mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1551 lines
54 KiB
1551 lines
54 KiB
/** |
|
* VP8 compatible video decoder |
|
* |
|
* Copyright (C) 2010 David Conrad |
|
* Copyright (C) 2010 Ronald S. Bultje |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "vp56.h" |
|
#include "vp8data.h" |
|
#include "vp8dsp.h" |
|
#include "h264pred.h" |
|
#include "rectangle.h" |
|
|
|
typedef struct { |
|
uint8_t segment; |
|
uint8_t skip; |
|
// todo: make it possible to check for at least (i4x4 or split_mv) |
|
// in one op. are others needed? |
|
uint8_t mode; |
|
uint8_t ref_frame; |
|
uint8_t partitioning; |
|
VP56mv mv; |
|
VP56mv bmv[16]; |
|
} VP8Macroblock; |
|
|
|
typedef struct { |
|
AVCodecContext *avctx; |
|
DSPContext dsp; |
|
VP8DSPContext vp8dsp; |
|
H264PredContext hpc; |
|
vp8_mc_func put_pixels_tab[3][3][3]; |
|
AVFrame frames[4]; |
|
AVFrame *framep[4]; |
|
uint8_t *edge_emu_buffer; |
|
VP56RangeCoder c; ///< header context, includes mb modes and motion vectors |
|
int profile; |
|
|
|
int mb_width; /* number of horizontal MB */ |
|
int mb_height; /* number of vertical MB */ |
|
int linesize; |
|
int uvlinesize; |
|
|
|
int keyframe; |
|
int invisible; |
|
int update_last; ///< update VP56_FRAME_PREVIOUS with the current one |
|
int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so |
|
int update_altref; |
|
int deblock_filter; |
|
|
|
/** |
|
* If this flag is not set, all the probability updates |
|
* are discarded after this frame is decoded. |
|
*/ |
|
int update_probabilities; |
|
|
|
/** |
|
* All coefficients are contained in separate arith coding contexts. |
|
* There can be 1, 2, 4, or 8 of these after the header context. |
|
*/ |
|
int num_coeff_partitions; |
|
VP56RangeCoder coeff_partition[8]; |
|
|
|
VP8Macroblock *macroblocks; |
|
VP8Macroblock *macroblocks_base; |
|
int mb_stride; |
|
|
|
uint8_t *intra4x4_pred_mode; |
|
uint8_t *intra4x4_pred_mode_base; |
|
int b4_stride; |
|
|
|
/** |
|
* Cache of the top row needed for intra prediction |
|
* 16 for luma, 8 for each chroma plane |
|
*/ |
|
uint8_t (*top_border)[16+8+8]; |
|
|
|
/** |
|
* For coeff decode, we need to know whether the above block had non-zero |
|
* coefficients. This means for each macroblock, we need data for 4 luma |
|
* blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9 |
|
* per macroblock. We keep the last row in top_nnz. |
|
*/ |
|
uint8_t (*top_nnz)[9]; |
|
DECLARE_ALIGNED(8, uint8_t, left_nnz)[9]; |
|
|
|
/** |
|
* This is the index plus one of the last non-zero coeff |
|
* for each of the blocks in the current macroblock. |
|
* So, 0 -> no coeffs |
|
* 1 -> dc-only (special transform) |
|
* 2+-> full transform |
|
*/ |
|
DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4]; |
|
DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16]; |
|
|
|
int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock |
|
|
|
int mbskip_enabled; |
|
int sign_bias[4]; ///< one state [0, 1] per ref frame type |
|
|
|
/** |
|
* Base parameters for segmentation, i.e. per-macroblock parameters. |
|
* These must be kept unchanged even if segmentation is not used for |
|
* a frame, since the values persist between interframes. |
|
*/ |
|
struct { |
|
int enabled; |
|
int absolute_vals; |
|
int update_map; |
|
int8_t base_quant[4]; |
|
int8_t filter_level[4]; ///< base loop filter level |
|
} segmentation; |
|
|
|
/** |
|
* Macroblocks can have one of 4 different quants in a frame when |
|
* segmentation is enabled. |
|
* If segmentation is disabled, only the first segment's values are used. |
|
*/ |
|
struct { |
|
// [0] - DC qmul [1] - AC qmul |
|
int16_t luma_qmul[2]; |
|
int16_t luma_dc_qmul[2]; ///< luma dc-only block quant |
|
int16_t chroma_qmul[2]; |
|
} qmat[4]; |
|
|
|
struct { |
|
int simple; |
|
int level; |
|
int sharpness; |
|
} filter; |
|
|
|
struct { |
|
int enabled; ///< whether each mb can have a different strength based on mode/ref |
|
|
|
/** |
|
* filter strength adjustment for the following macroblock modes: |
|
* [0] - i4x4 |
|
* [1] - zero mv |
|
* [2] - inter modes except for zero or split mv |
|
* [3] - split mv |
|
* i16x16 modes never have any adjustment |
|
*/ |
|
int8_t mode[4]; |
|
|
|
/** |
|
* filter strength adjustment for macroblocks that reference: |
|
* [0] - intra / VP56_FRAME_CURRENT |
|
* [1] - VP56_FRAME_PREVIOUS |
|
* [2] - VP56_FRAME_GOLDEN |
|
* [3] - altref / VP56_FRAME_GOLDEN2 |
|
*/ |
|
int8_t ref[4]; |
|
} lf_delta; |
|
|
|
/** |
|
* These are all of the updatable probabilities for binary decisions. |
|
* They are only implictly reset on keyframes, making it quite likely |
|
* for an interframe to desync if a prior frame's header was corrupt |
|
* or missing outright! |
|
*/ |
|
struct { |
|
uint8_t segmentid[3]; |
|
uint8_t mbskip; |
|
uint8_t intra; |
|
uint8_t last; |
|
uint8_t golden; |
|
uint8_t pred16x16[4]; |
|
uint8_t pred8x8c[3]; |
|
uint8_t token[4][8][3][NUM_DCT_TOKENS-1]; |
|
uint8_t mvc[2][19]; |
|
} prob[2]; |
|
} VP8Context; |
|
|
|
#define RL24(p) (AV_RL16(p) + ((p)[2] << 16)) |
|
|
|
static void vp8_decode_flush(AVCodecContext *avctx) |
|
{ |
|
VP8Context *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < 4; i++) |
|
if (s->frames[i].data[0]) |
|
avctx->release_buffer(avctx, &s->frames[i]); |
|
memset(s->framep, 0, sizeof(s->framep)); |
|
|
|
av_freep(&s->macroblocks_base); |
|
av_freep(&s->intra4x4_pred_mode_base); |
|
av_freep(&s->top_nnz); |
|
av_freep(&s->edge_emu_buffer); |
|
av_freep(&s->top_border); |
|
|
|
s->macroblocks = NULL; |
|
s->intra4x4_pred_mode = NULL; |
|
} |
|
|
|
static int update_dimensions(VP8Context *s, int width, int height) |
|
{ |
|
int i; |
|
|
|
if (avcodec_check_dimensions(s->avctx, width, height)) |
|
return AVERROR_INVALIDDATA; |
|
|
|
vp8_decode_flush(s->avctx); |
|
|
|
avcodec_set_dimensions(s->avctx, width, height); |
|
|
|
s->mb_width = (s->avctx->coded_width +15) / 16; |
|
s->mb_height = (s->avctx->coded_height+15) / 16; |
|
|
|
