mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
976 lines
32 KiB
976 lines
32 KiB
/* |
|
* H.26L/H.264/AVC/JVT/14496-10/... decoder |
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* H.264 / AVC / MPEG-4 part10 codec. |
|
* @author Michael Niedermayer <michaelni@gmx.at> |
|
*/ |
|
|
|
#include "libavutil/display.h" |
|
#include "libavutil/imgutils.h" |
|
#include "libavutil/opt.h" |
|
#include "libavutil/stereo3d.h" |
|
#include "libavutil/timer.h" |
|
#include "internal.h" |
|
#include "bytestream.h" |
|
#include "cabac.h" |
|
#include "cabac_functions.h" |
|
#include "error_resilience.h" |
|
#include "avcodec.h" |
|
#include "h264.h" |
|
#include "h264dec.h" |
|
#include "h2645_parse.h" |
|
#include "h264data.h" |
|
#include "h264chroma.h" |
|
#include "h264_mvpred.h" |
|
#include "h264_ps.h" |
|
#include "golomb.h" |
|
#include "mathops.h" |
|
#include "me_cmp.h" |
|
#include "mpegutils.h" |
|
#include "profiles.h" |
|
#include "rectangle.h" |
|
#include "thread.h" |
|
|
|
#include <assert.h> |
|
|
|
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; |
|
|
|
static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, |
|
int (*mv)[2][4][2], |
|
int mb_x, int mb_y, int mb_intra, int mb_skipped) |
|
{ |
|
H264Context *h = opaque; |
|
H264SliceContext *sl = &h->slice_ctx[0]; |
|
|
|
sl->mb_x = mb_x; |
|
sl->mb_y = mb_y; |
|
sl->mb_xy = mb_x + mb_y * h->mb_stride; |
|
memset(sl->non_zero_count_cache, 0, sizeof(sl->non_zero_count_cache)); |
|
assert(ref >= 0); |
|
/* FIXME: It is possible albeit uncommon that slice references |
|
* differ between slices. We take the easy approach and ignore |
|
* it for now. If this turns out to have any relevance in |
|
* practice then correct remapping should be added. */ |
|
if (ref >= sl->ref_count[0]) |
|
ref = 0; |
|
fill_rectangle(&h->cur_pic.ref_index[0][4 * sl->mb_xy], |
|
2, 2, 2, ref, 1); |
|
fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); |
|
fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, |
|
pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); |
|
assert(!FRAME_MBAFF(h)); |
|
ff_h264_hl_decode_mb(h, &h->slice_ctx[0]); |
|
} |
|
|
|
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, |
|
int y, int height) |
|
{ |
|
AVCodecContext *avctx = h->avctx; |
|
const AVFrame *src = h->cur_pic.f; |
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); |
|
int vshift = desc->log2_chroma_h; |
|
const int field_pic = h->picture_structure != PICT_FRAME; |
|
if (field_pic) { |
|
height <<= 1; |
|
y <<= 1; |
|
} |
|
|
|
height = FFMIN(height, avctx->height - y); |
|
|
|
if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD)) |
|
return; |
|
|
|
if (avctx->draw_horiz_band) { |
|
int offset[AV_NUM_DATA_POINTERS]; |
|
int i; |
|
|
|
offset[0] = y * src->linesize[0]; |
|
offset[1] = |
|
offset[2] = (y >> vshift) * src->linesize[1]; |
|
for (i = 3; i < AV_NUM_DATA_POINTERS; i++) |
|
offset[i] = 0; |
|
|
|
emms_c(); |
|
|
|
avctx->draw_horiz_band(avctx, src, offset, |
|
y, h->picture_structure, height); |
|
} |
|
} |
|
|
|
void ff_h264_free_tables(H264Context *h) |
|
{ |
|
int i; |
|
|
|
av_freep(&h->intra4x4_pred_mode); |
|
av_freep(&h->chroma_pred_mode_table); |
|
av_freep(&h->cbp_table); |
|
av_freep(&h->mvd_table[0]); |
|
av_freep(&h->mvd_table[1]); |
|
av_freep(&h->direct_table); |
|
av_freep(&h->non_zero_count); |
|
av_freep(&h->slice_table_base); |
|
h->slice_table = NULL; |
|
av_freep(&h->list_counts); |
|
|
|
av_freep(&h->mb2b_xy); |
|
av_freep(&h->mb2br_xy); |
|
|
|
av_buffer_pool_uninit(&h->qscale_table_pool); |
