mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1766 lines
66 KiB
1766 lines
66 KiB
/* |
|
* AAC Spectral Band Replication decoding functions |
|
* Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) |
|
* Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* AAC Spectral Band Replication decoding functions |
|
* @author Robert Swain ( rob opendot cl ) |
|
*/ |
|
|
|
#include "aac.h" |
|
#include "sbr.h" |
|
#include "aacsbr.h" |
|
#include "aacsbrdata.h" |
|
#include "fft.h" |
|
|
|
#include <stdint.h> |
|
#include <float.h> |
|
|
|
#define ENVELOPE_ADJUSTMENT_OFFSET 2 |
|
#define NOISE_FLOOR_OFFSET 6.0f |
|
|
|
/** |
|
* SBR VLC tables |
|
*/ |
|
enum { |
|
T_HUFFMAN_ENV_1_5DB, |
|
F_HUFFMAN_ENV_1_5DB, |
|
T_HUFFMAN_ENV_BAL_1_5DB, |
|
F_HUFFMAN_ENV_BAL_1_5DB, |
|
T_HUFFMAN_ENV_3_0DB, |
|
F_HUFFMAN_ENV_3_0DB, |
|
T_HUFFMAN_ENV_BAL_3_0DB, |
|
F_HUFFMAN_ENV_BAL_3_0DB, |
|
T_HUFFMAN_NOISE_3_0DB, |
|
T_HUFFMAN_NOISE_BAL_3_0DB, |
|
}; |
|
|
|
/** |
|
* bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98) |
|
*/ |
|
enum { |
|
FIXFIX, |
|
FIXVAR, |
|
VARFIX, |
|
VARVAR, |
|
}; |
|
|
|
enum { |
|
EXTENSION_ID_PS = 2, |
|
}; |
|
|
|
static VLC vlc_sbr[10]; |
|
static const int8_t vlc_sbr_lav[10] = |
|
{ 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 }; |
|
static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64]; |
|
static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64]; |
|
static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2]; |
|
static const DECLARE_ALIGNED(16, float, zero64)[64]; |
|
|
|
#define SBR_INIT_VLC_STATIC(num, size) \ |
|
INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \ |
|
sbr_tmp[num].sbr_bits , 1, 1, \ |
|
sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \ |
|
size) |
|
|
|
#define SBR_VLC_ROW(name) \ |
|
{ name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) } |
|
|
|
av_cold void ff_aac_sbr_init(void) |
|
{ |
|
int n, k; |
|
static const struct { |
|
const void *sbr_codes, *sbr_bits; |
|
const unsigned int table_size, elem_size; |
|
} sbr_tmp[] = { |
|
SBR_VLC_ROW(t_huffman_env_1_5dB), |
|
SBR_VLC_ROW(f_huffman_env_1_5dB), |
|
SBR_VLC_ROW(t_huffman_env_bal_1_5dB), |
|
SBR_VLC_ROW(f_huffman_env_bal_1_5dB), |
|
SBR_VLC_ROW(t_huffman_env_3_0dB), |
|
SBR_VLC_ROW(f_huffman_env_3_0dB), |
|
SBR_VLC_ROW(t_huffman_env_bal_3_0dB), |
|
SBR_VLC_ROW(f_huffman_env_bal_3_0dB), |
|
SBR_VLC_ROW(t_huffman_noise_3_0dB), |
|
SBR_VLC_ROW(t_huffman_noise_bal_3_0dB), |
|
}; |
|
|
|
// SBR VLC table initialization |
|
SBR_INIT_VLC_STATIC(0, 1098); |
|
SBR_INIT_VLC_STATIC(1, 1092); |
|
SBR_INIT_VLC_STATIC(2, 768); |
|
SBR_INIT_VLC_STATIC(3, 1026); |
|
SBR_INIT_VLC_STATIC(4, 1058); |
|
SBR_INIT_VLC_STATIC(5, 1052); |
|
SBR_INIT_VLC_STATIC(6, 544); |
|
SBR_INIT_VLC_STATIC(7, 544); |
|
SBR_INIT_VLC_STATIC(8, 592); |
|
SBR_INIT_VLC_STATIC(9, 512); |
|
|
|
for (n = 0; n < 64; n++) { |
|
float pre = M_PI * n / 64; |
|
analysis_cos_pre[n] = cosf(pre); |
|
analysis_sin_pre[n] = sinf(pre); |
|
} |
|
for (k = 0; k < 32; k++) { |
|
float post = M_PI * (k + 0.5) / 128; |
|
analysis_cossin_post[k][0] = 4.0 * cosf(post); |
|
analysis_cossin_post[k][1] = -4.0 * sinf(post); |
|
} |
|
for (n = 1; n < 320; n++) |
|
sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n]; |
|
sbr_qmf_window_us[384] = -sbr_qmf_window_us[384]; |
|
sbr_qmf_window_us[512] = -sbr_qmf_window_us[512]; |
|
|
|
for (n = 0; n < 320; n++) |
|
sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n]; |
|
} |
|
|
|
av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr) |
|
{ |
|
sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32 |
|
sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1; |
|
sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); |
|
sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128); |
|
ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64); |
|
ff_rdft_init(&sbr->rdft, 6, IDFT_R2C); |
|
} |
|
|
|
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr) |
|
{ |
|
ff_mdct_end(&sbr->mdct); |
|
ff_rdft_end(&sbr->rdft); |
|
} |
|
|
|
static int qsort_comparison_function_int16(const void *a, const void *b) |
|
{ |
|
return *(const int16_t *)a - *(const int16_t *)b; |
|
} |
|
|
|
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle) |
|
{ |
|
int i; |
|
for (i = 0; i <= last_el; i++) |
|
if (table[i] == needle) |
|
return 1; |
|
return 0; |
|
} |
|
|
|
/// Limiter Frequency Band Table (14496-3 sp04 p198) |
|
static void sbr_make_f_tablelim(SpectralBandReplication *sbr) |
|
{ |
|
int k; |
|
if (sbr->bs_limiter_bands > 0) { |
|
static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2) |
|
1.18509277094158210129f, //2^(0.49/2) |
|
1.11987160404675912501f }; //2^(0.49/3) |
|
const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1]; |
|
int16_t patch_borders[7]; |
|
uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim; |
|
|
|
patch_borders[0] = sbr->kx[1]; |
|
for (k = 1; k <= sbr->num_patches; k++) |
|
patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1]; |
|
|
|
memcpy(sbr->f_tablelim, sbr->f_tablelow, |
|
(sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0])); |
|
if (sbr->num_patches > 1) |
|
memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1, |
|
(sbr->num_patches - 1) * sizeof(patch_borders[0])); |
|
|
|
qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0], |
|
sizeof(sbr->f_tablelim[0]), |
|
qsort_comparison_function_int16); |
|
|
|
sbr->n_lim = sbr->n[0] + sbr->num_patches - 1; |
|
while (out < sbr->f_tablelim + sbr->n_lim) { |
|
if (*in >= *out * lim_bands_per_octave_warped) { |
|
*++out = *in++; |
|
} else if (*in == *out || |
|
!in_table_int16(patch_borders, sbr->num_patches, *in)) { |
|
in++; |
|
sbr->n_lim--; |
|
} else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) { |
|
*out = *in++; |
|
sbr->n_lim--; |
|
} else { |
|
*++out = *in++; |
|
} |
|
} |
|
} else { |
|
sbr->f_tablelim[0] = sbr->f_tablelow[0]; |
|
sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]]; |
|
sbr->n_lim = 1; |
|
} |
|
} |
|
|
|
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb) |
|
{ |
|
unsigned int cnt = get_bits_count(gb); |
|
uint8_t bs_header_extra_1; |
|
uint8_t bs_header_extra_2; |
|
int old_bs_limiter_bands = sbr->bs_limiter_bands; |
|
SpectrumParameters old_spectrum_params; |
|
|
|
sbr->start = 1; |
|
|
|
// Save last spectrum parameters variables to compare to new ones |
|
memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)); |
|
|
|
sbr->bs_amp_res_header = get_bits1(gb); |
|
sbr->spectrum_params.bs_start_freq = get_bits(gb, 4); |
|
sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4); |
|
sbr->spectrum_params.bs_xover_band = get_bits(gb, 3); |
|
skip_bits(gb, 2); // bs_reserved |
|
|
|
bs_header_extra_1 = get_bits1(gb); |
|
bs_header_extra_2 = get_bits1(gb); |
|
|
|
if (bs_header_extra_1) { |
|
sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2); |