// we allocate a border around the top/left of intra4x4 modes |
|
// this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle |
|
s->mb_stride = s->mb_width+1; |
|
s->b4_stride = 4*s->mb_stride; |
|
|
|
s->macroblocks_base = av_mallocz(s->mb_stride*(s->mb_height+1)*sizeof(*s->macroblocks)); |
|
s->intra4x4_pred_mode_base = av_mallocz(s->b4_stride*(4*s->mb_height+1)); |
|
s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz)); |
|
s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border)); |
|
|
|
if (!s->macroblocks_base || !s->intra4x4_pred_mode_base || !s->top_nnz || !s->top_border) |
|
return AVERROR(ENOMEM); |
|
|
|
s->macroblocks = s->macroblocks_base + 1 + s->mb_stride; |
|
s->intra4x4_pred_mode = s->intra4x4_pred_mode_base + 4 + s->b4_stride; |
|
|
|
memset(s->intra4x4_pred_mode_base, DC_PRED, s->b4_stride); |
|
for (i = 0; i < 4*s->mb_height; i++) |
|
s->intra4x4_pred_mode[i*s->b4_stride-1] = DC_PRED; |
|
|
|
return 0; |
|
} |
|
|
|
static void parse_segment_info(VP8Context *s) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
int i; |
|
|
|
s->segmentation.update_map = vp8_rac_get(c); |
|
|
|
if (vp8_rac_get(c)) { // update segment feature data |
|
s->segmentation.absolute_vals = vp8_rac_get(c); |
|
|
|
for (i = 0; i < 4; i++) |
|
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7); |
|
|
|
for (i = 0; i < 4; i++) |
|
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6); |
|
} |
|
if (s->segmentation.update_map) |
|
for (i = 0; i < 3; i++) |
|
s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; |
|
} |
|
|
|
static void update_lf_deltas(VP8Context *s) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
int i; |
|
|
|
for (i = 0; i < 4; i++) |
|
s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6); |
|
|
|
for (i = 0; i < 4; i++) |
|
s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6); |
|
} |
|
|
|
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) |
|
{ |
|
const uint8_t *sizes = buf; |
|
int i; |
|
|
|
s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); |
|
|
|
buf += 3*(s->num_coeff_partitions-1); |
|
buf_size -= 3*(s->num_coeff_partitions-1); |
|
if (buf_size < 0) |
|
return -1; |
|
|
|
for (i = 0; i < s->num_coeff_partitions-1; i++) { |
|
int size = RL24(sizes + 3*i); |
|
if (buf_size - size < 0) |
|
return -1; |
|
|
|
vp56_init_range_decoder(&s->coeff_partition[i], buf, size); |
|
buf += size; |
|
buf_size -= size; |
|
} |
|
vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); |
|
|
|
return 0; |
|
} |
|
|
|
static void get_quants(VP8Context *s) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
int i, base_qi; |
|
|
|
int yac_qi = vp8_rac_get_uint(c, 7); |
|
int ydc_delta = vp8_rac_get_sint(c, 4); |
|
int y2dc_delta = vp8_rac_get_sint(c, 4); |
|
int y2ac_delta = vp8_rac_get_sint(c, 4); |
|
int uvdc_delta = vp8_rac_get_sint(c, 4); |
|
int uvac_delta = vp8_rac_get_sint(c, 4); |
|
|
|
for (i = 0; i < 4; i++) { |
|
if (s->segmentation.enabled) { |
|
base_qi = s->segmentation.base_quant[i]; |
|
if (!s->segmentation.absolute_vals) |
|
base_qi += yac_qi; |
|
} else |
|
base_qi = yac_qi; |
|
|
|
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)]; |
|
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)]; |
|
s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)]; |
|
s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100; |
|
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)]; |
|
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)]; |
|
|
|
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); |
|
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); |
|
} |
|
} |
|
|
|
/** |
|
* Determine which buffers golden and altref should be updated with after this frame. |
|
* The spec isn't clear here, so I'm going by my understanding of what libvpx does |
|
* |
|
* Intra frames update all 3 references |
|
* Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set |
|
* If the update (golden|altref) flag is set, it's updated with the current frame |
|
* if update_last is set, and VP56_FRAME_PREVIOUS otherwise. |
|
* If the flag is not set, the number read means: |
|
* 0: no update |
|
* 1: VP56_FRAME_PREVIOUS |
|
* 2: update golden with altref, or update altref with golden |
|
*/ |
|
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
|
|
if (update) |
|
return VP56_FRAME_CURRENT; |
|
|
|
switch (vp8_rac_get_uint(c, 2)) { |
|
case 1: |
|
return VP56_FRAME_PREVIOUS; |
|
case 2: |
|
return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN; |
|
} |
|
return VP56_FRAME_NONE; |
|
} |
|
|
|
static void update_refs(VP8Context *s) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
|
|
int update_golden = vp8_rac_get(c); |
|
int update_altref = vp8_rac_get(c); |
|
|
|
s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); |
|
s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); |
|
} |
|
|
|
static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
int header_size, hscale, vscale, i, j, k, l, ret; |
|
int width = s->avctx->width; |
|
int height = s->avctx->height; |
|
|
|
s->keyframe = !(buf[0] & 1); |
|
s->profile = (buf[0]>>1) & 7; |
|
s->invisible = !(buf[0] & 0x10); |
|
header_size = RL24(buf) >> 5; |
|
buf += 3; |
|
buf_size -= 3; |
|
|
|
if (s->profile > 3) |
|
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile); |
|
|
|
if (!s->profile) |
|
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab)); |
|
else // profile 1-3 use bilinear, 4+ aren't defined so whatever |
|
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab)); |
|
|
|
if (header_size > buf_size - 7*s->keyframe) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (s->keyframe) { |
|
if (RL24(buf) != 0x2a019d) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", RL24(buf)); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
width = AV_RL16(buf+3) & 0x3fff; |
|
height = AV_RL16(buf+5) & 0x3fff; |
|
hscale = buf[4] >> 6; |
|
vscale = buf[6] >> 6; |
|
buf += 7; |
|
buf_size -= 7; |
|
|
|
if (hscale || vscale) |
|
av_log_missing_feature(s->avctx, "Upscaling", 1); |
