mirror of https://github.com/FFmpeg/FFmpeg.git
465 lines
14 KiB
465 lines
14 KiB
/* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
*@brief IntraX8 frame subdecoder image manipulation routines |
|
*/ |
|
|
|
#include "intrax8dsp.h" |
|
#include "libavutil/common.h" |
|
|
|
/* |
|
* area positions, #3 is 1 pixel only, other are 8 pixels |
|
* |66666666| |
|
* 3|44444444|55555555| |
|
* - -+--------+--------+ |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* 1 2|XXXXXXXX| |
|
* ^-start |
|
*/ |
|
|
|
#define area1 (0) |
|
#define area2 (8) |
|
#define area3 (8 + 8) |
|
#define area4 (8 + 8 + 1) |
|
#define area5 (8 + 8 + 1 + 8) |
|
#define area6 (8 + 8 + 1 + 16) |
|
|
|
/** |
|
Collect statistics and prepare the edge pixels required by the other spatial compensation functions. |
|
|
|
* @param src pointer to the beginning of the processed block |
|
* @param dst pointer to emu_edge, edge pixels are stored the way other compensation routines do. |
|
* @param linesize byte offset between 2 vertical pixels in the source image |
|
* @param range pointer to the variable where the edge pixel range is to be stored (max-min values) |
|
* @param psum pointer to the variable where the edge pixel sum is to be stored |
|
* @param edges Informs this routine that the block is on an image border, so it has to interpolate the missing edge pixels. |
|
and some of the edge pixels should be interpolated, the flag has the following meaning: |
|
1 - mb_x==0 - first block in the row, interpolate area #1,#2,#3; |
|
2 - mb_y==0 - first row, interpolate area #3,#4,#5,#6; |
|
note: 1|2 - mb_x==mb_y==0 - first block, use 0x80 value for all areas; |
|
4 - mb_x>= (mb_width-1) last block in the row, interpolate area #5; |
|
-*/ |
|
static void x8_setup_spatial_compensation(uint8_t *src, uint8_t *dst, |
|
ptrdiff_t stride, int *range, |
|
int *psum, int edges) |
|
{ |
|
uint8_t *ptr; |
|
int sum; |
|
int i; |
|
int min_pix, max_pix; |
|
uint8_t c; |
|
|
|
if ((edges & 3) == 3) { |
|
*psum = 0x80 * (8 + 1 + 8 + 2); |
|
*range = 0; |
|
memset(dst, 0x80, 16 + 1 + 16 + 8); |
|
/* this triggers flat_dc for sure. flat_dc avoids all (other) |
|
* prediction modes, but requires dc_level decoding. */ |
|
return; |
|
} |
|
|
|
min_pix = 256; |
|
max_pix = -1; |
|
|
|
sum = 0; |
|
|
|
if (!(edges & 1)) { // (mb_x != 0) // there is previous block on this row |
|
ptr = src - 1; // left column, area 2 |
|
for (i = 7; i >= 0; i--) { |
|
c = *(ptr - 1); // area1, same mb as area2, no need to check |
|
dst[area1 + i] = c; |
|
c = *ptr; |
|
|
|
sum += c; |
|
min_pix = FFMIN(min_pix, c); |
|
max_pix = FFMAX(max_pix, c); |
|
dst[area2 + i] = c; |
|
|
|
ptr += stride; |
|
} |
|
} |
|
|
|
if (!(edges & 2)) { // (mb_y != 0) // there is row above |
|
ptr = src - stride; // top line |
|
for (i = 0; i < 8; i++) { |
|
c = *(ptr + i); |
|
sum += c; |
|
min_pix = FFMIN(min_pix, c); |
|
max_pix = FFMAX(max_pix, c); |
|
} |
|
if (edges & 4) { // last block on the row? |
|
memset(dst + area5, c, 8); // set with last pixel fr |
|
memcpy(dst + area4, ptr, 8); |
|
} else { |
|
memcpy(dst + area4, ptr, 16); // both area4 and 5 |
|
} |
|
// area6 always present in the above block |
|
memcpy(dst + area6, ptr - stride, 8); |
|
} |
|
// now calculate the stuff we need |
|
if (edges & 3) { // mb_x ==0 || mb_y == 0) { |
|
int avg = (sum + 4) >> 3; |
|
|
|
if (edges & 1) // (mb_x == 0) { // implies mb_y !=0 |
|
memset(dst + area1, avg, 8 + 8 + 1); // areas 1, 2, 3 are averaged |
|
else // implies y == 0 x != 0 |
|
memset(dst + area3, avg, 1 + 16 + 8); // areas 3, 4, 5, 6 |
|
|
|
sum += avg * 9; |
|
} else { |
|
// the edge pixel, in the top line and left column |
|
uint8_t c = *(src - 1 - stride); |
|
dst[area3] = c; |
|
sum += c; |
|
// edge pixel is not part of min/max |
|
} |
|
*range = max_pix - min_pix; |
|
