cell_data += bytes_used; |
|
return 0; |
|
} |
|
break; |
|
} |
|
}//while |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx, |
|
Plane *plane, const uint8_t *data, int32_t data_size, |
|
int32_t strip_width) |
|
{ |
|
Cell curr_cell; |
|
unsigned num_vectors; |
|
|
|
/* each plane data starts with mc_vector_count field, */ |
|
/* an optional array of motion vectors followed by the vq data */ |
|
num_vectors = bytestream_get_le32(&data); |
|
if (num_vectors > 256) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, |
|
"Read invalid number of motion vectors %d\n", num_vectors); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (num_vectors * 2 >= data_size) |
|
return AVERROR_INVALIDDATA; |
|
|
|
ctx->num_vectors = num_vectors; |
|
ctx->mc_vectors = num_vectors ? data : 0; |
|
|
|
/* init the bitreader */ |
|
init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3); |
|
ctx->skip_bits = 0; |
|
ctx->need_resync = 0; |
|
|
|
ctx->last_byte = data + data_size - 1; |
|
|
|
/* initialize the 1st cell and set its dimensions to whole plane */ |
|
curr_cell.xpos = curr_cell.ypos = 0; |
|
curr_cell.width = plane->width >> 2; |
|
curr_cell.height = plane->height >> 2; |
|
curr_cell.tree = 0; // we are in the MC tree now |
|
curr_cell.mv_ptr = 0; // no motion vector = INTRA cell |
|
|
|
return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width); |
|
} |
|
|
|
|
|
#define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H') |
|
|
|
static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, |
|
const uint8_t *buf, int buf_size) |
|
{ |
|
const uint8_t *buf_ptr = buf, *bs_hdr; |
|
uint32_t frame_num, word2, check_sum, data_size; |
|
uint32_t y_offset, u_offset, v_offset, starts[3], ends[3]; |
|
uint16_t height, width; |
|
int i, j; |
|
|
|
/* parse and check the OS header */ |
|
frame_num = bytestream_get_le32(&buf_ptr); |
|
word2 = bytestream_get_le32(&buf_ptr); |
|
check_sum = bytestream_get_le32(&buf_ptr); |
|
data_size = bytestream_get_le32(&buf_ptr); |
|
|
|
if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) { |
|
av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* parse the bitstream header */ |
|
bs_hdr = buf_ptr; |
|
|
|
if (bytestream_get_le16(&buf_ptr) != 32) { |
|
av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->frame_num = frame_num; |
|
ctx->frame_flags = bytestream_get_le16(&buf_ptr); |
|
ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3; |
|
ctx->cb_offset = *buf_ptr++; |
|
|
|
if (ctx->data_size == 16) |
|
return 4; |
|
if (ctx->data_size > buf_size) |
|
ctx->data_size = buf_size; |
|
|
|
buf_ptr += 3; // skip reserved byte and checksum |
|
|
|
/* check frame dimensions */ |
|
height = bytestream_get_le16(&buf_ptr); |
|
width = bytestream_get_le16(&buf_ptr); |
|
if (av_image_check_size(width, height, 0, avctx)) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (width != ctx->width || height != ctx->height) { |
|
int res; |
|
|
|
av_dlog(avctx, "Frame dimensions changed!\n"); |
|
|
|
if (width < 16 || width > 640 || |
|
height < 16 || height > 480 || |
|
width & 3 || height & 3) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Invalid picture dimensions: %d x %d!\n", width, height); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->width = width; |
|
ctx->height = height; |
|
|
|
free_frame_buffers(ctx); |
|
if ((res = allocate_frame_buffers(ctx, avctx)) < 0) |
|
return res; |
|
avcodec_set_dimensions(avctx, width, height); |
|
} |
|
|
|
y_offset = bytestream_get_le32(&buf_ptr); |
|
v_offset = bytestream_get_le32(&buf_ptr); |
|
u_offset = bytestream_get_le32(&buf_ptr); |
|
|
|
/* unfortunately there is no common order of planes in the buffer */ |
|
/* so we use that sorting algo for determining planes data sizes */ |
|
starts[0] = y_offset; |
|
starts[1] = v_offset; |
|
starts[2] = u_offset; |
|
|
|
for (j = 0; j < 3; j++) { |
|
ends[j] = ctx->data_size; |
|
for (i = 2; i >= 0; i--) |
|
if (starts[i] < ends[j] && starts[i] > starts[j]) |
|
ends[j] = starts[i]; |
|
} |
|
|
|
ctx->y_data_size = ends[0] - starts[0]; |
|
ctx->v_data_size = ends[1] - starts[1]; |
|
ctx->u_data_size = ends[2] - starts[2]; |
|
if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 || |
|
FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) { |