|
|
|
s->update_golden = s->update_altref = VP56_FRAME_CURRENT; |
|
memcpy(s->prob->token , vp8_token_default_probs , sizeof(s->prob->token)); |
|
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); |
|
memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c)); |
|
memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc)); |
|
memset(&s->segmentation, 0, sizeof(s->segmentation)); |
|
} |
|
|
|
if (!s->macroblocks_base || /* first frame */ |
|
width != s->avctx->width || height != s->avctx->height) { |
|
if ((ret = update_dimensions(s, width, height) < 0)) |
|
return ret; |
|
} |
|
|
|
vp56_init_range_decoder(c, buf, header_size); |
|
buf += header_size; |
|
buf_size -= header_size; |
|
|
|
if (s->keyframe) { |
|
if (vp8_rac_get(c)) |
|
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); |
|
vp8_rac_get(c); // whether we can skip clamping in dsp functions |
|
} |
|
|
|
if ((s->segmentation.enabled = vp8_rac_get(c))) |
|
parse_segment_info(s); |
|
else |
|
s->segmentation.update_map = 0; // FIXME: move this to some init function? |
|
|
|
s->filter.simple = vp8_rac_get(c); |
|
s->filter.level = vp8_rac_get_uint(c, 6); |
|
s->filter.sharpness = vp8_rac_get_uint(c, 3); |
|
|
|
if ((s->lf_delta.enabled = vp8_rac_get(c))) |
|
if (vp8_rac_get(c)) |
|
update_lf_deltas(s); |
|
|
|
if (setup_partitions(s, buf, buf_size)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
get_quants(s); |
|
|
|
if (!s->keyframe) { |
|
update_refs(s); |
|
s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); |
|
s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c); |
|
} |
|
|
|
// if we aren't saving this frame's probabilities for future frames, |
|
// make a copy of the current probabilities |
|
if (!(s->update_probabilities = vp8_rac_get(c))) |
|
s->prob[1] = s->prob[0]; |
|
|
|
s->update_last = s->keyframe || vp8_rac_get(c); |
|
|
|
for (i = 0; i < 4; i++) |
|
for (j = 0; j < 8; j++) |
|
for (k = 0; k < 3; k++) |
|
for (l = 0; l < NUM_DCT_TOKENS-1; l++) |
|
if (vp56_rac_get_prob(c, vp8_token_update_probs[i][j][k][l])) |
|
s->prob->token[i][j][k][l] = vp8_rac_get_uint(c, 8); |
|
|
|
if ((s->mbskip_enabled = vp8_rac_get(c))) |
|
s->prob->mbskip = vp8_rac_get_uint(c, 8); |
|
|
|
if (!s->keyframe) { |
|
s->prob->intra = vp8_rac_get_uint(c, 8); |
|
s->prob->last = vp8_rac_get_uint(c, 8); |
|
s->prob->golden = vp8_rac_get_uint(c, 8); |
|
|
|
if (vp8_rac_get(c)) |
|
for (i = 0; i < 4; i++) |
|
s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8); |
|
if (vp8_rac_get(c)) |
|
for (i = 0; i < 3; i++) |
|
s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8); |
|
|
|
// 17.2 MV probability update |
|
for (i = 0; i < 2; i++) |
|
for (j = 0; j < 19; j++) |
|
if (vp56_rac_get_prob(c, vp8_mv_update_prob[i][j])) |
|
s->prob->mvc[i][j] = vp8_rac_get_nn(c); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, |
|
int mb_x, int mb_y) |
|
{ |
|
#define MARGIN (16 << 2) |
|
dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN), |
|
((s->mb_width - 1 - mb_x) << 6) + MARGIN); |
|
dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN), |
|
((s->mb_height - 1 - mb_y) << 6) + MARGIN); |
|
} |
|
|
|
static void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, |
|
VP56mv near[2], VP56mv *best, int cnt[4]) |
|
{ |
|
VP8Macroblock *mb_edge[3] = { mb - s->mb_stride /* top */, |
|
mb - 1 /* left */, |
|
mb - s->mb_stride - 1 /* top-left */ }; |
|
enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT }; |
|
VP56mv near_mv[4] = {{ 0 }}; |
|
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; |
|
int idx = CNT_ZERO, n; |
|
int best_idx = CNT_ZERO; |
|
|
|
/* Process MB on top, left and top-left */ |
|
for (n = 0; n < 3; n++) { |
|
VP8Macroblock *edge = mb_edge[n]; |
|
if (edge->ref_frame != VP56_FRAME_CURRENT) { |
|
if (edge->mv.x | edge->mv.y) { |
|
VP56mv tmp = edge->mv; |
|
if (s->sign_bias[mb->ref_frame] != s->sign_bias[edge->ref_frame]) { |
|
tmp.x *= -1; |
|
tmp.y *= -1; |
|
} |
|
if ((tmp.x ^ near_mv[idx].x) | (tmp.y ^ near_mv[idx].y)) |
|
near_mv[++idx] = tmp; |
|
cnt[idx] += 1 + (n != 2); |
|
} else |
|
cnt[CNT_ZERO] += 1 + (n != 2); |
|
} |
|
} |
|
|
|
/* If we have three distinct MV's, merge first and last if they're the same */ |
|
if (cnt[CNT_SPLITMV] && |
|
!((near_mv[1+EDGE_TOP].x ^ near_mv[1+EDGE_TOPLEFT].x) | |
|
(near_mv[1+EDGE_TOP].y ^ near_mv[1+EDGE_TOPLEFT].y))) |
|
cnt[CNT_NEAREST] += 1; |
|
|
|
cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + |
|
(mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + |
|
(mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); |
|
|
|
/* Swap near and nearest if necessary */ |
|
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { |
|
FFSWAP(int, cnt[CNT_NEAREST], cnt[CNT_NEAR]); |
|
FFSWAP(VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); |
|
} |
|
|
|
/* Choose the best mv out of 0,0 and the nearest mv */ |
|
if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO]) |
|
best_idx = CNT_NEAREST; |
|
|
|
clamp_mv(s, best, &near_mv[best_idx], mb_x, mb_y); |
|
near[0] = near_mv[CNT_NEAREST]; |
|
near[1] = near_mv[CNT_NEAR]; |
|
} |
|
|
|
/** |
|
* Motion vector coding, 17.1. |
|
*/ |
|
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p) |
|
{ |
|
int x = 0; |
|
|
|
if (vp56_rac_get_prob(c, p[0])) { |
|
int i; |
|
|
|
for (i = 0; i < 3; i++) |
|
x += vp56_rac_get_prob(c, p[9 + i]) << i; |
|
for (i = 9; i > 3; i--) |
|
x += vp56_rac_get_prob(c, p[9 + i]) << i; |
|
if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12])) |
|
x += 8; |
|
} else |
|
x = vp8_rac_get_tree(c, vp8_small_mvtree, &p[2]); |
|
|
|
return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; |
|
} |
|
|
|
static const uint8_t *get_submv_prob(const VP56mv *left, const VP56mv *top) |
|
{ |
|
int l_is_zero = !(left->x | left->y); |
|
int t_is_zero = !(top->x | top->y); |
|
int equal = !((left->x ^ top->x) | (left->y ^ top->y)); |
|
|
|
if (equal) |
|
return l_is_zero ? vp8_submv_prob[4] : vp8_submv_prob[3]; |
|