sum += *(dst + area5) + *(dst + area5 + 1); |
|
*psum = sum; |
|
} |
|
|
|
static const uint16_t zero_prediction_weights[64 * 2] = { |
|
640, 640, 669, 480, 708, 354, 748, 257, |
|
792, 198, 760, 143, 808, 101, 772, 72, |
|
480, 669, 537, 537, 598, 416, 661, 316, |
|
719, 250, 707, 185, 768, 134, 745, 97, |
|
354, 708, 416, 598, 488, 488, 564, 388, |
|
634, 317, 642, 241, 716, 179, 706, 132, |
|
257, 748, 316, 661, 388, 564, 469, 469, |
|
543, 395, 571, 311, 655, 238, 660, 180, |
|
198, 792, 250, 719, 317, 634, 395, 543, |
|
469, 469, 507, 380, 597, 299, 616, 231, |
|
161, 855, 206, 788, 266, 710, 340, 623, |
|
411, 548, 455, 455, 548, 366, 576, 288, |
|
122, 972, 159, 914, 211, 842, 276, 758, |
|
341, 682, 389, 584, 483, 483, 520, 390, |
|
110, 1172, 144, 1107, 193, 1028, 254, 932, |
|
317, 846, 366, 731, 458, 611, 499, 499, |
|
}; |
|
|
|
static void spatial_compensation_0(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int i, j; |
|
int x, y; |
|
unsigned int p; // power divided by 2 |
|
int a; |
|
uint16_t left_sum[2][8] = { { 0 } }; |
|
uint16_t top_sum[2][8] = { { 0 } }; |
|
|
|
for (i = 0; i < 8; i++) { |
|
a = src[area2 + 7 - i] << 4; |
|
for (j = 0; j < 8; j++) { |
|
p = abs(i - j); |
|
left_sum[p & 1][j] += a >> (p >> 1); |
|
} |
|
} |
|
|
|
for (i = 0; i < 8; i++) { |
|
a = src[area4 + i] << 4; |
|
for (j = 0; j < 8; j++) { |
|
p = abs(i - j); |
|
top_sum[p & 1][j] += a >> (p >> 1); |
|
} |
|
} |
|
for (; i < 10; i++) { |
|
a = src[area4 + i] << 4; |
|
for (j = 5; j < 8; j++) { |
|
p = abs(i - j); |
|
top_sum[p & 1][j] += a >> (p >> 1); |
|
} |
|
} |
|
for (; i < 12; i++) { |
|
a = src[area4 + i] << 4; |
|
for (j = 7; j < 8; j++) { |
|
p = abs(i - j); |
|
top_sum[p & 1][j] += a >> (p >> 1); |
|
} |
|
} |
|
|
|
for (i = 0; i < 8; i++) { |
|
top_sum[0][i] += (top_sum[1][i] * 181 + 128) >> 8; // 181 is sqrt(2)/2 |
|
left_sum[0][i] += (left_sum[1][i] * 181 + 128) >> 8; |
|
} |
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = ((uint32_t) top_sum[0][x] * zero_prediction_weights[y * 16 + x * 2 + 0] + |
|
(uint32_t) left_sum[0][y] * zero_prediction_weights[y * 16 + x * 2 + 1] + |
|
0x8000) >> 16; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_1(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = src[area4 + FFMIN(2 * y + x + 2, 15)]; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_2(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = src[area4 + 1 + y + x]; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_3(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = src[area4 + ((y + 1) >> 1) + x]; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_4(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = (src[area4 + x] + src[area6 + x] + 1) >> 1; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_5(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) { |
|
if (2 * x - y < 0) |
|
dst[x] = src[area2 + 9 + 2 * x - y]; |
|
else |
|
dst[x] = src[area4 + x - ((y + 1) >> 1)]; |
|
} |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_6(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = src[area3 + x - y]; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_7(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) { |
|
if (x - 2 * y > 0) |
|
dst[x] = (src[area3 - 1 + x - 2 * y] + src[area3 + x - 2 * y] + 1) >> 1; |
|
else |
|
dst[x] = src[area2 + 8 - y + (x >> 1)]; |
|
} |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_8(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = (src[area1 + 7 - y] + src[area2 + 7 - y] + 1) >> 1; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_9(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = src[area2 + 6 - FFMIN(x + y, 6)]; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_10(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = (src[area2 + 7 - y] * (8 - x) + src[area4 + x] * x + 4) >> 3; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void spatial_compensation_11(uint8_t *src, uint8_t *dst, ptrdiff_t stride) |