|
av_buffer_pool_uninit(&h->mb_type_pool); |
|
av_buffer_pool_uninit(&h->motion_val_pool); |
|
av_buffer_pool_uninit(&h->ref_index_pool); |
|
|
|
for (i = 0; i < h->nb_slice_ctx; i++) { |
|
H264SliceContext *sl = &h->slice_ctx[i]; |
|
|
|
av_freep(&sl->dc_val_base); |
|
av_freep(&sl->er.mb_index2xy); |
|
av_freep(&sl->er.error_status_table); |
|
av_freep(&sl->er.er_temp_buffer); |
|
|
|
av_freep(&sl->bipred_scratchpad); |
|
av_freep(&sl->edge_emu_buffer); |
|
av_freep(&sl->top_borders[0]); |
|
av_freep(&sl->top_borders[1]); |
|
|
|
sl->bipred_scratchpad_allocated = 0; |
|
sl->edge_emu_buffer_allocated = 0; |
|
sl->top_borders_allocated[0] = 0; |
|
sl->top_borders_allocated[1] = 0; |
|
} |
|
} |
|
|
|
int ff_h264_alloc_tables(H264Context *h) |
|
{ |
|
const int big_mb_num = h->mb_stride * (h->mb_height + 1); |
|
const int row_mb_num = h->mb_stride * 2 * h->nb_slice_ctx; |
|
int x, y; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode, |
|
row_mb_num * 8 * sizeof(uint8_t), fail) |
|
h->slice_ctx[0].intra4x4_pred_mode = h->intra4x4_pred_mode; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count, |
|
big_mb_num * 48 * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base, |
|
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table, |
|
big_mb_num * sizeof(uint16_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table, |
|
big_mb_num * sizeof(uint8_t), fail) |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0], |
|
16 * row_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1], |
|
16 * row_mb_num * sizeof(uint8_t), fail); |
|
h->slice_ctx[0].mvd_table[0] = h->mvd_table[0]; |
|
h->slice_ctx[0].mvd_table[1] = h->mvd_table[1]; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table, |
|
4 * big_mb_num * sizeof(uint8_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts, |
|
big_mb_num * sizeof(uint8_t), fail) |
|
|
|
memset(h->slice_table_base, -1, |
|
(big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base)); |
|
h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy, |
|
big_mb_num * sizeof(uint32_t), fail); |
|
FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy, |
|
big_mb_num * sizeof(uint32_t), fail); |
|
for (y = 0; y < h->mb_height; y++) |
|
for (x = 0; x < h->mb_width; x++) { |
|
const int mb_xy = x + y * h->mb_stride; |
|
const int b_xy = 4 * x + 4 * y * h->b_stride; |
|
|
|
h->mb2b_xy[mb_xy] = b_xy; |
|
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); |
|
} |
|
|
|
return 0; |
|
|
|
fail: |
|
ff_h264_free_tables(h); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/** |
|
* Init context |
|
* Allocate buffers which are not shared amongst multiple threads. |
|
*/ |
|
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl) |
|
{ |
|
ERContext *er = &sl->er; |
|
int mb_array_size = h->mb_height * h->mb_stride; |
|
int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); |
|
int c_size = h->mb_stride * (h->mb_height + 1); |
|
int yc_size = y_size + 2 * c_size; |
|
int x, y, i; |
|
|
|
sl->ref_cache[0][scan8[5] + 1] = |
|
sl->ref_cache[0][scan8[7] + 1] = |
|
sl->ref_cache[0][scan8[13] + 1] = |
|
sl->ref_cache[1][scan8[5] + 1] = |
|
sl->ref_cache[1][scan8[7] + 1] = |
|
sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; |
|
|
|
if (CONFIG_ERROR_RESILIENCE) { |
|
/* init ER */ |
|
er->avctx = h->avctx; |
|
er->decode_mb = h264_er_decode_mb; |
|
er->opaque = h; |
|
er->quarter_sample = 1; |
|
|
|
er->mb_num = h->mb_num; |
|
er->mb_width = h->mb_width; |
|
er->mb_height = h->mb_height; |
|
er->mb_stride = h->mb_stride; |