if (t_is_zero) |
|
return vp8_submv_prob[2]; |
|
return l_is_zero ? vp8_submv_prob[1] : vp8_submv_prob[0]; |
|
} |
|
|
|
/** |
|
* Split motion vector prediction, 16.4. |
|
* @returns the number of motion vectors parsed (2, 4 or 16) |
|
*/ |
|
static int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, |
|
VP8Macroblock *mb, VP56mv *base_mv) |
|
{ |
|
int part_idx = mb->partitioning = |
|
vp8_rac_get_tree(c, vp8_mbsplit_tree, vp8_mbsplit_prob); |
|
int n, num = vp8_mbsplit_count[part_idx]; |
|
const uint8_t *mbsplits = vp8_mbsplits[part_idx], |
|
*firstidx = vp8_mbfirstidx[part_idx]; |
|
|
|
for (n = 0; n < num; n++) { |
|
int k = firstidx[n]; |
|
const VP56mv *left, *above; |
|
const uint8_t *submv_prob; |
|
|
|
if (!(k & 3)) { |
|
VP8Macroblock *left_mb = &mb[-1]; |
|
left = &left_mb->bmv[vp8_mbsplits[left_mb->partitioning][k + 3]]; |
|
} else |
|
left = &mb->bmv[mbsplits[k - 1]]; |
|
if (k <= 3) { |
|
VP8Macroblock *above_mb = &mb[-s->mb_stride]; |
|
above = &above_mb->bmv[vp8_mbsplits[above_mb->partitioning][k + 12]]; |
|
} else |
|
above = &mb->bmv[mbsplits[k - 4]]; |
|
|
|
submv_prob = get_submv_prob(left, above); |
|
|
|
switch (vp8_rac_get_tree(c, vp8_submv_ref_tree, submv_prob)) { |
|
case VP8_SUBMVMODE_NEW4X4: |
|
mb->bmv[n].y = base_mv->y + read_mv_component(c, s->prob->mvc[0]); |
|
mb->bmv[n].x = base_mv->x + read_mv_component(c, s->prob->mvc[1]); |
|
break; |
|
case VP8_SUBMVMODE_ZERO4X4: |
|
mb->bmv[n].x = 0; |
|
mb->bmv[n].y = 0; |
|
break; |
|
case VP8_SUBMVMODE_LEFT4X4: |
|
mb->bmv[n] = *left; |
|
break; |
|
case VP8_SUBMVMODE_TOP4X4: |
|
mb->bmv[n] = *above; |
|
break; |
|
} |
|
} |
|
|
|
return num; |
|
} |
|
|
|
static inline void decode_intra4x4_modes(VP56RangeCoder *c, uint8_t *intra4x4, |
|
int stride, int keyframe) |
|
{ |
|
int x, y, t, l; |
|
const uint8_t *ctx = vp8_pred4x4_prob_inter; |
|
|
|
for (y = 0; y < 4; y++) { |
|
for (x = 0; x < 4; x++) { |
|
if (keyframe) { |
|
t = intra4x4[x - stride]; |
|
l = intra4x4[x - 1]; |
|
ctx = vp8_pred4x4_prob_intra[t][l]; |
|
} |
|
intra4x4[x] = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); |
|
} |
|
intra4x4 += stride; |
|
} |
|
} |
|
|
|
static void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, |
|
uint8_t *intra4x4) |
|
{ |
|
VP56RangeCoder *c = &s->c; |
|
int n; |
|
|
|
if (s->segmentation.update_map) |
|
mb->segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid); |
|
|
|
mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0; |
|
|
|
if (s->keyframe) { |
|
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); |
|
|
|
if (mb->mode == MODE_I4x4) { |
|
decode_intra4x4_modes(c, intra4x4, s->b4_stride, 1); |
|
} else |
|
fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); |
|
|
|
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); |
|
mb->ref_frame = VP56_FRAME_CURRENT; |
|
} else if (vp56_rac_get_prob(c, s->prob->intra)) { |
|
VP56mv near[2], best; |
|
int cnt[4] = { 0 }; |
|
uint8_t p[4]; |
|
|
|
// inter MB, 16.2 |
|
if (vp56_rac_get_prob(c, s->prob->last)) |
|
mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ? |
|
VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN; |
|
else |
|
mb->ref_frame = VP56_FRAME_PREVIOUS; |
|
|
|
// motion vectors, 16.3 |
|
find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt); |
|
for (n = 0; n < 4; n++) |
|
p[n] = vp8_mode_contexts[cnt[n]][n]; |
|
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_mvinter, p); |
|
switch (mb->mode) { |
|
case VP8_MVMODE_SPLIT: |
|
mb->mv = mb->bmv[decode_splitmvs(s, c, mb, &best) - 1]; |
|
break; |
|
case VP8_MVMODE_ZERO: |
|
mb->mv.x = 0; |
|
mb->mv.y = 0; |
|
break; |
|
case VP8_MVMODE_NEAREST: |
|
clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y); |
|
break; |
|
case VP8_MVMODE_NEAR: |
|
clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y); |
|
break; |
|
case VP8_MVMODE_NEW: |
|
mb->mv.y = best.y + read_mv_component(c, s->prob->mvc[0]); |
|
mb->mv.x = best.x + read_mv_component(c, s->prob->mvc[1]); |
|
break; |
|
} |
|
if (mb->mode != VP8_MVMODE_SPLIT) { |
|
mb->partitioning = VP8_SPLITMVMODE_NONE; |
|
mb->bmv[0] = mb->mv; |
|
} |
|
} else { |
|
// intra MB, 16.1 |
|
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); |
|
|
|
if (mb->mode == MODE_I4x4) { |
|
decode_intra4x4_modes(c, intra4x4, s->b4_stride, 0); |
|
} else |
|
fill_rectangle(intra4x4, 4, 4, s->b4_stride, vp8_pred4x4_mode[mb->mode], 1); |
|
|
|
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); |
|
mb->ref_frame = VP56_FRAME_CURRENT; |
|
} |
|
} |
|
|
|
/** |
|
* @param c arithmetic bitstream reader context |
|
* @param block destination for block coefficients |
|
* @param probs probabilities to use when reading trees from the bitstream |
|
* @param i initial coeff index, 0 unless a separate DC block is coded |
|
* @param zero_nhood the initial prediction context for number of surrounding |
|
* all-zero blocks (only left/top, so 0-2) |
|
* @param qmul array holding the dc/ac dequant factor at position 0/1 |
|
* @return 0 if no coeffs were decoded |
|
* otherwise, the index of the last coeff decoded plus one |
|
*/ |
|
static int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16], |
|
uint8_t probs[8][3][NUM_DCT_TOKENS-1], |
|
int i, int zero_nhood, int16_t qmul[2]) |
|
{ |
|
int token, nonzero = 0; |
|
int offset = 0; |
|
|
|
for (; i < 16; i++) { |
|
token = vp8_rac_get_tree_with_offset(c, vp8_coeff_tree, probs[vp8_coeff_band[i]][zero_nhood], offset); |
|
|
|
if (token == DCT_EOB) |
|
break; |
|
else if (token >= DCT_CAT1) { |
|
int cat = token-DCT_CAT1; |
|
token = vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]); |
|
token += vp8_dct_cat_offset[cat]; |
|
} |
|
|
|
// after the first token, the non-zero prediction context becomes |
|
// based on the last decoded coeff |
|
if (!token) { |
|
zero_nhood = 0; |
|
offset = 1; |
|
continue; |
|
} else if (token == 1) |
|
zero_nhood = 1; |
|
else |
|
zero_nhood = 2; |
|
|
|
// todo: full [16] qmat? load into register? |
|
