You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

646 lines
22 KiB

/*
* AAC encoder
* Copyright (C) 2008 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder
*/
/***********************************
* TODOs:
* add sane pulse detection
* add temporal noise shaping
***********************************/
#include "avcodec.h"
#include "put_bits.h"
#include "dsputil.h"
#include "mpeg4audio.h"
#include "aac.h"
#include "aactab.h"
#include "aacenc.h"
#include "psymodel.h"
#define AAC_MAX_CHANNELS 6
static const uint8_t swb_size_1024_96[] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8,
12, 12, 12, 12, 12, 16, 16, 24, 28, 36, 44,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
};
static const uint8_t swb_size_1024_64[] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8,
12, 12, 12, 16, 16, 16, 20, 24, 24, 28, 36,
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
};
static const uint8_t swb_size_1024_48[] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
96
};
static const uint8_t swb_size_1024_32[] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
};
static const uint8_t swb_size_1024_24[] = {
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
12, 12, 12, 12, 16, 16, 16, 20, 20, 24, 24, 28, 28,
32, 36, 36, 40, 44, 48, 52, 52, 64, 64, 64, 64, 64
};
static const uint8_t swb_size_1024_16[] = {
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 24, 24, 28, 28,
32, 36, 40, 40, 44, 48, 52, 56, 60, 64, 64, 64
};
static const uint8_t swb_size_1024_8[] = {
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 24, 24, 24, 28, 28,
32, 36, 36, 40, 44, 48, 52, 56, 60, 64, 80
};
static const uint8_t *swb_size_1024[] = {
swb_size_1024_96, swb_size_1024_96, swb_size_1024_64,
swb_size_1024_48, swb_size_1024_48, swb_size_1024_32,
swb_size_1024_24, swb_size_1024_24, swb_size_1024_16,
swb_size_1024_16, swb_size_1024_16, swb_size_1024_8
};
static const uint8_t swb_size_128_96[] = {
4, 4, 4, 4, 4, 4, 8, 8, 8, 16, 28, 36
};
static const uint8_t swb_size_128_48[] = {
4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16
};
static const uint8_t swb_size_128_24[] = {
4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 20
};
static const uint8_t swb_size_128_16[] = {
4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 12, 12, 16, 20, 20
};
static const uint8_t swb_size_128_8[] = {
4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 16, 20, 20
};
static const uint8_t *swb_size_128[] = {
/* the last entry on the following row is swb_size_128_64 but is a
duplicate of swb_size_128_96 */
swb_size_128_96, swb_size_128_96, swb_size_128_96,
swb_size_128_48, swb_size_128_48, swb_size_128_48,
swb_size_128_24, swb_size_128_24, swb_size_128_16,
swb_size_128_16, swb_size_128_16, swb_size_128_8
};
/** default channel configurations */
static const uint8_t aac_chan_configs[6][5] = {
{1, TYPE_SCE}, // 1 channel - single channel element
{1, TYPE_CPE}, // 2 channels - channel pair
{2, TYPE_SCE, TYPE_CPE}, // 3 channels - center + stereo
{3, TYPE_SCE, TYPE_CPE, TYPE_SCE}, // 4 channels - front center + stereo + back center
{3, TYPE_SCE, TYPE_CPE, TYPE_CPE}, // 5 channels - front center + stereo + back stereo
{4, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_LFE}, // 6 channels - front center + stereo + back stereo + LFE
};
/**
* Make AAC audio config object.