|
er->b8_stride = h->mb_width * 2 + 1; |
|
|
|
// error resilience code looks cleaner with this |
|
FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, |
|
(h->mb_num + 1) * sizeof(int), fail); |
|
|
|
for (y = 0; y < h->mb_height; y++) |
|
for (x = 0; x < h->mb_width; x++) |
|
er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; |
|
|
|
er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * |
|
h->mb_stride + h->mb_width; |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, |
|
mb_array_size * sizeof(uint8_t), fail); |
|
|
|
FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, |
|
h->mb_height * h->mb_stride, fail); |
|
|
|
FF_ALLOCZ_OR_GOTO(h->avctx, sl->dc_val_base, |
|
yc_size * sizeof(int16_t), fail); |
|
er->dc_val[0] = sl->dc_val_base + h->mb_width * 2 + 2; |
|
er->dc_val[1] = sl->dc_val_base + y_size + h->mb_stride + 1; |
|
er->dc_val[2] = er->dc_val[1] + c_size; |
|
for (i = 0; i < yc_size; i++) |
|
sl->dc_val_base[i] = 1024; |
|
} |
|
|
|
return 0; |
|
|
|
fail: |
|
return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us |
|
} |
|
|
|
static int h264_init_context(AVCodecContext *avctx, H264Context *h) |
|
{ |
|
int i; |
|
|
|
h->avctx = avctx; |
|
|
|
h->picture_structure = PICT_FRAME; |
|
h->workaround_bugs = avctx->workaround_bugs; |
|
h->flags = avctx->flags; |
|
h->poc.prev_poc_msb = 1 << 16; |
|
h->recovery_frame = -1; |
|
h->frame_recovered = 0; |
|
|
|
h->next_outputed_poc = INT_MIN; |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
|
|
ff_h264_sei_uninit(&h->sei); |
|
|
|
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; |
|
|
|
h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ? avctx->thread_count : 1; |
|
h->slice_ctx = av_mallocz_array(h->nb_slice_ctx, sizeof(*h->slice_ctx)); |
|
if (!h->slice_ctx) { |
|
h->nb_slice_ctx = 0; |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { |
|
h->DPB[i].f = av_frame_alloc(); |
|
if (!h->DPB[i].f) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
h->cur_pic.f = av_frame_alloc(); |
|
if (!h->cur_pic.f) |
|
return AVERROR(ENOMEM); |
|
|
|
for (i = 0; i < h->nb_slice_ctx; i++) |
|
h->slice_ctx[i].h264 = h; |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int h264_decode_end(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int i; |
|
|
|
ff_h264_free_tables(h); |
|
|
|
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { |
|
ff_h264_unref_picture(h, &h->DPB[i]); |
|
av_frame_free(&h->DPB[i].f); |
|
} |
|
|
|
h->cur_pic_ptr = NULL; |
|
|
|
av_freep(&h->slice_ctx); |
|
h->nb_slice_ctx = 0; |
|
|
|
for (i = 0; i < MAX_SPS_COUNT; i++) |
|
av_buffer_unref(&h->ps.sps_list[i]); |
|
|
|
for (i = 0; i < MAX_PPS_COUNT; i++) |
|
av_buffer_unref(&h->ps.pps_list[i]); |
|
|
|
ff_h2645_packet_uninit(&h->pkt); |
|
|
|
ff_h264_unref_picture(h, &h->cur_pic); |
|
av_frame_free(&h->cur_pic.f); |
|
|
|
return 0; |
|
} |
|
|
|
static AVOnce h264_vlc_init = AV_ONCE_INIT; |
|
|
|
av_cold int ff_h264_decode_init(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int ret; |
|
|
|
ret = h264_init_context(avctx, h); |
|
if (ret < 0) |
|
return ret; |
|
|
|
ret = ff_thread_once(&h264_vlc_init, ff_h264_decode_init_vlc); |
|
if (ret != 0) { |
|
av_log(avctx, AV_LOG_ERROR, "pthread_once has failed."); |
|
return AVERROR_UNKNOWN; |
|
} |
|
|
|
if (avctx->ticks_per_frame == 1) |
|
h->avctx->framerate.num *= 2; |
|
avctx->ticks_per_frame = 2; |
|
|
|
if (avctx->extradata_size > 0 && avctx->extradata) { |
|
ret = ff_h264_decode_extradata(avctx->extradata, avctx->extradata_size, |
|