|
sbr->spectrum_params.bs_alter_scale = get_bits1(gb); |
|
sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2); |
|
} else { |
|
sbr->spectrum_params.bs_freq_scale = 2; |
|
sbr->spectrum_params.bs_alter_scale = 1; |
|
sbr->spectrum_params.bs_noise_bands = 2; |
|
} |
|
|
|
// Check if spectrum parameters changed |
|
if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters))) |
|
sbr->reset = 1; |
|
|
|
if (bs_header_extra_2) { |
|
sbr->bs_limiter_bands = get_bits(gb, 2); |
|
sbr->bs_limiter_gains = get_bits(gb, 2); |
|
sbr->bs_interpol_freq = get_bits1(gb); |
|
sbr->bs_smoothing_mode = get_bits1(gb); |
|
} else { |
|
sbr->bs_limiter_bands = 2; |
|
sbr->bs_limiter_gains = 2; |
|
sbr->bs_interpol_freq = 1; |
|
sbr->bs_smoothing_mode = 1; |
|
} |
|
|
|
if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset) |
|
sbr_make_f_tablelim(sbr); |
|
|
|
return get_bits_count(gb) - cnt; |
|
} |
|
|
|
static int array_min_int16(const int16_t *array, int nel) |
|
{ |
|
int i, min = array[0]; |
|
for (i = 1; i < nel; i++) |
|
min = FFMIN(array[i], min); |
|
return min; |
|
} |
|
|
|
static void make_bands(int16_t* bands, int start, int stop, int num_bands) |
|
{ |
|
int k, previous, present; |
|
float base, prod; |
|
|
|
base = powf((float)stop / start, 1.0f / num_bands); |
|
prod = start; |
|
previous = start; |
|
|
|
for (k = 0; k < num_bands-1; k++) { |
|
prod *= base; |
|
present = lrintf(prod); |
|
bands[k] = present - previous; |
|
previous = present; |
|
} |
|
bands[num_bands-1] = stop - previous; |
|
} |
|
|
|
static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band) |
|
{ |
|
// Requirements (14496-3 sp04 p205) |
|
if (n_master <= 0) { |
|
av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master); |
|
return -1; |
|
} |
|
if (bs_xover_band >= n_master) { |
|
av_log(avccontext, AV_LOG_ERROR, |
|
"Invalid bitstream, crossover band index beyond array bounds: %d\n", |
|
bs_xover_band); |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
/// Master Frequency Band Table (14496-3 sp04 p194) |
|
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, |
|
SpectrumParameters *spectrum) |
|
{ |
|
unsigned int temp, max_qmf_subbands; |
|
unsigned int start_min, stop_min; |
|
int k; |
|
const int8_t *sbr_offset_ptr; |
|
int16_t stop_dk[13]; |
|
|
|
if (sbr->sample_rate < 32000) { |
|
temp = 3000; |
|
} else if (sbr->sample_rate < 64000) { |
|
temp = 4000; |
|
} else |
|
temp = 5000; |
|
|
|
start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate; |
|
stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate; |
|
|
|
switch (sbr->sample_rate) { |
|
case 16000: |
|
sbr_offset_ptr = sbr_offset[0]; |
|
break; |
|
case 22050: |
|
sbr_offset_ptr = sbr_offset[1]; |
|
break; |
|
case 24000: |
|
sbr_offset_ptr = sbr_offset[2]; |
|
break; |
|
case 32000: |
|
sbr_offset_ptr = sbr_offset[3]; |
|
break; |
|
case 44100: case 48000: case 64000: |
|
sbr_offset_ptr = sbr_offset[4]; |
|
break; |
|
case 88200: case 96000: case 128000: case 176400: case 192000: |
|
sbr_offset_ptr = sbr_offset[5]; |
|
break; |
|
default: |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Unsupported sample rate for SBR: %d\n", sbr->sample_rate); |
|
return -1; |
|
} |
|
|
|
sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq]; |
|
|
|
if (spectrum->bs_stop_freq < 14) { |
|
sbr->k[2] = stop_min; |
|
make_bands(stop_dk, stop_min, 64, 13); |
|
qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16); |
|
for (k = 0; k < spectrum->bs_stop_freq; k++) |
|
sbr->k[2] += stop_dk[k]; |
|
} else if (spectrum->bs_stop_freq == 14) { |
|
sbr->k[2] = 2*sbr->k[0]; |
|
} else if (spectrum->bs_stop_freq == 15) { |
|
sbr->k[2] = 3*sbr->k[0]; |
|
} else { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq); |
|
return -1; |
|
} |
|
sbr->k[2] = FFMIN(64, sbr->k[2]); |
|
|
|
// Requirements (14496-3 sp04 p205) |
|
if (sbr->sample_rate <= 32000) { |
|
max_qmf_subbands = 48; |
|
} else if (sbr->sample_rate == 44100) { |
|
max_qmf_subbands = 35; |
|
} else if (sbr->sample_rate >= 48000) |
|
max_qmf_subbands = 32; |
|
|
|
if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]); |
|
return -1; |
|
} |
|
|
|
if (!spectrum->bs_freq_scale) { |
|
unsigned int dk; |
|
int k2diff; |
|
|
|
dk = spectrum->bs_alter_scale + 1; |
|
sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1; |
|
if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band)) |
|
return -1; |
|
|
|
for (k = 1; k <= sbr->n_master; k++) |
|
sbr->f_master[k] = dk; |
|
|
|
k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk; |
|
if (k2diff < 0) { |
|
sbr->f_master[1]--; |
|
sbr->f_master[2]-= (k2diff < 1); |
|
} else if (k2diff) { |
|
sbr->f_master[sbr->n_master]++; |
|
} |
|
|
|
sbr->f_master[0] = sbr->k[0]; |
|
for (k = 1; k <= sbr->n_master; k++) |
|
sbr->f_master[k] += sbr->f_master[k - 1]; |
|
|
|
} else { |
|
int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3} |
|
int two_regions, num_bands_0; |
|
int vdk0_max, vdk1_min; |
|
int16_t vk0[49]; |
|
|
|
if (49 * sbr->k[2] > 110 * sbr->k[0]) { |
|
two_regions = 1; |
|
sbr->k[1] = 2 * sbr->k[0]; |
|
} else { |
|
two_regions = 0; |
|
sbr->k[1] = sbr->k[2]; |
|
} |
|
|
|
num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2; |
|
|
|
if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205) |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0); |
|
return -1; |
|
} |
|
|
|
vk0[0] = 0; |
|
|
|
make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0); |
|
|
|
qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16); |
|
vdk0_max = vk0[num_bands_0]; |
|
|
|
vk0[0] = sbr->k[0]; |
|
for (k = 1; k <= num_bands_0; k++) { |
|
if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205) |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]); |
|
return -1; |
|
} |
|
vk0[k] += vk0[k-1]; |
|
} |
|
|
|
if (two_regions) { |
|
int16_t vk1[49]; |
|
float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f |
|
: 1.0f; // bs_alter_scale = {0,1} |
|
int num_bands_1 = lrintf(half_bands * invwarp * |
|
log2f(sbr->k[2] / (float)sbr->k[1])) * 2; |
|
|
|
make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1); |
|
|
|
vdk1_min = array_min_int16(vk1 + 1, num_bands_1); |
|
|
|
if (vdk1_min < vdk0_max) { |
|
int change; |
|
qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); |
|
change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1); |
|
vk1[1] += change; |
|
vk1[num_bands_1] -= change; |
|
} |
|
|
|
qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16); |
|
|
|
vk1[0] = sbr->k[1]; |
|
for (k = 1; k <= num_bands_1; k++) { |
|
if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205) |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]); |
|
return -1; |
|
} |
|
vk1[k] += vk1[k-1]; |
|
} |
|
|
|
sbr->n_master = num_bands_0 + num_bands_1; |
|
if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band)) |
|
