mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1139 lines
37 KiB
1139 lines
37 KiB
/* |
|
* TwinVQ decoder |
|
* Copyright (c) 2009 Vitor Sessak |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "dsputil.h" |
|
|
|
#include <math.h> |
|
#include <stdint.h> |
|
|
|
#include "twinvq_data.h" |
|
|
|
enum FrameType { |
|
FT_SHORT = 0, ///< Short frame (divided in n sub-blocks) |
|
FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks) |
|
FT_LONG, ///< Long frame (single sub-block + PPC) |
|
FT_PPC, ///< Periodic Peak Component (part of the long frame) |
|
}; |
|
|
|
/** |
|
* Parameters and tables that are different for each frame type |
|
*/ |
|
struct FrameMode { |
|
uint8_t sub; ///< Number subblocks in each frame |
|
const uint16_t *bark_tab; |
|
|
|
/** number of distinct bark scale envelope values */ |
|
uint8_t bark_env_size; |
|
|
|
const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE) |
|
uint8_t bark_n_coef;///< number of BSE CB coefficients to read |
|
uint8_t bark_n_bit; ///< number of bits of the BSE coefs |
|
|
|
//@{ |
|
/** main codebooks for spectrum data */ |
|
const int16_t *cb0; |
|
const int16_t *cb1; |
|
//@} |
|
|
|
uint8_t cb_len_read; ///< number of spectrum coefficients to read |
|
}; |
|
|
|
/** |
|
* Parameters and tables that are different for every combination of |
|
* bitrate/sample rate |
|
*/ |
|
typedef struct { |
|
struct FrameMode fmode[3]; ///< frame type-dependant parameters |
|
|
|
uint16_t size; ///< frame size in samples |
|
uint8_t n_lsp; ///< number of lsp coefficients |
|
const float *lspcodebook; |
|
|
|
/* number of bits of the different LSP CB coefficients */ |
|
uint8_t lsp_bit0; |
|
uint8_t lsp_bit1; |
|
uint8_t lsp_bit2; |
|
|
|
uint8_t lsp_split; ///< number of CB entries for the LSP decoding |
|
const int16_t *ppc_shape_cb; ///< PPC shape CB |
|
|
|
/** number of the bits for the PPC period value */ |
|
uint8_t ppc_period_bit; |
|
|
|
uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs |
|
uint8_t ppc_shape_len; ///< size of PPC shape CB |
|
uint8_t pgain_bit; ///< bits for PPC gain |
|
|
|
/** constant for peak period to peak width conversion */ |
|
uint16_t peak_per2wid; |
|
} ModeTab; |
|
|
|
static const ModeTab mode_08_08 = { |
|
{ |
|
{ 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18}, |
|
{ 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16}, |
|
{ 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17} |
|
}, |
|
512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40 |
|
}; |
|
|
|
static const ModeTab mode_11_08 = { |
|
{ |
|
{ 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29}, |
|
{ 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24}, |
|
{ 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27} |
|
}, |
|
512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 |
|
}; |
|
|
|
static const ModeTab mode_11_10 = { |
|
{ |
|
{ 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21}, |
|
{ 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18}, |
|
{ 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20} |
|
}, |
|
512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 |
|
}; |
|
|
|
static const ModeTab mode_16_16 = { |
|
{ |
|
{ 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16}, |
|
{ 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15}, |
|
{ 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16} |
|
}, |
|
1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180 |
|
}; |
|
|
|
static const ModeTab mode_22_20 = { |
|
{ |
|
{ 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18}, |
|
{ 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17}, |
|
{ 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18} |
|
}, |
|
1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 |
|
}; |
|
|
|
static const ModeTab mode_22_24 = { |
|
{ |
|
{ 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15}, |
|
{ 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14}, |
|
{ 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15} |
|
}, |
|
1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 |
|
}; |
|
|
|
static const ModeTab mode_22_32 = { |
|
{ |
|
{ 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11}, |
|