block[zigzag_scan[i]] = (vp8_rac_get(c) ? -token : token) * qmul[!!i]; |
|
nonzero = i+1; |
|
offset = 0; |
|
} |
|
return nonzero; |
|
} |
|
|
|
static void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, |
|
uint8_t t_nnz[9], uint8_t l_nnz[9]) |
|
{ |
|
LOCAL_ALIGNED_16(DCTELEM, dc,[16]); |
|
int i, x, y, luma_start = 0, luma_ctx = 3; |
|
int nnz_pred, nnz, nnz_total = 0; |
|
int segment = s->segmentation.enabled ? mb->segment : 0; |
|
|
|
s->dsp.clear_blocks((DCTELEM *)s->block); |
|
|
|
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { |
|
AV_ZERO128(dc); |
|
AV_ZERO128(dc+8); |
|
nnz_pred = t_nnz[8] + l_nnz[8]; |
|
|
|
// decode DC values and do hadamard |
|
nnz = decode_block_coeffs(c, dc, s->prob->token[1], 0, nnz_pred, |
|
s->qmat[segment].luma_dc_qmul); |
|
l_nnz[8] = t_nnz[8] = !!nnz; |
|
nnz_total += nnz; |
|
s->vp8dsp.vp8_luma_dc_wht(s->block, dc); |
|
luma_start = 1; |
|
luma_ctx = 0; |
|
} |
|
|
|
// luma blocks |
|
for (y = 0; y < 4; y++) |
|
for (x = 0; x < 4; x++) { |
|
nnz_pred = l_nnz[y] + t_nnz[x]; |
|
nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start, |
|
nnz_pred, s->qmat[segment].luma_qmul); |
|
// nnz+luma_start may be one more than the actual last index, but we don't care |
|
s->non_zero_count_cache[y][x] = nnz + luma_start; |
|
t_nnz[x] = l_nnz[y] = !!nnz; |
|
nnz_total += nnz; |
|
} |
|
|
|
// chroma blocks |
|
// TODO: what to do about dimensions? 2nd dim for luma is x, |
|
// but for chroma it's (y<<1)|x |
|
for (i = 4; i < 6; i++) |
|
for (y = 0; y < 2; y++) |
|
for (x = 0; x < 2; x++) { |
|
nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x]; |
|
nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0, |
|
nnz_pred, s->qmat[segment].chroma_qmul); |
|
s->non_zero_count_cache[i][(y<<1)+x] = nnz; |
|
t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz; |
|
nnz_total += nnz; |
|
} |
|
|
|
// if there were no coded coeffs despite the macroblock not being marked skip, |
|
// we MUST not do the inner loop filter and should not do IDCT |
|
// Since skip isn't used for bitstream prediction, just manually set it. |
|
if (!nnz_total) |
|
mb->skip = 1; |
|
} |
|
|
|
static av_always_inline |
|
void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, |
|
int linesize, int uvlinesize, int simple) |
|
{ |
|
AV_COPY128(top_border, src_y + 15*linesize); |
|
if (!simple) { |
|
AV_COPY64(top_border+16, src_cb + 7*uvlinesize); |
|
AV_COPY64(top_border+24, src_cr + 7*uvlinesize); |
|
} |
|
} |
|
|
|
static av_always_inline |
|
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, |
|
int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width, |
|
int simple, int xchg) |
|
{ |
|
uint8_t *top_border_m1 = top_border-32; // for TL prediction |
|
src_y -= linesize; |
|
src_cb -= uvlinesize; |
|
src_cr -= uvlinesize; |
|
|
|
#define XCHG(a,b,xchg)\ |
|
if (xchg) AV_SWAP64(b,a);\ |
|
else AV_COPY64(b,a); |
|
|
|
XCHG(top_border_m1+8, src_y-8, xchg); |
|
XCHG(top_border, src_y, xchg); |
|
XCHG(top_border+8, src_y+8, 1); |
|
if (mb_x < mb_width-1) |
|
XCHG(top_border+32, src_y+16, 1); |
|
|
|
// only copy chroma for normal loop filter |
|
// or to initialize the top row to 127 |
|
if (!simple || !mb_y) { |
|
XCHG(top_border_m1+16, src_cb-8, xchg); |
|
XCHG(top_border_m1+24, src_cr-8, xchg); |
|
XCHG(top_border+16, src_cb, 1); |
|
XCHG(top_border+24, src_cr, 1); |
|
} |
|
} |
|
|
|
static int check_intra_pred_mode(int mode, int mb_x, int mb_y) |
|
{ |
|
if (mode == DC_PRED8x8) { |
|
if (!(mb_x|mb_y)) |
|
mode = DC_128_PRED8x8; |
|
else if (!mb_y) |
|
mode = LEFT_DC_PRED8x8; |
|
else if (!mb_x) |
|
mode = TOP_DC_PRED8x8; |
|
} |
|
return mode; |
|
} |
|
|
|
static void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, |
|
uint8_t *bmode, int mb_x, int mb_y) |
|
{ |
|
int x, y, mode, nnz, tr; |
|
|
|
// for the first row, we need to run xchg_mb_border to init the top edge to 127 |
|
// otherwise, skip it if we aren't going to deblock |
|
if (s->deblock_filter || !mb_y) |
|
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], |
|
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
|
s->filter.simple, 1); |
|
|
|
if (mb->mode < MODE_I4x4) { |
|
mode = check_intra_pred_mode(mb->mode, mb_x, mb_y); |
|
s->hpc.pred16x16[mode](dst[0], s->linesize); |
|
} else { |
|
uint8_t *ptr = dst[0]; |
|
|
|
// all blocks on the right edge of the macroblock use bottom edge |
|
// the top macroblock for their topright edge |
|
uint8_t *tr_right = ptr - s->linesize + 16; |
|
|
|
// if we're on the right edge of the frame, said edge is extended |
|
// from the top macroblock |
|
if (mb_x == s->mb_width-1) { |
|
tr = tr_right[-1]*0x01010101; |
|
tr_right = (uint8_t *)&tr; |
|
} |
|
|
|
for (y = 0; y < 4; y++) { |
|
uint8_t *topright = ptr + 4 - s->linesize; |
|
for (x = 0; x < 4; x++) { |
|
if (x == 3) |
|
topright = tr_right; |
|
|
|
s->hpc.pred4x4[bmode[x]](ptr+4*x, topright, s->linesize); |
|
|
|
nnz = s->non_zero_count_cache[y][x]; |
|
if (nnz) { |
|
if (nnz == 1) |
|
s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize); |
|
else |
|
s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize); |
|
} |
|
topright += 4; |
|
} |
|
|
|
ptr += 4*s->linesize; |
|
bmode += s->b4_stride; |
|
} |
|
} |
|
|
|
mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y); |
|
s->hpc.pred8x8[mode](dst[1], s->uvlinesize); |
|
s->hpc.pred8x8[mode](dst[2], s->uvlinesize); |
|
|
|
if (s->deblock_filter || !mb_y) |
|
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], |
|
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
|
s->filter.simple, 0); |
|
} |
|
|
|
/** |
|
* Generic MC function. |
|
* |
|
* @param s VP8 decoding context |
|
* @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes |
|
* @param dst target buffer for block data at block position |
|
* @param src reference picture buffer at origin (0, 0) |
|
* @param mv motion vector (relative to block position) to get pixel data from |
|
* @param x_off horizontal position of block from origin (0, 0) |
|