&h->ps, &h->is_avc, &h->nal_length_size, |
|
avctx->err_recognition, avctx); |
|
if (ret < 0) { |
|
h264_decode_end(avctx); |
|
return ret; |
|
} |
|
} |
|
|
|
if (h->ps.sps && h->ps.sps->bitstream_restriction_flag && |
|
h->avctx->has_b_frames < h->ps.sps->num_reorder_frames) { |
|
h->avctx->has_b_frames = h->ps.sps->num_reorder_frames; |
|
} |
|
|
|
avctx->internal->allocate_progress = 1; |
|
|
|
if (h->enable_er) { |
|
av_log(avctx, AV_LOG_WARNING, |
|
"Error resilience is enabled. It is unsafe and unsupported and may crash. " |
|
"Use it at your own risk\n"); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_init_thread_copy(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int ret; |
|
|
|
if (!avctx->internal->is_copy) |
|
return 0; |
|
|
|
memset(h, 0, sizeof(*h)); |
|
|
|
ret = h264_init_context(avctx, h); |
|
if (ret < 0) |
|
return ret; |
|
|
|
h->context_initialized = 0; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Run setup operations that must be run after slice header decoding. |
|
* This includes finding the next displayed frame. |
|
* |
|
* @param h h264 master context |
|
* @param setup_finished enough NALs have been read that we can call |
|
* ff_thread_finish_setup() |
|
*/ |
|
static void decode_postinit(H264Context *h, int setup_finished) |
|
{ |
|
const SPS *sps = h->ps.sps; |
|
H264Picture *out = h->cur_pic_ptr; |
|
H264Picture *cur = h->cur_pic_ptr; |
|
int i, pics, out_of_order, out_idx; |
|
int invalid = 0, cnt = 0; |
|
|
|
if (h->next_output_pic) |
|
return; |
|
|
|
if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { |
|
/* FIXME: if we have two PAFF fields in one packet, we can't start |
|
* the next thread here. If we have one field per packet, we can. |
|
* The check in decode_nal_units() is not good enough to find this |
|
* yet, so we assume the worst for now. */ |
|
// if (setup_finished) |
|
// ff_thread_finish_setup(h->avctx); |
|
return; |
|
} |
|
|
|
// FIXME do something with unavailable reference frames |
|
|
|
/* Sort B-frames into display order */ |
|
if (sps->bitstream_restriction_flag || |
|
h->avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) { |
|
h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames); |
|
} |
|
|
|
pics = 0; |
|
while (h->delayed_pic[pics]) |
|
pics++; |
|
|
|
assert(pics <= MAX_DELAYED_PIC_COUNT); |
|
|
|
h->delayed_pic[pics++] = cur; |
|
if (cur->reference == 0) |
|
cur->reference = DELAYED_PIC_REF; |
|
|
|
/* Frame reordering. This code takes pictures from coding order and sorts |
|
* them by their incremental POC value into display order. It supports POC |
|
* gaps, MMCO reset codes and random resets. |
|
* A "display group" can start either with a IDR frame (f.key_frame = 1), |
|
* and/or can be closed down with a MMCO reset code. In sequences where |
|
* there is no delay, we can't detect that (since the frame was already |
|
* output to the user), so we also set h->mmco_reset to detect the MMCO |
|
* reset code. |
|
* FIXME: if we detect insufficient delays (as per h->avctx->has_b_frames), |
|
* we increase the delay between input and output. All frames affected by |
|
* the lag (e.g. those that should have been output before another frame |
|
* that we already returned to the user) will be dropped. This is a bug |
|
* that we will fix later. */ |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) { |
|
cnt += out->poc < h->last_pocs[i]; |
|
invalid += out->poc == INT_MIN; |
|
} |
|
if (!h->mmco_reset && !cur->f->key_frame && |
|
cnt + invalid == MAX_DELAYED_PIC_COUNT && cnt > 0) { |