{ 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11}, |
|
{ 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12} |
|
}, |
|
512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72 |
|
}; |
|
|
|
static const ModeTab mode_44_40 = { |
|
{ |
|
{16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18}, |
|
{ 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17}, |
|
{ 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17} |
|
}, |
|
2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 |
|
}; |
|
|
|
static const ModeTab mode_44_48 = { |
|
{ |
|
{16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15}, |
|
{ 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14}, |
|
{ 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14} |
|
}, |
|
2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 |
|
}; |
|
|
|
typedef struct TwinContext { |
|
AVCodecContext *avctx; |
|
DSPContext dsp; |
|
FFTContext mdct_ctx[3]; |
|
|
|
const ModeTab *mtab; |
|
|
|
// history |
|
float lsp_hist[2][20]; ///< LSP coefficients of the last frame |
|
float bark_hist[3][2][40]; ///< BSE coefficients of last frame |
|
|
|
// bitstream parameters |
|
int16_t permut[4][4096]; |
|
uint8_t length[4][2]; ///< main codebook stride |
|
uint8_t length_change[4]; |
|
uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook |
|
int bits_main_spec_change[4]; |
|
int n_div[4]; |
|
|
|
float *spectrum; |
|
float *curr_frame; ///< non-interleaved output |
|
float *prev_frame; ///< non-interleaved previous frame |
|
int last_block_pos[2]; |
|
|
|
float *cos_tabs[3]; |
|
|
|
// scratch buffers |
|
float *tmp_buf; |
|
} TwinContext; |
|
|
|
#define PPC_SHAPE_CB_SIZE 64 |
|
#define SUB_AMP_MAX 4500.0 |
|
#define MULAW_MU 100.0 |
|
#define GAIN_BITS 8 |
|
#define AMP_MAX 13000.0 |
|
#define SUB_GAIN_BITS 5 |
|
#define WINDOW_TYPE_BITS 4 |
|
#define PGAIN_MU 200 |
|
|
|
/** @note not speed critical, hence not optimized */ |
|
static void memset_float(float *buf, float val, int size) |
|
{ |
|
while (size--) |
|
*buf++ = val; |
|
} |
|
|
|
/** |
|
* Evaluate a single LPC amplitude spectrum envelope coefficient from the line |
|
* spectrum pairs. |
|
* |
|
* @param lsp a vector of the cosinus of the LSP values |
|
* @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude |
|
* @param order the order of the LSP (and the size of the *lsp buffer). Must |
|
* be a multiple of four. |
|
* @return the LPC value |
|
* |
|
* @todo reuse code from vorbis_dec.c: vorbis_floor0_decode |
|
*/ |
|
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) |
|
{ |
|
int j; |
|
float p = 0.5f; |
|
float q = 0.5f; |
|
float two_cos_w = 2.0f*cos_val; |
|
|
|
for (j = 0; j + 1 < order; j += 2*2) { |
|
// Unroll the loop once since order is a multiple of four |
|
q *= lsp[j ] - two_cos_w; |
|
p *= lsp[j+1] - two_cos_w; |
|
|
|
q *= lsp[j+2] - two_cos_w; |
|
p *= lsp[j+3] - two_cos_w; |
|
} |
|
|
|
p *= p * (2.0f - two_cos_w); |
|
q *= q * (2.0f + two_cos_w); |
|
|
|
return 0.5 / (p + q); |
|
} |
|
|
|
/** |
|
* Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs. |
|
*/ |
|
static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc) |
|
{ |
|
int i; |
|
const ModeTab *mtab = tctx->mtab; |
|
int size_s = mtab->size / mtab->fmode[FT_SHORT].sub; |
|
|
|
for (i = 0; i < size_s/2; i++) { |
|
float cos_i = tctx->cos_tabs[0][i]; |
|
lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); |
|
lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp); |
|
} |
|
} |
|
|
|
static void interpolate(float *out, float v1, float v2, int size) |
|
{ |
|
int i; |
|
float step = (v1 - v2)/(size + 1); |
|
|
|
for (i = 0; i < size; i++) { |
|
v2 += step; |
|
out[i] = v2; |
|
} |
|
} |
|
|
|
static inline float get_cos(int idx, int part, const float *cos_tab, int size) |
|
{ |
|
return part ? -cos_tab[size - idx - 1] : |
|
cos_tab[ idx ]; |
|
} |
|
|
|
/** |
|
* Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs. |
|
* Probably for speed reasons, the coefficients are evaluated as |
|
* siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ... |
|
* where s is an evaluated value, i is a value interpolated from the others |
|
* and b might be either calculated or interpolated, depending on an |
|
* unexplained condition. |