return -1; |
|
memcpy(&sbr->f_master[0], vk0, |
|
(num_bands_0 + 1) * sizeof(sbr->f_master[0])); |
|
memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1, |
|
num_bands_1 * sizeof(sbr->f_master[0])); |
|
|
|
} else { |
|
sbr->n_master = num_bands_0; |
|
if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band)) |
|
return -1; |
|
memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0])); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46) |
|
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr) |
|
{ |
|
int i, k, sb = 0; |
|
int msb = sbr->k[0]; |
|
int usb = sbr->kx[1]; |
|
int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate; |
|
|
|
sbr->num_patches = 0; |
|
|
|
if (goal_sb < sbr->kx[1] + sbr->m[1]) { |
|
for (k = 0; sbr->f_master[k] < goal_sb; k++) ; |
|
} else |
|
k = sbr->n_master; |
|
|
|
do { |
|
int odd = 0; |
|
for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) { |
|
sb = sbr->f_master[i]; |
|
odd = (sb + sbr->k[0]) & 1; |
|
} |
|
|
|
// Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5. |
|
// After this check the final number of patches can still be six which is |
|
// illegal however the Coding Technologies decoder check stream has a final |
|
// count of 6 patches |
|
if (sbr->num_patches > 5) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches); |
|
return -1; |
|
} |
|
|
|
sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0); |
|
sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches]; |
|
|
|
if (sbr->patch_num_subbands[sbr->num_patches] > 0) { |
|
usb = sb; |
|
msb = sb; |
|
sbr->num_patches++; |
|
} else |
|
msb = sbr->kx[1]; |
|
|
|
if (sbr->f_master[k] - sb < 3) |
|
k = sbr->n_master; |
|
} while (sb != sbr->kx[1] + sbr->m[1]); |
|
|
|
if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1) |
|
sbr->num_patches--; |
|
|
|
return 0; |
|
} |
|
|
|
/// Derived Frequency Band Tables (14496-3 sp04 p197) |
|
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr) |
|
{ |
|
int k, temp; |
|
|
|
sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band; |
|
sbr->n[0] = (sbr->n[1] + 1) >> 1; |
|
|
|
memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band], |
|
(sbr->n[1] + 1) * sizeof(sbr->f_master[0])); |
|
sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0]; |
|
sbr->kx[1] = sbr->f_tablehigh[0]; |
|
|
|
// Requirements (14496-3 sp04 p205) |
|
if (sbr->kx[1] + sbr->m[1] > 64) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]); |
|
return -1; |
|
} |
|
if (sbr->kx[1] > 32) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]); |
|
return -1; |
|
} |
|
|
|
sbr->f_tablelow[0] = sbr->f_tablehigh[0]; |
|
temp = sbr->n[1] & 1; |
|
for (k = 1; k <= sbr->n[0]; k++) |
|
sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp]; |
|
|
|
sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands * |
|
log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3 |
|
if (sbr->n_q > 5) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q); |
|
return -1; |
|
} |
|
|
|
sbr->f_tablenoise[0] = sbr->f_tablelow[0]; |
|
temp = 0; |
|
for (k = 1; k <= sbr->n_q; k++) { |
|
temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k); |
|
sbr->f_tablenoise[k] = sbr->f_tablelow[temp]; |
|
} |
|
|
|
if (sbr_hf_calc_npatches(ac, sbr) < 0) |
|
return -1; |
|
|
|
sbr_make_f_tablelim(sbr); |
|
|
|
sbr->data[0].f_indexnoise = 0; |
|
sbr->data[1].f_indexnoise = 0; |
|
|
|
return 0; |
|
} |
|
|
|
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, |
|
int elements) |
|
{ |
|
int i; |
|
for (i = 0; i < elements; i++) { |
|
vec[i] = get_bits1(gb); |
|
} |
|
} |
|
|
|
/** ceil(log2(index+1)) */ |
|
static const int8_t ceil_log2[] = { |
|
0, 1, 2, 2, 3, 3, |
|
}; |
|
|
|
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, |
|
GetBitContext *gb, SBRData *ch_data) |
|
{ |
|
int i; |
|
unsigned bs_pointer = 0; |
|
// frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots |
|
int abs_bord_trail = 16; |
|
int num_rel_lead, num_rel_trail; |
|
unsigned bs_num_env_old = ch_data->bs_num_env; |
|
|
|
ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env]; |
|
ch_data->bs_amp_res = sbr->bs_amp_res_header; |
|
ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old]; |
|
|
|
switch (ch_data->bs_frame_class = get_bits(gb, 2)) { |
|
case FIXFIX: |
|
ch_data->bs_num_env = 1 << get_bits(gb, 2); |
|
num_rel_lead = ch_data->bs_num_env - 1; |
|
if (ch_data->bs_num_env == 1) |
|
ch_data->bs_amp_res = 0; |
|
|
|
if (ch_data->bs_num_env > 4) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n", |
|
ch_data->bs_num_env); |
|
return -1; |
|
} |
|
|
|
ch_data->t_env[0] = 0; |
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
|
|
|
abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) / |
|
ch_data->bs_num_env; |
|
for (i = 0; i < num_rel_lead; i++) |
|
ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail; |
|
|
|
ch_data->bs_freq_res[1] = get_bits1(gb); |
|
for (i = 1; i < ch_data->bs_num_env; i++) |
|
ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1]; |
|
break; |
|
case FIXVAR: |
|
abs_bord_trail += get_bits(gb, 2); |
|
num_rel_trail = get_bits(gb, 2); |
|
ch_data->bs_num_env = num_rel_trail + 1; |
|
ch_data->t_env[0] = 0; |
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
|
|
|
for (i = 0; i < num_rel_trail; i++) |
|
ch_data->t_env[ch_data->bs_num_env - 1 - i] = |
|
ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; |
|
|
|
bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); |
|
|
|
for (i = 0; i < ch_data->bs_num_env; i++) |
|
ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb); |
|
break; |
|
case VARFIX: |
|
ch_data->t_env[0] = get_bits(gb, 2); |
|
num_rel_lead = get_bits(gb, 2); |
|
ch_data->bs_num_env = num_rel_lead + 1; |
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
|
|
|
for (i = 0; i < num_rel_lead; i++) |
|
ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; |
|
|
|
bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); |
|
|
|
get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); |
|
break; |
|
case VARVAR: |
|
ch_data->t_env[0] = get_bits(gb, 2); |
|
abs_bord_trail += get_bits(gb, 2); |
|
num_rel_lead = get_bits(gb, 2); |
|
num_rel_trail = get_bits(gb, 2); |
|
ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1; |
|
|
|
if (ch_data->bs_num_env > 5) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n", |
|
ch_data->bs_num_env); |
|
return -1; |
|
} |
|
|
|
ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail; |
|
|
|
for (i = 0; i < num_rel_lead; i++) |
|
ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2; |
|
for (i = 0; i < num_rel_trail; i++) |
|
ch_data->t_env[ch_data->bs_num_env - 1 - i] = |
|
ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2; |
|
|
|
bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]); |
|
|
|
get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env); |
|
break; |
|
} |
|
|
|