|
h->mmco_reset = 2; |
|
if (pics > 1) |
|
h->delayed_pic[pics - 2]->mmco_reset = 2; |
|
} |
|
if (h->mmco_reset || cur->f->key_frame) { |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
cnt = 0; |
|
invalid = MAX_DELAYED_PIC_COUNT; |
|
} |
|
out = h->delayed_pic[0]; |
|
out_idx = 0; |
|
for (i = 1; i < MAX_DELAYED_PIC_COUNT && |
|
h->delayed_pic[i] && |
|
!h->delayed_pic[i - 1]->mmco_reset && |
|
!h->delayed_pic[i]->f->key_frame; |
|
i++) |
|
if (h->delayed_pic[i]->poc < out->poc) { |
|
out = h->delayed_pic[i]; |
|
out_idx = i; |
|
} |
|
if (h->avctx->has_b_frames == 0 && |
|
(h->delayed_pic[0]->f->key_frame || h->mmco_reset)) |
|
h->next_outputed_poc = INT_MIN; |
|
out_of_order = !out->f->key_frame && !h->mmco_reset && |
|
(out->poc < h->next_outputed_poc); |
|
|
|
if (sps->bitstream_restriction_flag && |
|
h->avctx->has_b_frames >= sps->num_reorder_frames) { |
|
} else if (out_of_order && pics - 1 == h->avctx->has_b_frames && |
|
h->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) { |
|
if (invalid + cnt < MAX_DELAYED_PIC_COUNT) { |
|
h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, cnt); |
|
} |
|
} else if (!h->avctx->has_b_frames && |
|
((h->next_outputed_poc != INT_MIN && |
|
out->poc > h->next_outputed_poc + 2) || |
|
cur->f->pict_type == AV_PICTURE_TYPE_B)) { |
|
h->avctx->has_b_frames++; |
|
} |
|
|
|
if (pics > h->avctx->has_b_frames) { |
|
out->reference &= ~DELAYED_PIC_REF; |
|
for (i = out_idx; h->delayed_pic[i]; i++) |
|
h->delayed_pic[i] = h->delayed_pic[i + 1]; |
|
} |
|
memmove(h->last_pocs, &h->last_pocs[1], |
|
sizeof(*h->last_pocs) * (MAX_DELAYED_PIC_COUNT - 1)); |
|
h->last_pocs[MAX_DELAYED_PIC_COUNT - 1] = cur->poc; |
|
if (!out_of_order && pics > h->avctx->has_b_frames) { |
|
h->next_output_pic = out; |
|
if (out->mmco_reset) { |
|
if (out_idx > 0) { |
|
h->next_outputed_poc = out->poc; |
|
h->delayed_pic[out_idx - 1]->mmco_reset = out->mmco_reset; |
|
} else { |
|
h->next_outputed_poc = INT_MIN; |
|
} |
|
} else { |
|
if (out_idx == 0 && pics > 1 && h->delayed_pic[0]->f->key_frame) { |
|
h->next_outputed_poc = INT_MIN; |
|
} else { |
|
h->next_outputed_poc = out->poc; |
|
} |
|
} |
|
h->mmco_reset = 0; |
|
} else { |
|
av_log(h->avctx, AV_LOG_DEBUG, "no picture\n"); |
|
} |
|
|
|
if (h->next_output_pic) { |
|
if (h->next_output_pic->recovered) { |
|
// We have reached an recovery point and all frames after it in |
|
// display order are "recovered". |
|
h->frame_recovered |= FRAME_RECOVERED_SEI; |
|
} |
|
h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI); |
|
} |
|
|
|
if (setup_finished && !h->avctx->hwaccel) { |
|
ff_thread_finish_setup(h->avctx); |
|
|
|
if (h->avctx->active_thread_type & FF_THREAD_FRAME) |
|
h->setup_finished = 1; |
|
} |
|
} |
|
|
|
/** |
|
* instantaneous decoder refresh. |
|
*/ |
|
static void idr(H264Context *h) |
|
{ |
|
ff_h264_remove_all_refs(h); |
|
h->poc.prev_frame_num = |
|
h->poc.prev_frame_num_offset = |
|
h->poc.prev_poc_msb = |
|
h->poc.prev_poc_lsb = 0; |
|
} |
|
|
|
/* forget old pics after a seek */ |
|
void ff_h264_flush_change(H264Context *h) |
|
{ |
|
int i; |
|
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) |
|
h->last_pocs[i] = INT_MIN; |
|
h->next_outputed_poc = INT_MIN; |
|
h->prev_interlaced_frame = 1; |
|
idr(h); |
|
if (h->cur_pic_ptr) |
|
h->cur_pic_ptr->reference = 0; |
|
h->first_field = 0; |
|
ff_h264_sei_uninit(&h->sei); |
|
h->recovery_frame = -1; |
|
h->frame_recovered = 0; |
|
} |
|
|
|
/* forget old pics after a seek */ |
|
static void flush_dpb(AVCodecContext *avctx) |