|
{ |
|
int x, y; |
|
|
|
for (y = 0; y < 8; y++) { |
|
for (x = 0; x < 8; x++) |
|
dst[x] = (src[area2 + 7 - y] * y + src[area4 + x] * (8 - y) + 4) >> 3; |
|
dst += stride; |
|
} |
|
} |
|
|
|
static void x8_loop_filter(uint8_t *ptr, const ptrdiff_t a_stride, |
|
const ptrdiff_t b_stride, int quant) |
|
{ |
|
int i, t; |
|
int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9; |
|
int ql = (quant + 10) >> 3; |
|
|
|
for (i = 0; i < 8; i++, ptr += b_stride) { |
|
p0 = ptr[-5 * a_stride]; |
|
p1 = ptr[-4 * a_stride]; |
|
p2 = ptr[-3 * a_stride]; |
|
p3 = ptr[-2 * a_stride]; |
|
p4 = ptr[-1 * a_stride]; |
|
p5 = ptr[0]; |
|
p6 = ptr[1 * a_stride]; |
|
p7 = ptr[2 * a_stride]; |
|
p8 = ptr[3 * a_stride]; |
|
p9 = ptr[4 * a_stride]; |
|
|
|
t = (FFABS(p1 - p2) <= ql) + |
|
(FFABS(p2 - p3) <= ql) + |
|
(FFABS(p3 - p4) <= ql) + |
|
(FFABS(p4 - p5) <= ql); |
|
|
|
// You need at least 1 to be able to reach a total score of 6. |
|
if (t > 0) { |
|
t += (FFABS(p5 - p6) <= ql) + |
|
(FFABS(p6 - p7) <= ql) + |
|
(FFABS(p7 - p8) <= ql) + |
|
(FFABS(p8 - p9) <= ql) + |
|
(FFABS(p0 - p1) <= ql); |
|
if (t >= 6) { |
|
int min, max; |
|
|
|
min = max = p1; |
|
min = FFMIN(min, p3); |
|
max = FFMAX(max, p3); |
|
min = FFMIN(min, p5); |
|
max = FFMAX(max, p5); |
|
min = FFMIN(min, p8); |
|
max = FFMAX(max, p8); |
|
if (max - min < 2 * quant) { // early stop |
|
min = FFMIN(min, p2); |
|
max = FFMAX(max, p2); |
|
min = FFMIN(min, p4); |
|
max = FFMAX(max, p4); |
|
min = FFMIN(min, p6); |
|
max = FFMAX(max, p6); |
|
min = FFMIN(min, p7); |
|
max = FFMAX(max, p7); |
|
if (max - min < 2 * quant) { |
|
ptr[-2 * a_stride] = (4 * p2 + 3 * p3 + 1 * p7 + 4) >> 3; |
|
ptr[-1 * a_stride] = (3 * p2 + 3 * p4 + 2 * p7 + 4) >> 3; |
|
ptr[0] = (2 * p2 + 3 * p5 + 3 * p7 + 4) >> 3; |
|
ptr[1 * a_stride] = (1 * p2 + 3 * p6 + 4 * p7 + 4) >> 3; |
|
continue; |
|
} |
|
} |
|
} |
|
} |
|
{ |
|
int x, x0, x1, x2; |
|
int m; |
|
|
|
x0 = (2 * p3 - 5 * p4 + 5 * p5 - 2 * p6 + 4) >> 3; |
|
if (FFABS(x0) < quant) { |
|
x1 = (2 * p1 - 5 * p2 + 5 * p3 - 2 * p4 + 4) >> 3; |
|
x2 = (2 * p5 - 5 * p6 + 5 * p7 - 2 * p8 + 4) >> 3; |
|
|
|
x = FFABS(x0) - FFMIN(FFABS(x1), FFABS(x2)); |
|
m = p4 - p5; |
|
|
|
if (x > 0 && (m ^ x0) < 0) { |
|
int32_t sign; |
|
|
|
sign = m >> 31; |
|
m = (m ^ sign) - sign; // abs(m) |
|
m >>= 1; |
|
|
|
x = 5 * x >> 3; |
|
|
|
if (x > m) |
|
x = m; |
|
|
|
x = (x ^ sign) - sign; |
|
|
|
ptr[-1 * a_stride] -= x; |
|
ptr[0] += x; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static void x8_h_loop_filter(uint8_t *src, ptrdiff_t stride, int qscale) |
|
{ |
|
x8_loop_filter(src, stride, 1, qscale); |
|
} |
|
|
|
static void x8_v_loop_filter(uint8_t *src, ptrdiff_t stride, int qscale) |
|
{ |
|
x8_loop_filter(src, 1, stride, qscale); |
|
} |
|
|
|
av_cold void ff_intrax8dsp_init(IntraX8DSPContext *dsp) |
|
{ |
|
dsp->h_loop_filter = x8_h_loop_filter; |
|
dsp->v_loop_filter = x8_v_loop_filter; |
|
dsp->setup_spatial_compensation = x8_setup_spatial_compensation; |
|
dsp->spatial_compensation[0] = spatial_compensation_0; |
|
dsp->spatial_compensation[1] = spatial_compensation_1; |
|
dsp->spatial_compensation[2] = spatial_compensation_2; |
|
dsp->spatial_compensation[3] = spatial_compensation_3; |
|
dsp->spatial_compensation[4] = spatial_compensation_4; |
|
dsp->spatial_compensation[5] = spatial_compensation_5; |
|
dsp->spatial_compensation[6] = spatial_compensation_6; |
|
dsp->spatial_compensation[7] = spatial_compensation_7; |
|
dsp->spatial_compensation[8] = spatial_compensation_8; |
|
dsp->spatial_compensation[9] = spatial_compensation_9; |
|
dsp->spatial_compensation[10] = spatial_compensation_10; |
|
dsp->spatial_compensation[11] = spatial_compensation_11; |
|
}
|
|
|