* @param y_off vertical position of block from origin (0, 0) |
|
* @param block_w width of block (16, 8 or 4) |
|
* @param block_h height of block (always same as block_w) |
|
* @param width width of src/dst plane data |
|
* @param height height of src/dst plane data |
|
* @param linesize size of a single line of plane data, including padding |
|
* @param mc_func motion compensation function pointers (bilinear or sixtap MC) |
|
*/ |
|
static inline void vp8_mc(VP8Context *s, int luma, |
|
uint8_t *dst, uint8_t *src, const VP56mv *mv, |
|
int x_off, int y_off, int block_w, int block_h, |
|
int width, int height, int linesize, |
|
vp8_mc_func mc_func[3][3]) |
|
{ |
|
static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 }; |
|
int mx = (mv->x << luma)&7, mx_idx = idx[mx]; |
|
int my = (mv->y << luma)&7, my_idx = idx[my]; |
|
|
|
x_off += mv->x >> (3 - luma); |
|
y_off += mv->y >> (3 - luma); |
|
|
|
// edge emulation |
|
src += y_off * linesize + x_off; |
|
if (x_off < 2 || x_off >= width - block_w - 3 || |
|
y_off < 2 || y_off >= height - block_h - 3) { |
|
ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize, |
|
block_w + 5, block_h + 5, |
|
x_off - 2, y_off - 2, width, height); |
|
src = s->edge_emu_buffer + 2 + linesize * 2; |
|
} |
|
|
|
mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my); |
|
} |
|
|
|
static inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3], |
|
AVFrame *ref_frame, int x_off, int y_off, |
|
int bx_off, int by_off, |
|
int block_w, int block_h, |
|
int width, int height, VP56mv *mv) |
|
{ |
|
VP56mv uvmv = *mv; |
|
|
|
/* Y */ |
|
vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off, |
|
ref_frame->data[0], mv, x_off + bx_off, y_off + by_off, |
|
block_w, block_h, width, height, s->linesize, |
|
s->put_pixels_tab[block_w == 8]); |
|
|
|
/* U/V */ |
|
if (s->profile == 3) { |
|
uvmv.x &= ~7; |
|
uvmv.y &= ~7; |
|
} |
|
x_off >>= 1; y_off >>= 1; |
|
bx_off >>= 1; by_off >>= 1; |
|
width >>= 1; height >>= 1; |
|
block_w >>= 1; block_h >>= 1; |
|
vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off, |
|
ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off, |
|
block_w, block_h, width, height, s->uvlinesize, |
|
s->put_pixels_tab[1 + (block_w == 4)]); |
|
vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off, |
|
ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off, |
|
block_w, block_h, width, height, s->uvlinesize, |
|
s->put_pixels_tab[1 + (block_w == 4)]); |
|
} |
|
|
|
/** |
|
* Apply motion vectors to prediction buffer, chapter 18. |
|
*/ |
|
static void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, |
|
int mb_x, int mb_y) |
|
{ |
|
int x_off = mb_x << 4, y_off = mb_y << 4; |
|
int width = 16*s->mb_width, height = 16*s->mb_height; |
|
|
|
if (mb->mode < VP8_MVMODE_SPLIT) { |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
0, 0, 16, 16, width, height, &mb->mv); |
|
} else switch (mb->partitioning) { |
|
case VP8_SPLITMVMODE_4x4: { |
|
int x, y; |
|
VP56mv uvmv; |
|
|
|
/* Y */ |
|
for (y = 0; y < 4; y++) { |
|
for (x = 0; x < 4; x++) { |
|
vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4, |
|
s->framep[mb->ref_frame]->data[0], &mb->bmv[4*y + x], |
|
4*x + x_off, 4*y + y_off, 4, 4, |
|
width, height, s->linesize, |
|
s->put_pixels_tab[2]); |
|
} |
|
} |
|
|
|
/* U/V */ |
|
x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; |
|
for (y = 0; y < 2; y++) { |
|
for (x = 0; x < 2; x++) { |
|
uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x + |
|
mb->bmv[ 2*y * 4 + 2*x+1].x + |
|
mb->bmv[(2*y+1) * 4 + 2*x ].x + |
|
mb->bmv[(2*y+1) * 4 + 2*x+1].x; |
|
uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y + |
|
mb->bmv[ 2*y * 4 + 2*x+1].y + |
|
mb->bmv[(2*y+1) * 4 + 2*x ].y + |
|
mb->bmv[(2*y+1) * 4 + 2*x+1].y; |
|
uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2; |
|
uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2; |
|
if (s->profile == 3) { |
|
uvmv.x &= ~7; |
|
uvmv.y &= ~7; |
|
} |
|
vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4, |
|
s->framep[mb->ref_frame]->data[1], &uvmv, |
|
4*x + x_off, 4*y + y_off, 4, 4, |
|
width, height, s->uvlinesize, |
|
s->put_pixels_tab[2]); |
|
vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4, |
|
s->framep[mb->ref_frame]->data[2], &uvmv, |
|
4*x + x_off, 4*y + y_off, 4, 4, |
|
width, height, s->uvlinesize, |
|
s->put_pixels_tab[2]); |
|
} |
|
} |
|
break; |
|
} |
|
case VP8_SPLITMVMODE_16x8: |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
0, 0, 16, 8, width, height, &mb->bmv[0]); |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
0, 8, 16, 8, width, height, &mb->bmv[1]); |
|
break; |
|
case VP8_SPLITMVMODE_8x16: |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
0, 0, 8, 16, width, height, &mb->bmv[0]); |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
8, 0, 8, 16, width, height, &mb->bmv[1]); |
|
break; |
|
case VP8_SPLITMVMODE_8x8: |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
0, 0, 8, 8, width, height, &mb->bmv[0]); |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
8, 0, 8, 8, width, height, &mb->bmv[1]); |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
0, 8, 8, 8, width, height, &mb->bmv[2]); |
|
vp8_mc_part(s, dst, s->framep[mb->ref_frame], x_off, y_off, |
|
8, 8, 8, 8, width, height, &mb->bmv[3]); |
|
break; |
|
} |
|
} |
|
|
|
static void idct_mb(VP8Context *s, uint8_t *y_dst, uint8_t *u_dst, uint8_t *v_dst, |
|
VP8Macroblock *mb) |
|
{ |
|
int x, y, nnz; |
|
|
|
if (mb->mode != MODE_I4x4) |
|
for (y = 0; y < 4; y++) { |
|
for (x = 0; x < 4; x++) { |
|
nnz = s->non_zero_count_cache[y][x]; |
|
if (nnz) { |
|
if (nnz == 1) |
|
s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize); |
|
else |
|
s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize); |
|
} |
|
} |
|
y_dst += 4*s->linesize; |
|
} |
|
|
|
for (y = 0; y < 2; y++) { |
|
for (x = 0; x < 2; x++) { |
|
nnz = s->non_zero_count_cache[4][(y<<1)+x]; |
|
if (nnz) { |
|
if (nnz == 1) |
|