|
* |
|
* @param step the size of a block "siiiibiiii" |
|
* @param in the cosinus of the LSP data |
|
* @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI |
|
(negative cossinus values) |
|
* @param size the size of the whole output |
|
*/ |
|
static inline void eval_lpcenv_or_interp(TwinContext *tctx, |
|
enum FrameType ftype, |
|
float *out, const float *in, |
|
int size, int step, int part) |
|
{ |
|
int i; |
|
const ModeTab *mtab = tctx->mtab; |
|
const float *cos_tab = tctx->cos_tabs[ftype]; |
|
|
|
// Fill the 's' |
|
for (i = 0; i < size; i += step) |
|
out[i] = |
|
eval_lpc_spectrum(in, |
|
get_cos(i, part, cos_tab, size), |
|
mtab->n_lsp); |
|
|
|
// Fill the 'iiiibiiii' |
|
for (i = step; i <= size - 2*step; i += step) { |
|
if (out[i + step] + out[i - step] > 1.95*out[i] || |
|
out[i + step] >= out[i - step]) { |
|
interpolate(out + i - step + 1, out[i], out[i-step], step - 1); |
|
} else { |
|
out[i - step/2] = |
|
eval_lpc_spectrum(in, |
|
get_cos(i-step/2, part, cos_tab, size), |
|
mtab->n_lsp); |
|
interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1); |
|
interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1); |
|
} |
|
} |
|
|
|
interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1); |
|
} |
|
|
|
static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype, |
|
const float *buf, float *lpc, |
|
int size, int step) |
|
{ |
|
eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0); |
|
eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1); |
|
|
|
interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step); |
|
|
|
memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1); |
|
} |
|
|
|
/** |
|
* Inverse quantization. Read CB coefficients for cb1 and cb2 from the |
|
* bitstream, sum the corresponding vectors and write the result to *out |
|
* after permutation. |
|
*/ |
|
static void dequant(TwinContext *tctx, GetBitContext *gb, float *out, |
|
enum FrameType ftype, |
|
const int16_t *cb0, const int16_t *cb1, int cb_len) |
|
{ |
|
int pos = 0; |
|
int i, j; |
|
|
|
for (i = 0; i < tctx->n_div[ftype]; i++) { |
|
int tmp0, tmp1; |
|
int sign0 = 1; |
|
int sign1 = 1; |
|
const int16_t *tab0, *tab1; |
|
int length = tctx->length[ftype][i >= tctx->length_change[ftype]]; |
|
int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]); |
|
|
|
int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; |
|
if (bits == 7) { |
|
if (get_bits1(gb)) |
|
sign0 = -1; |
|
bits = 6; |
|
} |
|
tmp0 = get_bits(gb, bits); |
|
|
|
bits = tctx->bits_main_spec[1][ftype][bitstream_second_part]; |
|
|
|
if (bits == 7) { |
|
if (get_bits1(gb)) |
|
sign1 = -1; |
|
|
|
bits = 6; |
|
} |
|
tmp1 = get_bits(gb, bits); |
|
|
|
tab0 = cb0 + tmp0*cb_len; |
|
tab1 = cb1 + tmp1*cb_len; |
|
|
|
for (j = 0; j < length; j++) |
|
out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j]; |
|
|
|
pos += length; |
|
} |
|
|
|
} |
|
|
|
static inline float mulawinv(float y, float clip, float mu) |
|
{ |
|
y = av_clipf(y/clip, -1, 1); |
|
return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu; |
|
} |
|
|
|
/** |
|
* Evaluate a*b/400 rounded to the nearest integer. When, for example, |
|
* a*b == 200 and the nearest integer is ill-defined, use a table to emulate |
|
* the following broken float-based implementation used by the binary decoder: |
|
* |
|
* \code |
|
* static int very_broken_op(int a, int b) |
|
* { |
|
* static float test; // Ugh, force gcc to do the division first... |
|
* |
|
* test = a/400.; |
|
* return b * test + 0.5; |
|
* } |
|
* \endcode |
|
* |
|
* @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev |
|
* between the original file (before encoding with Yamaha encoder) and the |
|
* decoded output increases, which leads one to believe that the encoder expects |
|
* exactly this broken calculation. |
|
*/ |
|
static int very_broken_op(int a, int b) |
|
{ |
|
int x = a*b + 200; |
|
int size; |
|
const uint8_t *rtab; |
|
|
|
if (x%400 || b%5) |
|
return x/400; |
|
|
|
x /= 400; |
|
|
|
size = tabs[b/5].size; |
|
rtab = tabs[b/5].tab; |
|
return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size]; |
|
} |
|
|
|
/** |
|
* Sum to data a periodic peak of a given period, width and shape. |
|
* |
|