if (bs_pointer > ch_data->bs_num_env + 1) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n", |
|
bs_pointer); |
|
return -1; |
|
} |
|
|
|
for (i = 1; i <= ch_data->bs_num_env; i++) { |
|
if (ch_data->t_env[i-1] > ch_data->t_env[i]) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Non monotone time borders\n"); |
|
return -1; |
|
} |
|
} |
|
|
|
ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1; |
|
|
|
ch_data->t_q[0] = ch_data->t_env[0]; |
|
ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env]; |
|
if (ch_data->bs_num_noise > 1) { |
|
unsigned int idx; |
|
if (ch_data->bs_frame_class == FIXFIX) { |
|
idx = ch_data->bs_num_env >> 1; |
|
} else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR |
|
idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1); |
|
} else { // VARFIX |
|
if (!bs_pointer) |
|
idx = 1; |
|
else if (bs_pointer == 1) |
|
idx = ch_data->bs_num_env - 1; |
|
else // bs_pointer > 1 |
|
idx = bs_pointer - 1; |
|
} |
|
ch_data->t_q[1] = ch_data->t_env[idx]; |
|
} |
|
|
|
ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev |
|
ch_data->e_a[1] = -1; |
|
if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0 |
|
ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer; |
|
} else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1 |
|
ch_data->e_a[1] = bs_pointer - 1; |
|
|
|
return 0; |
|
} |
|
|
|
static void copy_sbr_grid(SBRData *dst, const SBRData *src) { |
|
//These variables are saved from the previous frame rather than copied |
|
dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env]; |
|
dst->t_env_num_env_old = dst->t_env[dst->bs_num_env]; |
|
dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env); |
|
|
|
//These variables are read from the bitstream and therefore copied |
|
memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res)); |
|
memcpy(dst->t_env, src->t_env, sizeof(dst->t_env)); |
|
memcpy(dst->t_q, src->t_q, sizeof(dst->t_q)); |
|
dst->bs_num_env = src->bs_num_env; |
|
dst->bs_amp_res = src->bs_amp_res; |
|
dst->bs_num_noise = src->bs_num_noise; |
|
dst->bs_frame_class = src->bs_frame_class; |
|
dst->e_a[1] = src->e_a[1]; |
|
} |
|
|
|
/// Read how the envelope and noise floor data is delta coded |
|
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, |
|
SBRData *ch_data) |
|
{ |
|
get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env); |
|
get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise); |
|
} |
|
|
|
/// Read inverse filtering data |
|
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, |
|
SBRData *ch_data) |
|
{ |
|
int i; |
|
|
|
memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t)); |
|
for (i = 0; i < sbr->n_q; i++) |
|
ch_data->bs_invf_mode[0][i] = get_bits(gb, 2); |
|
} |
|
|
|
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, |
|
SBRData *ch_data, int ch) |
|
{ |
|
int bits; |
|
int i, j, k; |
|
VLC_TYPE (*t_huff)[2], (*f_huff)[2]; |
|
int t_lav, f_lav; |
|
const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; |
|
const int odd = sbr->n[1] & 1; |
|
|
|
if (sbr->bs_coupling && ch) { |
|
if (ch_data->bs_amp_res) { |
|
bits = 5; |
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table; |
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB]; |
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; |
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; |
|
} else { |
|
bits = 6; |
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table; |
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB]; |
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table; |
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB]; |
|
} |
|
} else { |
|
if (ch_data->bs_amp_res) { |
|
bits = 6; |
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table; |
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB]; |
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; |
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; |
|
} else { |
|
bits = 7; |
|
t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table; |
|
t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB]; |
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table; |
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB]; |
|
} |
|
} |
|
|
|
for (i = 0; i < ch_data->bs_num_env; i++) { |
|
if (ch_data->bs_df_env[i]) { |
|
// bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame |
|
if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) { |
|
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) |
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); |
|
} else if (ch_data->bs_freq_res[i + 1]) { |
|
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { |
|
k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1] |
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); |
|
} |
|
} else { |
|
for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) { |
|
k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j] |
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav); |
|
} |
|
} |
|
} else { |
|
ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance |
|
for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) |
|
ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); |
|
} |
|
} |
|
|
|
//assign 0th elements of env_facs from last elements |
|
memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env], |
|
sizeof(ch_data->env_facs[0])); |
|
} |
|
|
|
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, |
|
SBRData *ch_data, int ch) |
|
{ |
|
int i, j; |
|
VLC_TYPE (*t_huff)[2], (*f_huff)[2]; |
|
int t_lav, f_lav; |
|
int delta = (ch == 1 && sbr->bs_coupling == 1) + 1; |
|
|
|
if (sbr->bs_coupling && ch) { |
|
t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table; |
|
t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB]; |
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table; |
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB]; |
|
} else { |
|
t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table; |
|
t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB]; |
|
f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table; |
|
f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB]; |
|
} |
|
|
|
for (i = 0; i < ch_data->bs_num_noise; i++) { |
|
if (ch_data->bs_df_noise[i]) { |
|
for (j = 0; j < sbr->n_q; j++) |
|
ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav); |
|
} else { |
|
ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level |
|
for (j = 1; j < sbr->n_q; j++) |
|
ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav); |
|
} |
|
} |
|
|
|
//assign 0th elements of noise_facs from last elements |
|
memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise], |
|
sizeof(ch_data->noise_facs[0])); |
|
} |
|
|
|
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, |
|
GetBitContext *gb, |
|
int bs_extension_id, int *num_bits_left) |
|
{ |
|
//TODO - implement ps_data for parametric stereo parsing |