|
{ |
|
H264Context *h = avctx->priv_data; |
|
int i; |
|
|
|
memset(h->delayed_pic, 0, sizeof(h->delayed_pic)); |
|
|
|
ff_h264_flush_change(h); |
|
|
|
for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) |
|
ff_h264_unref_picture(h, &h->DPB[i]); |
|
h->cur_pic_ptr = NULL; |
|
ff_h264_unref_picture(h, &h->cur_pic); |
|
|
|
h->mb_y = 0; |
|
|
|
ff_h264_free_tables(h); |
|
h->context_initialized = 0; |
|
} |
|
|
|
static int get_last_needed_nal(H264Context *h) |
|
{ |
|
int nals_needed = 0; |
|
int i; |
|
|
|
for (i = 0; i < h->pkt.nb_nals; i++) { |
|
H2645NAL *nal = &h->pkt.nals[i]; |
|
GetBitContext gb; |
|
|
|
/* packets can sometimes contain multiple PPS/SPS, |
|
* e.g. two PAFF field pictures in one packet, or a demuxer |
|
* which splits NALs strangely if so, when frame threading we |
|
* can't start the next thread until we've read all of them */ |
|
switch (nal->type) { |
|
case H264_NAL_SPS: |
|
case H264_NAL_PPS: |
|
nals_needed = i; |
|
break; |
|
case H264_NAL_DPA: |
|
case H264_NAL_IDR_SLICE: |
|
case H264_NAL_SLICE: |
|
init_get_bits(&gb, nal->data + 1, (nal->size - 1) * 8); |
|
if (!get_ue_golomb(&gb)) |
|
nals_needed = i; |
|
} |
|
} |
|
|
|
return nals_needed; |
|
} |
|
|
|
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size) |
|
{ |
|
AVCodecContext *const avctx = h->avctx; |
|
unsigned context_count = 0; |
|
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts |
|
int i, ret = 0; |
|
|
|
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) { |
|
h->current_slice = 0; |
|
if (!h->first_field) |
|
h->cur_pic_ptr = NULL; |
|
ff_h264_sei_uninit(&h->sei); |
|
} |
|
|
|
ret = ff_h2645_packet_split(&h->pkt, buf, buf_size, avctx, h->is_avc, |
|
h->nal_length_size, avctx->codec_id); |
|
if (ret < 0) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"Error splitting the input into NAL units.\n"); |
|
return ret; |
|
} |
|
|
|
if (avctx->active_thread_type & FF_THREAD_FRAME) |
|
nals_needed = get_last_needed_nal(h); |
|
|
|
for (i = 0; i < h->pkt.nb_nals; i++) { |
|
H2645NAL *nal = &h->pkt.nals[i]; |
|
H264SliceContext *sl = &h->slice_ctx[context_count]; |
|
int err; |
|
|
|
if (avctx->skip_frame >= AVDISCARD_NONREF && |
|
nal->ref_idc == 0 && nal->type != H264_NAL_SEI) |
|
continue; |
|
|
|
// FIXME these should stop being context-global variables |
|
h->nal_ref_idc = nal->ref_idc; |
|
h->nal_unit_type = nal->type; |
|
|
|
err = 0; |
|
switch (nal->type) { |
|
case H264_NAL_IDR_SLICE: |
|
idr(h); // FIXME ensure we don't lose some frames if there is reordering |
|
case H264_NAL_SLICE: |
|
sl->gb = nal->gb; |
|
|
|
if ((err = ff_h264_decode_slice_header(h, sl, nal))) |
|
break; |
|
|
|
if (h->sei.recovery_point.recovery_frame_cnt >= 0 && h->recovery_frame < 0) { |
|
h->recovery_frame = (h->poc.frame_num + h->sei.recovery_point.recovery_frame_cnt) & |
|
((1 << h->ps.sps->log2_max_frame_num) - 1); |
|
} |
|
|
|
h->cur_pic_ptr->f->key_frame |= |
|
(nal->type == H264_NAL_IDR_SLICE) || (h->sei.recovery_point.recovery_frame_cnt >= 0); |
|
|
|
if (nal->type == H264_NAL_IDR_SLICE || h->recovery_frame == h->poc.frame_num) { |
|
h->recovery_frame = -1; |
|
h->cur_pic_ptr->recovered = 1; |
|
} |
|
// If we have an IDR, all frames after it in decoded order are |
|
// "recovered". |
|
if (nal->type == H264_NAL_IDR_SLICE) |
|
h->frame_recovered |= FRAME_RECOVERED_IDR; |
|
h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR); |
|
|
|
if (h->current_slice == 1) { |
|
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) |
|
decode_postinit(h, i >= nals_needed); |