* @param period the period of the peak divised by 400.0 |
|
*/ |
|
static void add_peak(int period, int width, const float *shape, |
|
float ppc_gain, float *speech, int len) |
|
{ |
|
int i, j; |
|
|
|
const float *shape_end = shape + len; |
|
int center; |
|
|
|
// First peak centered around zero |
|
for (i = 0; i < width/2; i++) |
|
speech[i] += ppc_gain * *shape++; |
|
|
|
for (i = 1; i < ROUNDED_DIV(len,width) ; i++) { |
|
center = very_broken_op(period, i); |
|
for (j = -width/2; j < (width+1)/2; j++) |
|
speech[j+center] += ppc_gain * *shape++; |
|
} |
|
|
|
// For the last block, be careful not to go beyond the end of the buffer |
|
center = very_broken_op(period, i); |
|
for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++) |
|
speech[j+center] += ppc_gain * *shape++; |
|
} |
|
|
|
static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape, |
|
float ppc_gain, float *speech) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int isampf = tctx->avctx->sample_rate/1000; |
|
int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels); |
|
int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf); |
|
int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf); |
|
int period_range = max_period - min_period; |
|
|
|
// This is actually the period multiplied by 400. It is just linearly coded |
|
// between its maximum and minimum value. |
|
int period = min_period + |
|
ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1); |
|
int width; |
|
|
|
if (isampf == 22 && ibps == 32) { |
|
// For some unknown reason, NTT decided to code this case differently... |
|
width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size); |
|
} else |
|
width = (period )* mtab->peak_per2wid/(400*mtab->size); |
|
|
|
add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len); |
|
} |
|
|
|
static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype, |
|
float *out) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int i, j; |
|
int sub = mtab->fmode[ftype].sub; |
|
float step = AMP_MAX / ((1 << GAIN_BITS) - 1); |
|
float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1); |
|
|
|
if (ftype == FT_LONG) { |
|
for (i = 0; i < tctx->avctx->channels; i++) |
|
out[i] = (1./(1<<13)) * |
|
mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), |
|
AMP_MAX, MULAW_MU); |
|
} else { |
|
for (i = 0; i < tctx->avctx->channels; i++) { |
|
float val = (1./(1<<23)) * |
|
mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), |
|
AMP_MAX, MULAW_MU); |
|
|
|
for (j = 0; j < sub; j++) { |
|
out[i*sub + j] = |
|
val*mulawinv(sub_step* 0.5 + |
|
sub_step* get_bits(gb, SUB_GAIN_BITS), |
|
SUB_AMP_MAX, MULAW_MU); |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Rearrange the LSP coefficients so that they have a minimum distance of |
|
* min_dist. This function does it exactly as described in section of 3.2.4 |
|
* of the G.729 specification (but interestingly is different from what the |
|
* reference decoder actually does). |
|
*/ |
|
static void rearrange_lsp(int order, float *lsp, float min_dist) |
|
{ |
|
int i; |
|
float min_dist2 = min_dist * 0.5; |
|
for (i = 1; i < order; i++) |
|
if (lsp[i] - lsp[i-1] < min_dist) { |
|
float avg = (lsp[i] + lsp[i-1]) * 0.5; |
|
|
|
lsp[i-1] = avg - min_dist2; |
|
lsp[i ] = avg + min_dist2; |
|
} |
|
} |
|
|
|
static void bubblesort(float *lsp, int lp_order) |
|
{ |
|
int i,j; |
|
|
|
/* sort lsp in ascending order. float bubble agorithm, |
|
O(n) if data already sorted, O(n^2) - otherwise */ |
|
for (i = 0; i < lp_order - 1; i++) |
|
for (j = i; j >= 0 && lsp[j] > lsp[j+1]; j--) |
|
FFSWAP(float, lsp[j], lsp[j+1]); |
|
} |
|
|
|
static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, |
|
int lpc_hist_idx, float *lsp, float *hist) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int i, j; |
|
|
|
const float *cb = mtab->lspcodebook; |
|
const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp; |
|
const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp; |
|
|
|
const int8_t funny_rounding[4] = { |
|
-2, |
|
mtab->lsp_split == 4 ? -2 : 1, |
|
mtab->lsp_split == 4 ? -2 : 1, |
|
0 |
|
}; |
|
|
|
j = 0; |
|
for (i = 0; i < mtab->lsp_split; i++) { |
|
int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split; |