* @see 1.6.2.1 "Syntax - AudioSpecificConfig"
*/
static void put_audio_specific_config(AVCodecContext *avctx)
{
PutBitContext pb;
AACEncContext *s = avctx->priv_data;
init_put_bits(&pb, avctx->extradata, avctx->extradata_size*8);
put_bits(&pb, 5, 2); //object type - AAC-LC
put_bits(&pb, 4, s->samplerate_index); //sample rate index
put_bits(&pb, 4, avctx->channels);
//GASpecificConfig
put_bits(&pb, 1, 0); //frame length - 1024 samples
put_bits(&pb, 1, 0); //does not depend on core coder
put_bits(&pb, 1, 0); //is not extension
flush_put_bits(&pb);
}
static av_cold int aac_encode_init(AVCodecContext *avctx)
{
AACEncContext *s = avctx->priv_data;
int i;
const uint8_t *sizes[2];
int lengths[2];
avctx->frame_size = 1024;
for (i = 0; i < 16; i++)
if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
break;
if (i == 16) {
av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate);
return -1;
}
if (avctx->channels > AAC_MAX_CHANNELS) {
av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels);
return -1;
}
if (avctx->profile != FF_PROFILE_UNKNOWN && avctx->profile != FF_PROFILE_AAC_LOW) {
av_log(avctx, AV_LOG_ERROR, "Unsupported profile %d\n", avctx->profile);
return -1;
}
if (1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * avctx->channels) {
av_log(avctx, AV_LOG_ERROR, "Too many bits per frame requested\n");
return -1;
}
s->samplerate_index = i;
dsputil_init(&s->dsp, avctx);
ff_mdct_init(&s->mdct1024, 11, 0, 1.0);
ff_mdct_init(&s->mdct128, 8, 0, 1.0);
// window init
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
ff_init_ff_sine_windows(10);
ff_init_ff_sine_windows(7);
s->samples = av_malloc(2 * 1024 * avctx->channels * sizeof(s->samples[0]));
s->cpe = av_mallocz(sizeof(ChannelElement) * aac_chan_configs[avctx->channels-1][0]);
avctx->extradata = av_mallocz(2 + FF_INPUT_BUFFER_PADDING_SIZE);
avctx->extradata_size = 2;
put_audio_specific_config(avctx);
sizes[0] = swb_size_1024[i];
sizes[1] = swb_size_128[i];
lengths[0] = ff_aac_num_swb_1024[i];
lengths[1] = ff_aac_num_swb_128[i];
ff_psy_init(&s->psy, avctx, 2, sizes, lengths);
s->psypp = ff_psy_preprocess_init(avctx);
s->coder = &ff_aac_coders[2];
s->lambda = avctx->global_quality ? avctx->global_quality : 120;
ff_aac_tableinit();
if (avctx->channels > 5)
av_log(avctx, AV_LOG_ERROR, "This encoder does not yet enforce the restrictions on LFEs. "
"The output will most likely be an illegal bitstream.\n");
return 0;
}
static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce, short *audio, int channel)
{
int i, j, k;
const float * lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
const float * swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
const float * pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
memcpy(s->output, sce->saved, sizeof(float)*1024);
if (sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE) {
memset(s->output, 0, sizeof(s->output[0]) * 448);
for (i = 448; i < 576; i++)
s->output[i] = sce->saved[i] * pwindow[i - 448];
for (i = 576; i < 704; i++)
s->output[i] = sce->saved[i];
}
if (sce->ics.window_sequence[0] != LONG_START_SEQUENCE) {
for (i = 0, j = channel; i < 1024; i++, j += avctx->channels) {
s->output[i+1024] = audio[j] * lwindow[1024 - i - 1];
sce->saved[i] = audio[j] * lwindow[i];
}
} else {
for (i = 0, j = channel; i < 448; i++, j += avctx->channels)
s->output[i+1024] = audio[j];
for (; i < 576; i++, j += avctx->channels)
s->output[i+1024] = audio[j] * swindow[576 - i - 1];
memset(s->output+1024+576, 0, sizeof(s->output[0]) * 448);
for (i = 0, j = channel; i < 1024; i++, j += avctx->channels)
sce->saved[i] = audio[j];
}
ff_mdct_calc(&s->mdct1024, sce->coeffs, s->output);
} else {
for (k = 0; k < 1024; k += 128) {
for (i = 448 + k; i < 448 + k + 256; i++)
s->output[i - 448 - k] = (i < 1024)
? sce->saved[i]
: audio[channel + (i-1024)*avctx->channels];
s->dsp.vector_fmul (s->output, k ? swindow : pwindow, 128);
s->dsp.vector_fmul_reverse(s->output+128, s->output+128, swindow, 128);
ff_mdct_calc(&s->mdct128, sce->coeffs + k, s->output);
}
for (i = 0, j = channel; i < 1024; i++, j += avctx->channels)
sce->saved[i] = audio[j];
}
}
/**
* Encode ics_info element.