s->vp8dsp.vp8_idct_dc_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); |
|
else |
|
s->vp8dsp.vp8_idct_add(u_dst+4*x, s->block[4][(y<<1)+x], s->uvlinesize); |
|
} |
|
|
|
nnz = s->non_zero_count_cache[5][(y<<1)+x]; |
|
if (nnz) { |
|
if (nnz == 1) |
|
s->vp8dsp.vp8_idct_dc_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); |
|
else |
|
s->vp8dsp.vp8_idct_add(v_dst+4*x, s->block[5][(y<<1)+x], s->uvlinesize); |
|
} |
|
} |
|
u_dst += 4*s->uvlinesize; |
|
v_dst += 4*s->uvlinesize; |
|
} |
|
} |
|
|
|
static void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, int *level, int *inner, int *hev_thresh) |
|
{ |
|
int interior_limit, filter_level; |
|
|
|
if (s->segmentation.enabled) { |
|
filter_level = s->segmentation.filter_level[mb->segment]; |
|
if (!s->segmentation.absolute_vals) |
|
filter_level += s->filter.level; |
|
} else |
|
filter_level = s->filter.level; |
|
|
|
if (s->lf_delta.enabled) { |
|
filter_level += s->lf_delta.ref[mb->ref_frame]; |
|
|
|
if (mb->ref_frame == VP56_FRAME_CURRENT) { |
|
if (mb->mode == MODE_I4x4) |
|
filter_level += s->lf_delta.mode[0]; |
|
} else { |
|
if (mb->mode == VP8_MVMODE_ZERO) |
|
filter_level += s->lf_delta.mode[1]; |
|
else if (mb->mode == VP8_MVMODE_SPLIT) |
|
filter_level += s->lf_delta.mode[3]; |
|
else |
|
filter_level += s->lf_delta.mode[2]; |
|
} |
|
} |
|
filter_level = av_clip(filter_level, 0, 63); |
|
|
|
interior_limit = filter_level; |
|
if (s->filter.sharpness) { |
|
interior_limit >>= s->filter.sharpness > 4 ? 2 : 1; |
|
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness); |
|
} |
|
interior_limit = FFMAX(interior_limit, 1); |
|
|
|
*level = filter_level; |
|
*inner = interior_limit; |
|
|
|
if (hev_thresh) { |
|
*hev_thresh = filter_level >= 15; |
|
|
|
if (s->keyframe) { |
|
if (filter_level >= 40) |
|
*hev_thresh = 2; |
|
} else { |
|
if (filter_level >= 40) |
|
*hev_thresh = 3; |
|
else if (filter_level >= 20) |
|
*hev_thresh = 2; |
|
} |
|
} |
|
} |
|
|
|
static void filter_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) |
|
{ |
|
int filter_level, inner_limit, hev_thresh, mbedge_lim, bedge_lim; |
|
|
|
filter_level_for_mb(s, mb, &filter_level, &inner_limit, &hev_thresh); |
|
if (!filter_level) |
|
return; |
|
|
|
mbedge_lim = 2*(filter_level+2) + inner_limit; |
|
bedge_lim = 2* filter_level + inner_limit; |
|
|
|
if (mb_x) { |
|
s->vp8dsp.vp8_h_loop_filter16y(dst[0], s->linesize, |
|
mbedge_lim, inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], s->uvlinesize, |
|
mbedge_lim, inner_limit, hev_thresh); |
|
} |
|
|
|
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { |
|
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, s->linesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, s->linesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, s->linesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, |
|
s->uvlinesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
} |
|
|
|
if (mb_y) { |
|
s->vp8dsp.vp8_v_loop_filter16y(dst[0], s->linesize, |
|
mbedge_lim, inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], s->uvlinesize, |
|
mbedge_lim, inner_limit, hev_thresh); |
|
} |
|
|
|
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { |
|
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*s->linesize, |
|
s->linesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*s->linesize, |
|
s->linesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*s->linesize, |
|
s->linesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * s->uvlinesize, |
|
dst[2] + 4 * s->uvlinesize, |
|
s->uvlinesize, bedge_lim, |
|
inner_limit, hev_thresh); |
|
} |
|
} |
|
|
|
static void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8Macroblock *mb, int mb_x, int mb_y) |
|
{ |
|
int filter_level, inner_limit, mbedge_lim, bedge_lim; |
|
|
|
filter_level_for_mb(s, mb, &filter_level, &inner_limit, NULL); |
|
if (!filter_level) |
|
return; |
|
|
|
mbedge_lim = 2*(filter_level+2) + inner_limit; |
|
bedge_lim = 2* filter_level + inner_limit; |
|
|
|
if (mb_x) |
|
s->vp8dsp.vp8_h_loop_filter_simple(dst, s->linesize, mbedge_lim); |
|
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { |
|
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, s->linesize, bedge_lim); |
|
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, s->linesize, bedge_lim); |
|
s->vp8dsp.vp8_h_loop_filter_simple(dst+12, s->linesize, bedge_lim); |
|
} |
|
|
|
if (mb_y) |
|
s->vp8dsp.vp8_v_loop_filter_simple(dst, s->linesize, mbedge_lim); |
|
if (!mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT) { |
|
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*s->linesize, s->linesize, bedge_lim); |
|
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*s->linesize, s->linesize, bedge_lim); |
|
s->vp8dsp.vp8_v_loop_filter_simple(dst+12*s->linesize, s->linesize, bedge_lim); |
|
} |
|
} |
|
|
|
static void filter_mb_row(VP8Context *s, int mb_y) |
|
{ |
|
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; |
|
uint8_t *dst[3] = { |
|
s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize, |
|
s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize, |
|
s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize |
|
}; |
|
int mb_x; |
|
|
|
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
|
backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0); |
|
filter_mb(s, dst, mb++, mb_x, mb_y); |
|
dst[0] += 16; |
|
dst[1] += 8; |
|
dst[2] += 8; |
|
} |
|
} |
|
|
|
static void filter_mb_row_simple(VP8Context *s, int mb_y) |
|
{ |
|
uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize; |
|
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; |
|
int mb_x; |
|
|
|
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
|
backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1); |
|
filter_mb_simple(s, dst, mb++, mb_x, mb_y); |
|
dst += 16; |
|
} |
|
} |
|
|
|
static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
VP8Context *s = avctx->priv_data; |
|
int ret, mb_x, mb_y, i, y, referenced; |
|
enum AVDiscard skip_thresh; |