|
for (; j < chunk_end; j++) |
|
lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] + |
|
cb2[lpc_idx2[i] * mtab->n_lsp + j]; |
|
} |
|
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.0001); |
|
|
|
for (i = 0; i < mtab->n_lsp; i++) { |
|
float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i]; |
|
float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i]; |
|
hist[i] = lsp[i]; |
|
lsp[i] = lsp[i] * tmp1 + tmp2; |
|
} |
|
|
|
rearrange_lsp(mtab->n_lsp, lsp, 0.0001); |
|
rearrange_lsp(mtab->n_lsp, lsp, 0.000095); |
|
bubblesort(lsp, mtab->n_lsp); |
|
} |
|
|
|
static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp, |
|
enum FrameType ftype, float *lpc) |
|
{ |
|
int i; |
|
int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub; |
|
|
|
for (i = 0; i < tctx->mtab->n_lsp; i++) |
|
lsp[i] = 2*cos(lsp[i]); |
|
|
|
switch (ftype) { |
|
case FT_LONG: |
|
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8); |
|
break; |
|
case FT_MEDIUM: |
|
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2); |
|
break; |
|
case FT_SHORT: |
|
eval_lpcenv(tctx, lsp, lpc); |
|
break; |
|
} |
|
} |
|
|
|
static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype, |
|
float *in, float *prev, int ch) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int bsize = mtab->size / mtab->fmode[ftype].sub; |
|
int size = mtab->size; |
|
float *buf1 = tctx->tmp_buf; |
|
int j; |
|
int wsize; // Window size |
|
float *out = tctx->curr_frame + 2*ch*mtab->size; |
|
float *out2 = out; |
|
float *prev_buf; |
|
int first_wsize; |
|
|
|
static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1}; |
|
int types_sizes[] = { |
|
mtab->size / mtab->fmode[FT_LONG ].sub, |
|
mtab->size / mtab->fmode[FT_MEDIUM].sub, |
|
mtab->size / (2*mtab->fmode[FT_SHORT ].sub), |
|
}; |
|
|
|
wsize = types_sizes[wtype_to_wsize[wtype]]; |
|
first_wsize = wsize; |
|
prev_buf = prev + (size - bsize)/2; |
|
|
|
for (j = 0; j < mtab->fmode[ftype].sub; j++) { |
|
int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype; |
|
|
|
if (!j && wtype == 4) |
|
sub_wtype = 4; |
|
else if (j == mtab->fmode[ftype].sub-1 && wtype == 7) |
|
sub_wtype = 7; |
|
|
|
wsize = types_sizes[wtype_to_wsize[sub_wtype]]; |
|
|
|
ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j); |
|
|
|
tctx->dsp.vector_fmul_window(out2, |
|
prev_buf + (bsize-wsize)/2, |
|
buf1 + bsize*j, |
|
ff_sine_windows[av_log2(wsize)], |
|
0.0, |
|
wsize/2); |
|
out2 += wsize; |
|
|
|
memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float)); |
|
|
|
out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize; |
|
|
|
prev_buf = buf1 + bsize*j + bsize/2; |
|
} |
|
|
|
tctx->last_block_pos[ch] = (size + first_wsize)/2; |
|
} |
|
|
|
static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype, |
|
float *out) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; |
|
int i, j; |
|
|
|
for (i = 0; i < tctx->avctx->channels; i++) { |
|
imdct_and_window(tctx, ftype, wtype, |
|
tctx->spectrum + i*mtab->size, |
|
prev_buf + 2*i*mtab->size, |
|
i); |
|
} |
|
|
|
if (tctx->avctx->channels == 2) { |
|
for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) { |
|
float f1 = prev_buf[ i]; |
|
float f2 = prev_buf[2*mtab->size + i]; |
|
out[2*i ] = f1 + f2; |
|
out[2*i + 1] = f1 - f2; |
|
} |
|
for (j = 0; i < mtab->size; j++,i++) { |
|
float f1 = tctx->curr_frame[ j]; |
|
float f2 = tctx->curr_frame[2*mtab->size + j]; |
|
out[2*i ] = f1 + f2; |
|
out[2*i + 1] = f1 - f2; |
|
} |
|
} else { |
|
memcpy(out, prev_buf, |
|
(mtab->size - tctx->last_block_pos[0]) * sizeof(*out)); |
|
|
|
out += mtab->size - tctx->last_block_pos[0]; |
|
|
|
memcpy(out, tctx->curr_frame, |
|
(tctx->last_block_pos[0]) * sizeof(*out)); |
|
} |
|
|
|
} |
|
|
|
static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist, |
|
int ch, float *out, float gain, enum FrameType ftype) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int i,j; |
|
float *hist = tctx->bark_hist[ftype][ch]; |
|
float val = ((const float []) {0.4, 0.35, 0.28})[ftype]; |
|
int bark_n_coef = mtab->fmode[ftype].bark_n_coef; |
|
int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef; |
|
int idx = 0; |
|
|
|
for (i = 0; i < fw_cb_len; i++) |
|