|
switch (bs_extension_id) { |
|
case EXTENSION_ID_PS: |
|
if (!ac->m4ac.ps) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n"); |
|
skip_bits_long(gb, *num_bits_left); // bs_fill_bits |
|
*num_bits_left = 0; |
|
} else { |
|
#if 0 |
|
*num_bits_left -= ff_ps_data(gb, ps); |
|
#else |
|
av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0); |
|
skip_bits_long(gb, *num_bits_left); // bs_fill_bits |
|
*num_bits_left = 0; |
|
#endif |
|
} |
|
break; |
|
default: |
|
av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1); |
|
skip_bits_long(gb, *num_bits_left); // bs_fill_bits |
|
*num_bits_left = 0; |
|
break; |
|
} |
|
} |
|
|
|
static int read_sbr_single_channel_element(AACContext *ac, |
|
SpectralBandReplication *sbr, |
|
GetBitContext *gb) |
|
{ |
|
if (get_bits1(gb)) // bs_data_extra |
|
skip_bits(gb, 4); // bs_reserved |
|
|
|
if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) |
|
return -1; |
|
read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
|
read_sbr_invf(sbr, gb, &sbr->data[0]); |
|
read_sbr_envelope(sbr, gb, &sbr->data[0], 0); |
|
read_sbr_noise(sbr, gb, &sbr->data[0], 0); |
|
|
|
if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) |
|
get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); |
|
|
|
return 0; |
|
} |
|
|
|
static int read_sbr_channel_pair_element(AACContext *ac, |
|
SpectralBandReplication *sbr, |
|
GetBitContext *gb) |
|
{ |
|
if (get_bits1(gb)) // bs_data_extra |
|
skip_bits(gb, 8); // bs_reserved |
|
|
|
if ((sbr->bs_coupling = get_bits1(gb))) { |
|
if (read_sbr_grid(ac, sbr, gb, &sbr->data[0])) |
|
return -1; |
|
copy_sbr_grid(&sbr->data[1], &sbr->data[0]); |
|
read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
|
read_sbr_dtdf(sbr, gb, &sbr->data[1]); |
|
read_sbr_invf(sbr, gb, &sbr->data[0]); |
|
memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); |
|
memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0])); |
|
read_sbr_envelope(sbr, gb, &sbr->data[0], 0); |
|
read_sbr_noise(sbr, gb, &sbr->data[0], 0); |
|
read_sbr_envelope(sbr, gb, &sbr->data[1], 1); |
|
read_sbr_noise(sbr, gb, &sbr->data[1], 1); |
|
} else { |
|
if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) || |
|
read_sbr_grid(ac, sbr, gb, &sbr->data[1])) |
|
return -1; |
|
read_sbr_dtdf(sbr, gb, &sbr->data[0]); |
|
read_sbr_dtdf(sbr, gb, &sbr->data[1]); |
|
read_sbr_invf(sbr, gb, &sbr->data[0]); |
|
read_sbr_invf(sbr, gb, &sbr->data[1]); |
|
read_sbr_envelope(sbr, gb, &sbr->data[0], 0); |
|
read_sbr_envelope(sbr, gb, &sbr->data[1], 1); |
|
read_sbr_noise(sbr, gb, &sbr->data[0], 0); |
|
read_sbr_noise(sbr, gb, &sbr->data[1], 1); |
|
} |
|
|
|
if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb))) |
|
get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]); |
|
if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb))) |
|
get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]); |
|
|
|
return 0; |
|
} |
|
|
|
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, |
|
GetBitContext *gb, int id_aac) |
|
{ |
|
unsigned int cnt = get_bits_count(gb); |
|
|
|
if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) { |
|
if (read_sbr_single_channel_element(ac, sbr, gb)) { |
|
sbr->start = 0; |
|
return get_bits_count(gb) - cnt; |
|
} |
|
} else if (id_aac == TYPE_CPE) { |
|
if (read_sbr_channel_pair_element(ac, sbr, gb)) { |
|
sbr->start = 0; |
|
return get_bits_count(gb) - cnt; |
|
} |
|
} else { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Invalid bitstream - cannot apply SBR to element type %d\n", id_aac); |
|
sbr->start = 0; |
|
return get_bits_count(gb) - cnt; |
|
} |
|
if (get_bits1(gb)) { // bs_extended_data |
|
int num_bits_left = get_bits(gb, 4); // bs_extension_size |
|
if (num_bits_left == 15) |
|
num_bits_left += get_bits(gb, 8); // bs_esc_count |
|
|
|
num_bits_left <<= 3; |
|
while (num_bits_left > 7) { |
|
num_bits_left -= 2; |
|
read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id |
|
} |
|
} |
|
|
|
return get_bits_count(gb) - cnt; |
|
} |
|
|
|
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr) |
|
{ |
|
int err; |
|
err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params); |
|
if (err >= 0) |
|
err = sbr_make_f_derived(ac, sbr); |
|
if (err < 0) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"SBR reset failed. Switching SBR to pure upsampling mode.\n"); |
|
sbr->start = 0; |
|
} |
|
} |
|
|
|
/** |
|
* Decode Spectral Band Replication extension data; reference: table 4.55. |
|
* |
|
* @param crc flag indicating the presence of CRC checksum |
|
* @param cnt length of TYPE_FIL syntactic element in bytes |
|
* |
|
* @return Returns number of bytes consumed from the TYPE_FIL element. |
|
*/ |
|
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, |
|
GetBitContext *gb_host, int crc, int cnt, int id_aac) |
|
{ |
|
unsigned int num_sbr_bits = 0, num_align_bits; |
|
unsigned bytes_read; |
|
GetBitContext gbc = *gb_host, *gb = &gbc; |
|
skip_bits_long(gb_host, cnt*8 - 4); |
|
|
|
sbr->reset = 0; |
|
|
|
if (!sbr->sample_rate) |
|
sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support |
|
if (!ac->m4ac.ext_sample_rate) |
|
ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate; |
|
|
|
if (crc) { |
|
skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check |
|
num_sbr_bits += 10; |
|
} |
|
|
|
//Save some state from the previous frame. |
|
sbr->kx[0] = sbr->kx[1]; |
|
sbr->m[0] = sbr->m[1]; |
|
|
|
num_sbr_bits++; |
|
if (get_bits1(gb)) // bs_header_flag |
|
num_sbr_bits += read_sbr_header(sbr, gb); |
|
|
|
if (sbr->reset) |
|
sbr_reset(ac, sbr); |
|
|
|
if (sbr->start) |
|
num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac); |
|
|
|
num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7; |
|
bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3); |
|
|
|
if (bytes_read > cnt) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read); |
|
} |
|
return cnt; |
|
} |
|
|
|
/// Dequantization and stereo decoding (14496-3 sp04 p203) |
|
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac) |
|
{ |
|
int k, e; |
|
int ch; |
|
|
|
if (id_aac == TYPE_CPE && sbr->bs_coupling) { |
|
float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f; |
|
float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f; |
|
for (e = 1; e <= sbr->data[0].bs_num_env; e++) { |
|
for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) { |
|
float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f); |
|
float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha); |
|
float fac = temp1 / (1.0f + temp2); |
|
sbr->data[0].env_facs[e][k] = fac; |
|
sbr->data[1].env_facs[e][k] = fac * temp2; |
|
} |
|
} |
|
for (e = 1; e <= sbr->data[0].bs_num_noise; e++) { |
|
for (k = 0; k < sbr->n_q; k++) { |
|
float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1); |
|
float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]); |