|
|
|
if (h->avctx->hwaccel && |
|
(ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0) |
|
return ret; |
|
} |
|
|
|
if (sl->redundant_pic_count == 0 && |
|
(avctx->skip_frame < AVDISCARD_NONREF || nal->ref_idc) && |
|
(avctx->skip_frame < AVDISCARD_BIDIR || |
|
sl->slice_type_nos != AV_PICTURE_TYPE_B) && |
|
(avctx->skip_frame < AVDISCARD_NONKEY || |
|
h->cur_pic_ptr->f->key_frame) && |
|
avctx->skip_frame < AVDISCARD_ALL) { |
|
if (avctx->hwaccel) { |
|
ret = avctx->hwaccel->decode_slice(avctx, nal->raw_data, nal->raw_size); |
|
if (ret < 0) |
|
return ret; |
|
} else |
|
context_count++; |
|
} |
|
break; |
|
case H264_NAL_DPA: |
|
case H264_NAL_DPB: |
|
case H264_NAL_DPC: |
|
avpriv_request_sample(avctx, "data partitioning"); |
|
ret = AVERROR(ENOSYS); |
|
goto end; |
|
break; |
|
case H264_NAL_SEI: |
|
ret = ff_h264_sei_decode(&h->sei, &nal->gb, &h->ps, avctx); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
goto end; |
|
break; |
|
case H264_NAL_SPS: |
|
ret = ff_h264_decode_seq_parameter_set(&nal->gb, avctx, &h->ps); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
goto end; |
|
break; |
|
case H264_NAL_PPS: |
|
ret = ff_h264_decode_picture_parameter_set(&nal->gb, avctx, &h->ps, |
|
nal->size_bits); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
goto end; |
|
break; |
|
case H264_NAL_AUD: |
|
case H264_NAL_END_SEQUENCE: |
|
case H264_NAL_END_STREAM: |
|
case H264_NAL_FILLER_DATA: |
|
case H264_NAL_SPS_EXT: |
|
case H264_NAL_AUXILIARY_SLICE: |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", |
|
nal->type, nal->size_bits); |
|
} |
|
|
|
if (context_count == h->nb_slice_ctx) { |
|
ret = ff_h264_execute_decode_slices(h, context_count); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
goto end; |
|
context_count = 0; |
|
} |
|
|
|
if (err < 0) { |
|
av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); |
|
sl->ref_count[0] = sl->ref_count[1] = sl->list_count = 0; |
|
} |
|
} |
|
if (context_count) { |
|
ret = ff_h264_execute_decode_slices(h, context_count); |
|
if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) |
|
goto end; |
|
} |
|
|
|
ret = 0; |
|
end: |
|
/* clean up */ |
|
if (h->cur_pic_ptr && !h->droppable) { |
|
ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, |
|
h->picture_structure == PICT_BOTTOM_FIELD); |
|
} |
|
|
|
return (ret < 0) ? ret : buf_size; |
|
} |
|
|
|
/** |
|
* Return the number of bytes consumed for building the current frame. |
|
*/ |
|
static int get_consumed_bytes(int pos, int buf_size) |
|
{ |
|
if (pos == 0) |
|
pos = 1; // avoid infinite loops (I doubt that is needed but...) |
|
if (pos + 10 > buf_size) |
|
pos = buf_size; // oops ;) |
|
|
|
return pos; |
|
} |
|
|
|
static int output_frame(H264Context *h, AVFrame *dst, AVFrame *src) |
|
{ |
|
int i; |
|
int ret = av_frame_ref(dst, src); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (!h->ps.sps || !h->ps.sps->crop) |
|
return 0; |
|
|
|
for (i = 0; i < 3; i++) { |
|
int hshift = (i > 0) ? h->chroma_x_shift : 0; |
|
int vshift = (i > 0) ? h->chroma_y_shift : 0; |
|
int off = ((h->ps.sps->crop_left >> hshift) << h->pixel_shift) + |
|
(h->ps.sps->crop_top >> vshift) * dst->linesize[i]; |
|
dst->data[i] += off; |
|
} |
|
return 0; |
|
} |
|
|
|
static int h264_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame, AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
H264Context *h = avctx->priv_data; |
|
AVFrame *pict = data; |
|
int buf_index = 0; |
|
int ret; |
|
const uint8_t *new_extradata; |
|
int new_extradata_size; |
|
|