for (j = 0; j < bark_n_coef; j++, idx++) { |
|
float tmp2 = |
|
mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096); |
|
float st = use_hist ? |
|
(1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.; |
|
|
|
hist[idx] = tmp2; |
|
if (st < -1.) st = 1.; |
|
|
|
memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]); |
|
out += mtab->fmode[ftype].bark_tab[idx]; |
|
} |
|
|
|
} |
|
|
|
static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb, |
|
float *out, enum FrameType ftype) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int channels = tctx->avctx->channels; |
|
int sub = mtab->fmode[ftype].sub; |
|
int block_size = mtab->size / sub; |
|
float gain[channels*sub]; |
|
float ppc_shape[mtab->ppc_shape_len * channels * 4]; |
|
uint8_t bark1[channels][sub][mtab->fmode[ftype].bark_n_coef]; |
|
uint8_t bark_use_hist[channels][sub]; |
|
|
|
uint8_t lpc_idx1[channels]; |
|
uint8_t lpc_idx2[channels][tctx->mtab->lsp_split]; |
|
uint8_t lpc_hist_idx[channels]; |
|
|
|
int i, j, k; |
|
|
|
dequant(tctx, gb, out, ftype, |
|
mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, |
|
mtab->fmode[ftype].cb_len_read); |
|
|
|
for (i = 0; i < channels; i++) |
|
for (j = 0; j < sub; j++) |
|
for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++) |
|
bark1[i][j][k] = |
|
get_bits(gb, mtab->fmode[ftype].bark_n_bit); |
|
|
|
for (i = 0; i < channels; i++) |
|
for (j = 0; j < sub; j++) |
|
bark_use_hist[i][j] = get_bits1(gb); |
|
|
|
dec_gain(tctx, gb, ftype, gain); |
|
|
|
for (i = 0; i < channels; i++) { |
|
lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0); |
|
lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1); |
|
|
|
for (j = 0; j < tctx->mtab->lsp_split; j++) |
|
lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2); |
|
} |
|
|
|
if (ftype == FT_LONG) { |
|
int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/ |
|
tctx->n_div[3]; |
|
dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb, |
|
mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p); |
|
} |
|
|
|
for (i = 0; i < channels; i++) { |
|
float *chunk = out + mtab->size * i; |
|
float lsp[tctx->mtab->n_lsp]; |
|
|
|
for (j = 0; j < sub; j++) { |
|
dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i, |
|
tctx->tmp_buf, gain[sub*i+j], ftype); |
|
|
|
tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf, |
|
block_size); |
|
|
|
} |
|
|
|
if (ftype == FT_LONG) { |
|
float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1); |
|
int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit); |
|
int g_coef = get_bits(gb, tctx->mtab->pgain_bit); |
|
float v = 1./8192* |
|
mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU); |
|
|
|
decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v, |
|
chunk); |
|
} |
|
|
|
decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp, |
|
tctx->lsp_hist[i]); |
|
|
|
dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); |
|
|
|
for (j = 0; j < mtab->fmode[ftype].sub; j++) { |
|
tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size); |
|
chunk += block_size; |
|
} |
|
} |
|
} |
|
|
|
static int twin_decode_frame(AVCodecContext * avctx, void *data, |
|
int *data_size, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
TwinContext *tctx = avctx->priv_data; |
|
GetBitContext gb; |
|
const ModeTab *mtab = tctx->mtab; |
|
float *out = data; |
|
enum FrameType ftype; |
|
int window_type; |
|
static const enum FrameType wtype_to_ftype_table[] = { |
|
FT_LONG, FT_LONG, FT_SHORT, FT_LONG, |
|
FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM |
|
}; |
|
|
|
if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Frame too small (%d bytes). Truncated file?\n", buf_size); |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
init_get_bits(&gb, buf, buf_size * 8); |
|
skip_bits(&gb, get_bits(&gb, 8)); |
|
window_type = get_bits(&gb, WINDOW_TYPE_BITS); |
|
|
|
if (window_type > 8) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n"); |
|
return -1; |
|
} |
|
|
|
ftype = wtype_to_ftype_table[window_type]; |
|
|
|
read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype); |
|
|
|
imdct_output(tctx, ftype, window_type, out); |
|
|
|
FFSWAP(float*, tctx->curr_frame, tctx->prev_frame); |
|
|
|