|
float fac = temp1 / (1.0f + temp2); |
|
sbr->data[0].noise_facs[e][k] = fac; |
|
sbr->data[1].noise_facs[e][k] = fac * temp2; |
|
} |
|
} |
|
} else { // SCE or one non-coupled CPE |
|
for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) { |
|
float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f; |
|
for (e = 1; e <= sbr->data[ch].bs_num_env; e++) |
|
for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++) |
|
sbr->data[ch].env_facs[e][k] = |
|
exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f); |
|
for (e = 1; e <= sbr->data[ch].bs_num_noise; e++) |
|
for (k = 0; k < sbr->n_q; k++) |
|
sbr->data[ch].noise_facs[e][k] = |
|
exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Analysis QMF Bank (14496-3 sp04 p206) |
|
* |
|
* @param x pointer to the beginning of the first sample window |
|
* @param W array of complex-valued samples split into subbands |
|
*/ |
|
static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x, |
|
float z[320], float W[2][32][32][2], |
|
float scale) |
|
{ |
|
int i, k; |
|
memcpy(W[0], W[1], sizeof(W[0])); |
|
memcpy(x , x+1024, (320-32)*sizeof(x[0])); |
|
if (scale != 1.0f) |
|
dsp->vector_fmul_scalar(x+288, in, scale, 1024); |
|
else |
|
memcpy(x+288, in, 1024*sizeof(*x)); |
|
for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames |
|
// are not supported |
|
float re, im; |
|
dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320); |
|
for (k = 0; k < 64; k++) { |
|
float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256]; |
|
z[k] = f * analysis_cos_pre[k]; |
|
z[k+64] = f; |
|
} |
|
ff_rdft_calc(rdft, z); |
|
re = z[0] * 0.5f; |
|
im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64); |
|
W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1]; |
|
W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0]; |
|
for (k = 1; k < 32; k++) { |
|
re = z[2*k ] - re; |
|
im = z[2*k+1] - im; |
|
W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1]; |
|
W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0]; |
|
} |
|
x += 32; |
|
} |
|
} |
|
|
|
/** |
|
* Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank |
|
* (14496-3 sp04 p206) |
|
*/ |
|
static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct, |
|
float *out, float X[2][32][64], |
|
float mdct_buf[2][64], |
|
float *v0, int *v_off, const unsigned int div, |
|
float bias, float scale) |
|
{ |
|
int i, n; |
|
const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us; |
|
int scale_and_bias = scale != 1.0f || bias != 0.0f; |
|
float *v; |
|
for (i = 0; i < 32; i++) { |
|
if (*v_off == 0) { |
|
int saved_samples = (1280 - 128) >> div; |
|
memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float)); |
|
*v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div); |
|
} else { |
|
*v_off -= 128 >> div; |
|
} |
|
v = v0 + *v_off; |
|
for (n = 1; n < 64 >> div; n+=2) { |
|
X[1][i][n] = -X[1][i][n]; |
|
} |
|
if (div) { |
|
memset(X[0][i]+32, 0, 32*sizeof(float)); |
|
memset(X[1][i]+32, 0, 32*sizeof(float)); |
|
} |
|
ff_imdct_half(mdct, mdct_buf[0], X[0][i]); |
|
ff_imdct_half(mdct, mdct_buf[1], X[1][i]); |
|
if (div) { |
|
for (n = 0; n < 32; n++) { |
|
v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ]; |
|
v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1]; |
|
} |
|
} else { |
|
for (n = 0; n < 64; n++) { |
|
v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ]; |
|
v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ]; |
|
} |
|
} |
|
dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div); |
|
dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div); |
|
if (scale_and_bias) |
|
for (n = 0; n < 64 >> div; n++) |
|
out[n] = out[n] * scale + bias; |
|
out += 64 >> div; |
|
} |
|
} |
|
|
|
static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag) |
|
{ |
|
int i; |
|
float real_sum = 0.0f; |
|
float imag_sum = 0.0f; |
|
if (lag) { |
|
for (i = 1; i < 38; i++) { |
|
real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1]; |
|
imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0]; |
|
} |
|
phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1]; |
|
phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0]; |
|
if (lag == 1) { |
|
phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1]; |
|
phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0]; |
|
} |
|
} else { |
|
for (i = 1; i < 38; i++) { |
|
real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1]; |
|
} |
|
phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; |
|
phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1]; |
|
} |
|
} |
|
|
|
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering |
|
* (14496-3 sp04 p214) |
|
* Warning: This routine does not seem numerically stable. |
|
*/ |
|
static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2], |
|
const float X_low[32][40][2], int k0) |
|
{ |
|
int k; |
|
for (k = 0; k < k0; k++) { |
|
float phi[3][2][2], dk; |
|
|
|
autocorrelate(X_low[k], phi, 0); |
|
autocorrelate(X_low[k], phi, 1); |
|
autocorrelate(X_low[k], phi, 2); |
|
|
|
dk = phi[2][1][0] * phi[1][0][0] - |
|
(phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f; |
|
|
|
if (!dk) { |
|
alpha1[k][0] = 0; |
|
alpha1[k][1] = 0; |
|
} else { |
|
float temp_real, temp_im; |
|
temp_real = phi[0][0][0] * phi[1][1][0] - |
|
phi[0][0][1] * phi[1][1][1] - |
|
phi[0][1][0] * phi[1][0][0]; |
|
temp_im = phi[0][0][0] * phi[1][1][1] + |
|
phi[0][0][1] * phi[1][1][0] - |
|
phi[0][1][1] * phi[1][0][0]; |
|
|
|
alpha1[k][0] = temp_real / dk; |
|
alpha1[k][1] = temp_im / dk; |
|
} |
|
|
|
if (!phi[1][0][0]) { |
|
alpha0[k][0] = 0; |
|
alpha0[k][1] = 0; |
|
} else { |
|
float temp_real, temp_im; |
|
temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] + |
|
alpha1[k][1] * phi[1][1][1]; |
|
temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] - |
|
alpha1[k][0] * phi[1][1][1]; |
|
|
|
alpha0[k][0] = -temp_real / phi[1][0][0]; |
|
alpha0[k][1] = -temp_im / phi[1][0][0]; |
|
} |
|
|
|
if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f || |
|
alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) { |
|
alpha1[k][0] = 0; |
|
alpha1[k][1] = 0; |
|
alpha0[k][0] = 0; |
|
alpha0[k][1] = 0; |
|
} |
|
} |
|
} |
|
|
|
/// Chirp Factors (14496-3 sp04 p214) |
|
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data) |
|
{ |
|
int i; |
|
float new_bw; |
|
static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f }; |
|
|
|
for (i = 0; i < sbr->n_q; i++) { |
|
if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) { |
|
new_bw = 0.6f; |
|
} else |
|
new_bw = bw_tab[ch_data->bs_invf_mode[0][i]]; |
|
|
|
if (new_bw < ch_data->bw_array[i]) { |
|
new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i]; |
|
} else |
|
new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i]; |
|
ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw; |