|
h->flags = avctx->flags; |
|
h->setup_finished = 0; |
|
|
|
/* end of stream, output what is still in the buffers */ |
|
out: |
|
if (buf_size == 0) { |
|
H264Picture *out; |
|
int i, out_idx; |
|
|
|
h->cur_pic_ptr = NULL; |
|
|
|
// FIXME factorize this with the output code below |
|
out = h->delayed_pic[0]; |
|
out_idx = 0; |
|
for (i = 1; |
|
h->delayed_pic[i] && |
|
!h->delayed_pic[i]->f->key_frame && |
|
!h->delayed_pic[i]->mmco_reset; |
|
i++) |
|
if (h->delayed_pic[i]->poc < out->poc) { |
|
out = h->delayed_pic[i]; |
|
out_idx = i; |
|
} |
|
|
|
for (i = out_idx; h->delayed_pic[i]; i++) |
|
h->delayed_pic[i] = h->delayed_pic[i + 1]; |
|
|
|
if (out) { |
|
ret = output_frame(h, pict, out->f); |
|
if (ret < 0) |
|
return ret; |
|
*got_frame = 1; |
|
} |
|
|
|
return buf_index; |
|
} |
|
|
|
new_extradata_size = 0; |
|
new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, |
|
&new_extradata_size); |
|
if (new_extradata_size > 0 && new_extradata) { |
|
ret = ff_h264_decode_extradata(new_extradata, new_extradata_size, |
|
&h->ps, &h->is_avc, &h->nal_length_size, |
|
avctx->err_recognition, avctx); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
buf_index = decode_nal_units(h, buf, buf_size); |
|
if (buf_index < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (!h->cur_pic_ptr && h->nal_unit_type == H264_NAL_END_SEQUENCE) { |
|
buf_size = 0; |
|
goto out; |
|
} |
|
|
|
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { |
|
if (avctx->skip_frame >= AVDISCARD_NONREF) |
|
return 0; |
|
av_log(avctx, AV_LOG_ERROR, "no frame!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) || |
|
(h->mb_y >= h->mb_height && h->mb_height)) { |
|
if (avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) |
|
decode_postinit(h, 1); |
|
|
|
ff_h264_field_end(h, &h->slice_ctx[0], 0); |
|
|
|
*got_frame = 0; |
|
if (h->next_output_pic && ((avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) || |
|
h->next_output_pic->recovered)) { |
|
if (!h->next_output_pic->recovered) |
|
h->next_output_pic->f->flags |= AV_FRAME_FLAG_CORRUPT; |
|
|
|
ret = output_frame(h, pict, h->next_output_pic->f); |
|
if (ret < 0) |
|
return ret; |
|
*got_frame = 1; |
|
} |
|
} |
|
|
|
assert(pict->buf[0] || !*got_frame); |
|
|
|
return get_consumed_bytes(buf_index, buf_size); |
|
} |
|
|
|
#define OFFSET(x) offsetof(H264Context, x) |
|
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM |
|
static const AVOption h264_options[] = { |
|
{ "enable_er", "Enable error resilience on damaged frames (unsafe)", OFFSET(enable_er), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VD }, |
|
{ NULL }, |
|
}; |
|
|
|
static const AVClass h264_class = { |
|
.class_name = "h264", |
|
.item_name = av_default_item_name, |
|
.option = h264_options, |
|
.version = LIBAVUTIL_VERSION_INT, |
|
}; |
|
|
|
AVCodec ff_h264_decoder = { |
|
.name = "h264", |
|
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_H264, |
|
.priv_data_size = sizeof(H264Context), |
|
.init = ff_h264_decode_init, |
|
.close = h264_decode_end, |
|
.decode = h264_decode_frame, |
|
.capabilities = /*AV_CODEC_CAP_DRAW_HORIZ_BAND |*/ AV_CODEC_CAP_DR1 | |
|
AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | |
|
AV_CODEC_CAP_FRAME_THREADS, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
.flush = flush_dpb, |
|
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), |
|
.update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context), |
|
.profiles = NULL_IF_CONFIG_SMALL(ff_h264_profiles), |
|
.priv_class = &h264_class, |
|
};
|
|
|