|
AVFrame *curframe; |
|
|
|
if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0) |
|
return ret; |
|
|
|
referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT |
|
|| s->update_altref == VP56_FRAME_CURRENT; |
|
|
|
skip_thresh = !referenced ? AVDISCARD_NONREF : |
|
!s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; |
|
|
|
if (avctx->skip_frame >= skip_thresh) { |
|
s->invisible = 1; |
|
goto skip_decode; |
|
} |
|
s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh; |
|
|
|
for (i = 0; i < 4; i++) |
|
if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && |
|
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
|
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { |
|
curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i]; |
|
break; |
|
} |
|
if (curframe->data[0]) |
|
avctx->release_buffer(avctx, curframe); |
|
|
|
curframe->key_frame = s->keyframe; |
|
curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE; |
|
curframe->reference = referenced ? 3 : 0; |
|
if ((ret = avctx->get_buffer(avctx, curframe))) { |
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n"); |
|
return ret; |
|
} |
|
|
|
// Given that arithmetic probabilities are updated every frame, it's quite likely |
|
// that the values we have on a random interframe are complete junk if we didn't |
|
// start decode on a keyframe. So just don't display anything rather than junk. |
|
if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] || |
|
!s->framep[VP56_FRAME_GOLDEN] || |
|
!s->framep[VP56_FRAME_GOLDEN2])) { |
|
av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
s->linesize = curframe->linesize[0]; |
|
s->uvlinesize = curframe->linesize[1]; |
|
|
|
if (!s->edge_emu_buffer) |
|
s->edge_emu_buffer = av_malloc(21*s->linesize); |
|
|
|
memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz)); |
|
|
|
// top edge of 127 for intra prediction |
|
memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border)); |
|
|
|
for (mb_y = 0; mb_y < s->mb_height; mb_y++) { |
|
VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)]; |
|
VP8Macroblock *mb = s->macroblocks + mb_y*s->mb_stride; |
|
uint8_t *intra4x4 = s->intra4x4_pred_mode + 4*mb_y*s->b4_stride; |
|
uint8_t *dst[3] = { |
|
curframe->data[0] + 16*mb_y*s->linesize, |
|
curframe->data[1] + 8*mb_y*s->uvlinesize, |
|
curframe->data[2] + 8*mb_y*s->uvlinesize |
|
}; |
|
|
|
memset(s->left_nnz, 0, sizeof(s->left_nnz)); |
|
|
|
// left edge of 129 for intra prediction |
|
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) |
|
for (i = 0; i < 3; i++) |
|
for (y = 0; y < 16>>!!i; y++) |
|
dst[i][y*curframe->linesize[i]-1] = 129; |
|
if (mb_y) |
|
memset(s->top_border, 129, sizeof(*s->top_border)); |
|
|
|
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
|
decode_mb_mode(s, mb, mb_x, mb_y, intra4x4 + 4*mb_x); |
|
|
|
if (!mb->skip) |
|
decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz); |
|
else { |
|
AV_ZERO128(s->non_zero_count_cache); // luma |
|
AV_ZERO64(s->non_zero_count_cache[4]); // chroma |
|
} |
|
|
|
if (mb->mode <= MODE_I4x4) { |
|
intra_predict(s, dst, mb, intra4x4 + 4*mb_x, mb_x, mb_y); |
|
memset(mb->bmv, 0, sizeof(mb->bmv)); |
|
} else { |
|
inter_predict(s, dst, mb, mb_x, mb_y); |
|
} |
|
|
|
if (!mb->skip) { |
|
idct_mb(s, dst[0], dst[1], dst[2], mb); |
|
} else { |
|
AV_ZERO64(s->left_nnz); |
|
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned |
|
|
|
// Reset DC block predictors if they would exist if the mb had coefficients |
|
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { |
|
s->left_nnz[8] = 0; |
|
s->top_nnz[mb_x][8] = 0; |
|
} |
|
} |
|
|
|
dst[0] += 16; |
|
dst[1] += 8; |
|
dst[2] += 8; |
|
mb++; |
|
} |
|
if (s->deblock_filter) { |
|
if (s->filter.simple) |
|
filter_mb_row_simple(s, mb_y); |
|
else |
|
filter_mb_row(s, mb_y); |
|
} |
|
} |
|
|
|
skip_decode: |
|
// if future frames don't use the updated probabilities, |
|
// reset them to the values we saved |
|
if (!s->update_probabilities) |
|
s->prob[0] = s->prob[1]; |
|
|
|
// check if golden and altref are swapped |
|
if (s->update_altref == VP56_FRAME_GOLDEN && |
|
s->update_golden == VP56_FRAME_GOLDEN2) |
|
FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]); |
|
else { |
|
if (s->update_altref != VP56_FRAME_NONE) |
|
s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref]; |
|
|
|
if (s->update_golden != VP56_FRAME_NONE) |
|
s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden]; |
|
} |
|
|
|
if (s->update_last) // move cur->prev |
|
s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT]; |
|
|
|
// release no longer referenced frames |
|
for (i = 0; i < 4; i++) |
|
if (s->frames[i].data[0] && |
|
&s->frames[i] != s->framep[VP56_FRAME_CURRENT] && |
|
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && |
|
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
|
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) |
|
avctx->release_buffer(avctx, &s->frames[i]); |
|
|
|
if (!s->invisible) { |
|
*(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT]; |
|
*data_size = sizeof(AVFrame); |
|
} |
|
|
|
return avpkt->size; |
|
} |
|
|
|
static av_cold int vp8_decode_init(AVCodecContext *avctx) |
|
{ |
|
VP8Context *s = avctx->priv_data; |
|
|
|
s->avctx = avctx; |
|
avctx->pix_fmt = PIX_FMT_YUV420P; |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
ff_h264_pred_init(&s->hpc, CODEC_ID_VP8); |
|
ff_vp8dsp_init(&s->vp8dsp); |
|
|
|
// intra pred needs edge emulation among other things |
|
if (avctx->flags&CODEC_FLAG_EMU_EDGE) { |
|
av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int vp8_decode_free(AVCodecContext *avctx) |
|
{ |
|
vp8_decode_flush(avctx); |
|
return 0; |
|
} |
|
|
|
AVCodec vp8_decoder = { |
|
"vp8", |
|
AVMEDIA_TYPE_VIDEO, |
|
CODEC_ID_VP8, |
|
sizeof(VP8Context), |
|
vp8_decode_init, |
|
NULL, |
|
vp8_decode_free, |
|
vp8_decode_frame, |
|
CODEC_CAP_DR1, |
|
.flush = vp8_decode_flush, |
|
.long_name = NULL_IF_CONFIG_SMALL("On2 VP8"), |
|
};
|
|
|