|
} |
|
} |
|
|
|
/// Generate the subband filtered lowband |
|
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, |
|
float X_low[32][40][2], const float W[2][32][32][2]) |
|
{ |
|
int i, k; |
|
const int t_HFGen = 8; |
|
const int i_f = 32; |
|
memset(X_low, 0, 32*sizeof(*X_low)); |
|
for (k = 0; k < sbr->kx[1]; k++) { |
|
for (i = t_HFGen; i < i_f + t_HFGen; i++) { |
|
X_low[k][i][0] = W[1][i - t_HFGen][k][0]; |
|
X_low[k][i][1] = W[1][i - t_HFGen][k][1]; |
|
} |
|
} |
|
for (k = 0; k < sbr->kx[0]; k++) { |
|
for (i = 0; i < t_HFGen; i++) { |
|
X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0]; |
|
X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1]; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/// High Frequency Generator (14496-3 sp04 p215) |
|
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, |
|
float X_high[64][40][2], const float X_low[32][40][2], |
|
const float (*alpha0)[2], const float (*alpha1)[2], |
|
const float bw_array[5], const uint8_t *t_env, |
|
int bs_num_env) |
|
{ |
|
int i, j, x; |
|
int g = 0; |
|
int k = sbr->kx[1]; |
|
for (j = 0; j < sbr->num_patches; j++) { |
|
for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) { |
|
float alpha[4]; |
|
const int p = sbr->patch_start_subband[j] + x; |
|
while (g <= sbr->n_q && k >= sbr->f_tablenoise[g]) |
|
g++; |
|
g--; |
|
|
|
if (g < 0) { |
|
av_log(ac->avccontext, AV_LOG_ERROR, |
|
"ERROR : no subband found for frequency %d\n", k); |
|
return -1; |
|
} |
|
|
|
alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g]; |
|
alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g]; |
|
alpha[2] = alpha0[p][0] * bw_array[g]; |
|
alpha[3] = alpha0[p][1] * bw_array[g]; |
|
|
|
for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) { |
|
const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET; |
|
X_high[k][idx][0] = |
|
X_low[p][idx - 2][0] * alpha[0] - |
|
X_low[p][idx - 2][1] * alpha[1] + |
|
X_low[p][idx - 1][0] * alpha[2] - |
|
X_low[p][idx - 1][1] * alpha[3] + |
|
X_low[p][idx][0]; |
|
X_high[k][idx][1] = |
|
X_low[p][idx - 2][1] * alpha[0] + |
|
X_low[p][idx - 2][0] * alpha[1] + |
|
X_low[p][idx - 1][1] * alpha[2] + |
|
X_low[p][idx - 1][0] * alpha[3] + |
|
X_low[p][idx][1]; |
|
} |
|
} |
|
} |
|
if (k < sbr->m[1] + sbr->kx[1]) |
|
memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high)); |
|
|
|
return 0; |
|
} |
|
|
|
/// Generate the subband filtered lowband |
|
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64], |
|
const float X_low[32][40][2], const float Y[2][38][64][2], |
|
int ch) |
|
{ |
|
int k, i; |
|
const int i_f = 32; |
|
const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0); |
|
memset(X, 0, 2*sizeof(*X)); |
|
for (k = 0; k < sbr->kx[0]; k++) { |
|
for (i = 0; i < i_Temp; i++) { |
|
X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; |
|
X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; |
|
} |
|
} |
|
for (; k < sbr->kx[0] + sbr->m[0]; k++) { |
|
for (i = 0; i < i_Temp; i++) { |
|
X[0][i][k] = Y[0][i + i_f][k][0]; |
|
X[1][i][k] = Y[0][i + i_f][k][1]; |
|
} |
|
} |
|
|
|
for (k = 0; k < sbr->kx[1]; k++) { |
|
for (i = i_Temp; i < i_f; i++) { |
|
X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0]; |
|
X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1]; |
|
} |
|
} |
|
for (; k < sbr->kx[1] + sbr->m[1]; k++) { |
|
for (i = i_Temp; i < i_f; i++) { |
|
X[0][i][k] = Y[1][i][k][0]; |
|
X[1][i][k] = Y[1][i][k][1]; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping |
|
* (14496-3 sp04 p217) |
|
*/ |
|
static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, |
|
SBRData *ch_data, int e_a[2]) |
|
{ |
|
int e, i, m; |
|
|
|
memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1])); |
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]]; |
|
uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; |
|
int k; |
|
|
|
for (i = 0; i < ilim; i++) |
|
for (m = table[i]; m < table[i + 1]; m++) |
|
sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i]; |
|
|
|
// ch_data->bs_num_noise > 1 => 2 noise floors |
|
k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]); |
|
for (i = 0; i < sbr->n_q; i++) |
|
for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++) |
|
sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i]; |
|
|
|
for (i = 0; i < sbr->n[1]; i++) { |
|
if (ch_data->bs_add_harmonic_flag) { |
|
const unsigned int m_midpoint = |
|
(sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1; |
|
|
|
ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] * |
|
(e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1)); |
|
} |
|
} |
|
|
|
for (i = 0; i < ilim; i++) { |
|
int additional_sinusoid_present = 0; |
|
for (m = table[i]; m < table[i + 1]; m++) { |
|
if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) { |
|
additional_sinusoid_present = 1; |
|
break; |
|
} |
|
} |
|
memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present, |
|
(table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0])); |
|
} |
|
} |
|
|
|
memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0])); |
|
} |
|
|
|
/// Estimation of current envelope (14496-3 sp04 p218) |
|
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2], |
|
SpectralBandReplication *sbr, SBRData *ch_data) |
|
{ |
|
int e, i, m; |
|
|
|
if (sbr->bs_interpol_freq) { |
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]); |
|
int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
|
int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
|
|
|
for (m = 0; m < sbr->m[1]; m++) { |
|
float sum = 0.0f; |
|
|
|
for (i = ilb; i < iub; i++) { |
|
sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] + |
|
X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1]; |
|
} |
|
e_curr[e][m] = sum * recip_env_size; |
|
} |
|
} |
|
} else { |
|
int k, p; |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]); |
|
int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
|
int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET; |
|
const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow; |
|
|
|
for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) { |
|
float sum = 0.0f; |
|
const int den = env_size * (table[p + 1] - table[p]); |
|
|
|
for (k = table[p]; k < table[p + 1]; k++) { |
|
for (i = ilb; i < iub; i++) { |
|
sum += X_high[k][i][0] * X_high[k][i][0] + |
|
X_high[k][i][1] * X_high[k][i][1]; |
|
} |
|
} |
|
sum /= den; |
|
for (k = table[p]; k < table[p + 1]; k++) { |
|
e_curr[e][k - sbr->kx[1]] = sum; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Calculation of levels of additional HF signal components (14496-3 sp04 p219) |
|
* and Calculation of gain (14496-3 sp04 p219) |
|
*/ |
|
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, |
|
SBRData *ch_data, const int e_a[2]) |
|
{ |
|
int e, k, m; |
|
// max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off) |