if (tctx->avctx->frame_number < 2) { |
|
*data_size=0; |
|
return buf_size; |
|
} |
|
|
|
tctx->dsp.vector_clipf(out, out, -32700./(1<<15), 32700./(1<<15), |
|
avctx->channels * mtab->size); |
|
|
|
*data_size = mtab->size*avctx->channels*4; |
|
|
|
return buf_size; |
|
} |
|
|
|
/** |
|
* Init IMDCT and windowing tables |
|
*/ |
|
static av_cold void init_mdct_win(TwinContext *tctx) |
|
{ |
|
int i,j; |
|
const ModeTab *mtab = tctx->mtab; |
|
int size_s = mtab->size / mtab->fmode[FT_SHORT].sub; |
|
int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub; |
|
int channels = tctx->avctx->channels; |
|
float norm = channels == 1 ? 2. : 1.; |
|
|
|
for (i = 0; i < 3; i++) { |
|
int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub; |
|
ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, |
|
-sqrt(norm/bsize) / (1<<15)); |
|
} |
|
|
|
tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf)); |
|
|
|
tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float)); |
|
tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float)); |
|
tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float)); |
|
|
|
for (i = 0; i < 3; i++) { |
|
int m = 4*mtab->size/mtab->fmode[i].sub; |
|
double freq = 2*M_PI/m; |
|
tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs)); |
|
|
|
for (j = 0; j <= m/8; j++) |
|
tctx->cos_tabs[i][j] = cos((2*j + 1)*freq); |
|
for (j = 1; j < m/8; j++) |
|
tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j]; |
|
} |
|
|
|
|
|
ff_sine_window_init(ff_sine_windows[av_log2(size_m) ], size_m ); |
|
ff_sine_window_init(ff_sine_windows[av_log2(size_s/2) ], size_s/2); |
|
ff_sine_window_init(ff_sine_windows[av_log2(mtab->size)], mtab->size); |
|
} |
|
|
|
/** |
|
* Interpret the data as if it were a num_blocks x line_len[0] matrix and for |
|
* each line do a cyclic permutation, i.e. |
|
* abcdefghijklm -> defghijklmabc |
|
* where the amount to be shifted is evaluated depending on the column. |
|
*/ |
|
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, |
|
int block_size, |
|
const uint8_t line_len[2], int length_div, |
|
enum FrameType ftype) |
|
|
|
{ |
|
int i,j; |
|
|
|
for (i = 0; i < line_len[0]; i++) { |
|
int shift; |
|
|
|
if (num_blocks == 1 || |
|
(ftype == FT_LONG && num_vect % num_blocks) || |
|
(ftype != FT_LONG && num_vect & 1 ) || |
|
i == line_len[1]) { |
|
shift = 0; |
|
} else if (ftype == FT_LONG) { |
|
shift = i; |
|
} else |
|
shift = i*i; |
|
|
|
for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++) |
|
tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect; |
|
} |
|
} |
|
|
|
/** |
|
* Interpret the input data as in the following table: |
|
* |
|
* \verbatim |
|
* |
|
* abcdefgh |
|
* ijklmnop |
|
* qrstuvw |
|
* x123456 |
|
* |
|
* \endverbatim |
|
* |
|
* and transpose it, giving the output |
|
* aiqxbjr1cks2dlt3emu4fvn5gow6hp |
|
*/ |
|
static void transpose_perm(int16_t *out, int16_t *in, int num_vect, |
|
const uint8_t line_len[2], int length_div) |
|
{ |
|
int i,j; |
|
int cont= 0; |
|
for (i = 0; i < num_vect; i++) |
|
for (j = 0; j < line_len[i >= length_div]; j++) |
|
out[cont++] = in[j*num_vect + i]; |
|
} |
|
|
|
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) |
|
{ |
|
int block_size = size/n_blocks; |
|
int i; |
|
|
|
for (i = 0; i < size; i++) |
|
out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; |
|
} |
|
|
|
static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype) |
|
{ |
|
int block_size; |
|
const ModeTab *mtab = tctx->mtab; |
|
int size = tctx->avctx->channels*mtab->fmode[ftype].sub; |
|
int16_t *tmp_perm = (int16_t *) tctx->tmp_buf; |
|
|
|
if (ftype == FT_PPC) { |
|
size = tctx->avctx->channels; |
|
block_size = mtab->ppc_shape_len; |
|
} else |
|
block_size = mtab->size / mtab->fmode[ftype].sub; |
|
|
|
permutate_in_line(tmp_perm, tctx->n_div[ftype], size, |
|
block_size, tctx->length[ftype], |
|
tctx->length_change[ftype], ftype); |
|
|
|
transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], |
|
tctx->length[ftype], tctx->length_change[ftype]); |
|
|
|
linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, |
|
size*block_size); |
|
} |
|
|
|
static av_cold void init_bitstream_params(TwinContext *tctx) |
|
{ |
|
const ModeTab *mtab = tctx->mtab; |