|
av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->y_data_ptr = bs_hdr + y_offset; |
|
ctx->v_data_ptr = bs_hdr + v_offset; |
|
ctx->u_data_ptr = bs_hdr + u_offset; |
|
ctx->alt_quant = buf_ptr + sizeof(uint32_t); |
|
|
|
if (ctx->data_size == 16) { |
|
av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n"); |
|
return 16; |
|
} |
|
|
|
if (ctx->frame_flags & BS_8BIT_PEL) { |
|
av_log_ask_for_sample(avctx, "8-bit pixel format\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) { |
|
av_log_ask_for_sample(avctx, "halfpel motion vectors\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Convert and output the current plane. |
|
* All pixel values will be upsampled by shifting right by one bit. |
|
* |
|
* @param[in] plane pointer to the descriptor of the plane being processed |
|
* @param[in] buf_sel indicates which frame buffer the input data stored in |
|
* @param[out] dst pointer to the buffer receiving converted pixels |
|
* @param[in] dst_pitch pitch for moving to the next y line |
|
*/ |
|
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch) |
|
{ |
|
int x,y; |
|
const uint8_t *src = plane->pixels[buf_sel]; |
|
uint32_t pitch = plane->pitch; |
|
|
|
for (y = 0; y < plane->height; y++) { |
|
/* convert four pixels at once using SWAR */ |
|
for (x = 0; x < plane->width >> 2; x++) { |
|
AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1); |
|
src += 4; |
|
dst += 4; |
|
} |
|
|
|
for (x <<= 2; x < plane->width; x++) |
|
*dst++ = *src++ << 1; |
|
|
|
src += pitch - plane->width; |
|
dst += dst_pitch - plane->width; |
|
} |
|
} |
|
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx) |
|
{ |
|
Indeo3DecodeContext *ctx = avctx->priv_data; |
|
|
|
ctx->avctx = avctx; |
|
ctx->width = avctx->width; |
|
ctx->height = avctx->height; |
|
avctx->pix_fmt = PIX_FMT_YUV410P; |
|
|
|
build_requant_tab(); |
|
|
|
ff_dsputil_init(&ctx->dsp, avctx); |
|
|
|
allocate_frame_buffers(ctx, avctx); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
Indeo3DecodeContext *ctx = avctx->priv_data; |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
int res; |
|
|
|
res = decode_frame_headers(ctx, avctx, buf, buf_size); |
|
if (res < 0) |
|
return res; |
|
|
|
/* skip sync(null) frames */ |
|
if (res) { |
|
// we have processed 16 bytes but no data was decoded |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
/* skip droppable INTER frames if requested */ |
|
if (ctx->frame_flags & BS_NONREF && |
|
(avctx->skip_frame >= AVDISCARD_NONREF)) |
|
return 0; |
|
|
|
/* skip INTER frames if requested */ |
|
if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY) |
|
return 0; |
|
|
|
/* use BS_BUFFER flag for buffer switching */ |
|
ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1; |
|
|
|
/* decode luma plane */ |
|
if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40))) |
|
return res; |
|
|
|
/* decode chroma planes */ |
|
if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10))) |
|
return res; |
|
|
|
if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10))) |
|
return res; |
|
|
|
if (ctx->frame.data[0]) |
|
avctx->release_buffer(avctx, &ctx->frame); |
|
|
|
ctx->frame.reference = 0; |
|
if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) { |
|
av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); |
|
return res; |
|
} |
|
|
|
output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]); |
|
output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]); |
|
output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]); |
|
|
|
*data_size = sizeof(AVFrame); |
|
*(AVFrame*)data = ctx->frame; |
|
|
|
return buf_size; |
|
} |
|
|
|
|
|
static av_cold int decode_close(AVCodecContext *avctx) |
|
{ |
|
Indeo3DecodeContext *ctx = avctx->priv_data; |
|
|
|
free_frame_buffers(avctx->priv_data); |
|
|
|
if (ctx->frame.data[0]) |
|
avctx->release_buffer(avctx, &ctx->frame); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ff_indeo3_decoder = { |
|
.name = "indeo3", |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_INDEO3, |
|
.priv_data_size = sizeof(Indeo3DecodeContext), |
|
.init = decode_init, |
|
.close = decode_close, |
|
.decode = decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"), |
|
};
|
|
|