|
static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 }; |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
int delta = !((e == e_a[1]) || (e == e_a[0])); |
|
for (k = 0; k < sbr->n_lim; k++) { |
|
float gain_boost, gain_max; |
|
float sum[2] = { 0.0f, 0.0f }; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]); |
|
sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]); |
|
sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]); |
|
if (!sbr->s_mapped[e][m]) { |
|
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] / |
|
((1.0f + sbr->e_curr[e][m]) * |
|
(1.0f + sbr->q_mapped[e][m] * delta))); |
|
} else { |
|
sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] / |
|
((1.0f + sbr->e_curr[e][m]) * |
|
(1.0f + sbr->q_mapped[e][m]))); |
|
} |
|
} |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sum[0] += sbr->e_origmapped[e][m]; |
|
sum[1] += sbr->e_curr[e][m]; |
|
} |
|
gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); |
|
gain_max = FFMIN(100000, gain_max); |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m]; |
|
sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max); |
|
sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max); |
|
} |
|
sum[0] = sum[1] = 0.0f; |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sum[0] += sbr->e_origmapped[e][m]; |
|
sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m] |
|
+ sbr->s_m[e][m] * sbr->s_m[e][m] |
|
+ (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m]; |
|
} |
|
gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1])); |
|
gain_boost = FFMIN(1.584893192, gain_boost); |
|
for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) { |
|
sbr->gain[e][m] *= gain_boost; |
|
sbr->q_m[e][m] *= gain_boost; |
|
sbr->s_m[e][m] *= gain_boost; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/// Assembling HF Signals (14496-3 sp04 p220) |
|
static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2], |
|
SpectralBandReplication *sbr, SBRData *ch_data, |
|
const int e_a[2]) |
|
{ |
|
int e, i, j, m; |
|
const int h_SL = 4 * !sbr->bs_smoothing_mode; |
|
const int kx = sbr->kx[1]; |
|
const int m_max = sbr->m[1]; |
|
static const float h_smooth[5] = { |
|
0.33333333333333, |
|
0.30150283239582, |
|
0.21816949906249, |
|
0.11516383427084, |
|
0.03183050093751, |
|
}; |
|
static const int8_t phi[2][4] = { |
|
{ 1, 0, -1, 0}, // real |
|
{ 0, 1, 0, -1}, // imaginary |
|
}; |
|
float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp; |
|
int indexnoise = ch_data->f_indexnoise; |
|
int indexsine = ch_data->f_indexsine; |
|
memcpy(Y[0], Y[1], sizeof(Y[0])); |
|
|
|
if (sbr->reset) { |
|
for (i = 0; i < h_SL; i++) { |
|
memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0])); |
|
memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0])); |
|
} |
|
} else if (h_SL) { |
|
memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0])); |
|
memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0])); |
|
} |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
|
memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0])); |
|
memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0])); |
|
} |
|
} |
|
|
|
for (e = 0; e < ch_data->bs_num_env; e++) { |
|
for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) { |
|
int phi_sign = (1 - 2*(kx & 1)); |
|
|
|
if (h_SL && e != e_a[0] && e != e_a[1]) { |
|
for (m = 0; m < m_max; m++) { |
|
const int idx1 = i + h_SL; |
|
float g_filt = 0.0f; |
|
for (j = 0; j <= h_SL; j++) |
|
g_filt += g_temp[idx1 - j][m] * h_smooth[j]; |
|
Y[1][i][m + kx][0] = |
|
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; |
|
Y[1][i][m + kx][1] = |
|
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; |
|
} |
|
} else { |
|
for (m = 0; m < m_max; m++) { |
|
const float g_filt = g_temp[i + h_SL][m]; |
|
Y[1][i][m + kx][0] = |
|
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt; |
|
Y[1][i][m + kx][1] = |
|
X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt; |
|
} |
|
} |
|
|
|
if (e != e_a[0] && e != e_a[1]) { |
|
for (m = 0; m < m_max; m++) { |
|
indexnoise = (indexnoise + 1) & 0x1ff; |
|
if (sbr->s_m[e][m]) { |
|
Y[1][i][m + kx][0] += |
|
sbr->s_m[e][m] * phi[0][indexsine]; |
|
Y[1][i][m + kx][1] += |
|
sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); |
|
} else { |
|
float q_filt; |
|
if (h_SL) { |
|
const int idx1 = i + h_SL; |
|
q_filt = 0.0f; |
|
for (j = 0; j <= h_SL; j++) |
|
q_filt += q_temp[idx1 - j][m] * h_smooth[j]; |
|
} else { |
|
q_filt = q_temp[i][m]; |
|
} |
|
Y[1][i][m + kx][0] += |
|
q_filt * sbr_noise_table[indexnoise][0]; |
|
Y[1][i][m + kx][1] += |
|
q_filt * sbr_noise_table[indexnoise][1]; |
|
} |
|
phi_sign = -phi_sign; |
|
} |
|
} else { |
|
indexnoise = (indexnoise + m_max) & 0x1ff; |
|
for (m = 0; m < m_max; m++) { |
|
Y[1][i][m + kx][0] += |
|
sbr->s_m[e][m] * phi[0][indexsine]; |
|
Y[1][i][m + kx][1] += |
|
sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign); |
|
phi_sign = -phi_sign; |
|
} |
|
} |
|
indexsine = (indexsine + 1) & 3; |
|
} |
|
} |
|
ch_data->f_indexnoise = indexnoise; |
|
ch_data->f_indexsine = indexsine; |
|
} |
|
|
|
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, |
|
float* L, float* R) |
|
{ |
|
int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate; |
|
int ch; |
|
int nch = (id_aac == TYPE_CPE) ? 2 : 1; |
|
|
|
if (sbr->start) { |
|
sbr_dequant(sbr, id_aac); |
|
} |
|
for (ch = 0; ch < nch; ch++) { |
|
/* decode channel */ |
|
sbr_qmf_analysis(&ac->dsp, &sbr->rdft, ch ? R : L, sbr->data[ch].analysis_filterbank_samples, |
|
(float*)sbr->qmf_filter_scratch, |
|
sbr->data[ch].W, 1/(-1024 * ac->sf_scale)); |
|
sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W); |
|
if (sbr->start) { |
|
sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]); |
|
sbr_chirp(sbr, &sbr->data[ch]); |
|
sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1, |
|
sbr->data[ch].bw_array, sbr->data[ch].t_env, |
|
sbr->data[ch].bs_num_env); |
|
|
|
// hf_adj |
|
sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); |
|
sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]); |
|
sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a); |
|
sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch], |
|
sbr->data[ch].e_a); |
|
} |
|
|
|
/* synthesis */ |
|
sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch); |
|
} |
|
sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X, sbr->qmf_filter_scratch, |
|
sbr->data[0].synthesis_filterbank_samples, |
|
&sbr->data[0].synthesis_filterbank_samples_offset, |
|
downsampled, |
|
ac->add_bias, -1024 * ac->sf_scale); |
|
if (nch == 2) |
|
sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X, sbr->qmf_filter_scratch, |
|
sbr->data[1].synthesis_filterbank_samples, |
|
&sbr->data[1].synthesis_filterbank_samples_offset, |
|
downsampled, |
|
ac->add_bias, -1024 * ac->sf_scale); |
|
}
|
|
|