|
int n_ch = tctx->avctx->channels; |
|
int total_fr_bits = tctx->avctx->bit_rate*mtab->size/ |
|
tctx->avctx->sample_rate; |
|
|
|
int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 + |
|
mtab->lsp_split*mtab->lsp_bit2); |
|
|
|
int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit + |
|
mtab->ppc_period_bit); |
|
|
|
int bsize_no_main_cb[3]; |
|
int bse_bits[3]; |
|
int i; |
|
enum FrameType frametype; |
|
|
|
for (i = 0; i < 3; i++) |
|
// +1 for history usage switch |
|
bse_bits[i] = n_ch * |
|
(mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1); |
|
|
|
bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + |
|
WINDOW_TYPE_BITS + n_ch*GAIN_BITS; |
|
|
|
for (i = 0; i < 2; i++) |
|
bsize_no_main_cb[i] = |
|
lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS + |
|
mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS); |
|
|
|
// The remaining bits are all used for the main spectrum coefficients |
|
for (i = 0; i < 4; i++) { |
|
int bit_size; |
|
int vect_size; |
|
int rounded_up, rounded_down, num_rounded_down, num_rounded_up; |
|
if (i == 3) { |
|
bit_size = n_ch * mtab->ppc_shape_bit; |
|
vect_size = n_ch * mtab->ppc_shape_len; |
|
} else { |
|
bit_size = total_fr_bits - bsize_no_main_cb[i]; |
|
vect_size = n_ch * mtab->size; |
|
} |
|
|
|
tctx->n_div[i] = (bit_size + 13) / 14; |
|
|
|
rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i]; |
|
rounded_down = (bit_size )/tctx->n_div[i]; |
|
num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; |
|
num_rounded_up = tctx->n_div[i] - num_rounded_down; |
|
tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2; |
|
tctx->bits_main_spec[1][i][0] = (rounded_up )/2; |
|
tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2; |
|
tctx->bits_main_spec[1][i][1] = (rounded_down )/2; |
|
tctx->bits_main_spec_change[i] = num_rounded_up; |
|
|
|
rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i]; |
|
rounded_down = (vect_size )/tctx->n_div[i]; |
|
num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; |
|
num_rounded_up = tctx->n_div[i] - num_rounded_down; |
|
tctx->length[i][0] = rounded_up; |
|
tctx->length[i][1] = rounded_down; |
|
tctx->length_change[i] = num_rounded_up; |
|
} |
|
|
|
for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++) |
|
construct_perm_table(tctx, frametype); |
|
} |
|
|
|
static av_cold int twin_decode_init(AVCodecContext *avctx) |
|
{ |
|
TwinContext *tctx = avctx->priv_data; |
|
int isampf = avctx->sample_rate/1000; |
|
int ibps = avctx->bit_rate/(1000 * avctx->channels); |
|
|
|
tctx->avctx = avctx; |
|
avctx->sample_fmt = SAMPLE_FMT_FLT; |
|
|
|
if (avctx->channels > 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n", |
|
avctx->channels); |
|
return -1; |
|
} |
|
|
|
switch ((isampf << 8) + ibps) { |
|
case (8 <<8) + 8: tctx->mtab = &mode_08_08; break; |
|
case (11<<8) + 8: tctx->mtab = &mode_11_08; break; |
|
case (11<<8) + 10: tctx->mtab = &mode_11_10; break; |
|
case (16<<8) + 16: tctx->mtab = &mode_16_16; break; |
|
case (22<<8) + 20: tctx->mtab = &mode_22_20; break; |
|
case (22<<8) + 24: tctx->mtab = &mode_22_24; break; |
|
case (22<<8) + 32: tctx->mtab = &mode_22_32; break; |
|
case (44<<8) + 40: tctx->mtab = &mode_44_40; break; |
|
case (44<<8) + 48: tctx->mtab = &mode_44_48; break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf); |
|
return -1; |
|
} |
|
|
|
dsputil_init(&tctx->dsp, avctx); |
|
init_mdct_win(tctx); |
|
init_bitstream_params(tctx); |
|
|
|
memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist)); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int twin_decode_close(AVCodecContext *avctx) |
|
{ |
|
TwinContext *tctx = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < 3; i++) { |
|
ff_mdct_end(&tctx->mdct_ctx[i]); |
|
av_free(tctx->cos_tabs[i]); |
|
} |
|
|
|
|
|
av_free(tctx->curr_frame); |
|
av_free(tctx->spectrum); |
|
av_free(tctx->prev_frame); |
|
av_free(tctx->tmp_buf); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec twinvq_decoder = |
|
{ |
|
"twinvq", |
|
CODEC_TYPE_AUDIO, |
|
CODEC_ID_TWINVQ, |
|
sizeof(TwinContext), |
|
twin_decode_init, |
|
NULL, |
|
twin_decode_close, |
|
twin_decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"), |
|
};
|
|
|