* @see Table 4.6 (syntax of ics_info)
*/
static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
{
int w;
put_bits(&s->pb, 1, 0); // ics_reserved bit
put_bits(&s->pb, 2, info->window_sequence[0]);
put_bits(&s->pb, 1, info->use_kb_window[0]);
if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
put_bits(&s->pb, 6, info->max_sfb);
put_bits(&s->pb, 1, 0); // no prediction
} else {
put_bits(&s->pb, 4, info->max_sfb);
for (w = 1; w < 8; w++)
put_bits(&s->pb, 1, !info->group_len[w]);
}
}
/**
* Encode MS data.
* @see 4.6.8.1 "Joint Coding - M/S Stereo"
*/
static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
{
int i, w;
put_bits(pb, 2, cpe->ms_mode);
if (cpe->ms_mode == 1)
for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
}
/**
* Produce integer coefficients from scalefactors provided by the model.
*/
static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, int chans)
{
int i, w, w2, g, ch;
int start, sum, maxsfb, cmaxsfb;
for (ch = 0; ch < chans; ch++) {
IndividualChannelStream *ics = &cpe->ch[ch].ics;
start = 0;
maxsfb = 0;
cpe->ch[ch].pulse.num_pulse = 0;
for (w = 0; w < ics->num_windows*16; w += 16) {
for (g = 0; g < ics->num_swb; g++) {
sum = 0;
//apply M/S
if (!ch && cpe->ms_mask[w + g]) {
for (i = 0; i < ics->swb_sizes[g]; i++) {
cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0;
cpe->ch[1].coeffs[start+i] = cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i];
}
}
start += ics->swb_sizes[g];
}
for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--)
;
maxsfb = FFMAX(maxsfb, cmaxsfb);
}
ics->max_sfb = maxsfb;
//adjust zero bands for window groups
for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
for (g = 0; g < ics->max_sfb; g++) {
i = 1;
for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
if (!cpe->ch[ch].zeroes[w2*16 + g]) {
i = 0;
break;
}
}
cpe->ch[ch].zeroes[w*16 + g] = i;
}
}
}
if (chans > 1 && cpe->common_window) {
IndividualChannelStream *ics0 = &cpe->ch[0].ics;
IndividualChannelStream *ics1 = &cpe->ch[1].ics;
int msc = 0;
ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
ics1->max_sfb = ics0->max_sfb;
for (w = 0; w < ics0->num_windows*16; w += 16)
for (i = 0; i < ics0->max_sfb; i++)
if (cpe->ms_mask[w+i])
msc++;
if (msc == 0 || ics0->max_sfb == 0)
cpe->ms_mode = 0;
else
cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
}
}
/**
* Encode scalefactor band coding type.
*/
static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
{
int w;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
}
/**
* Encode scalefactors.
*/
static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce)
{
int off = sce->sf_idx[0], diff;
int i, w;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (i = 0; i < sce->ics.max_sfb; i++) {
if (!sce->zeroes[w*16 + i]) {
diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
if (diff < 0 || diff > 120)
av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
off = sce->sf_idx[w*16 + i];
put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
}
}
}
}
/**
* Encode pulse data.
*/
static void encode_pulses(AACEncContext *s, Pulse *pulse)
{
int i;
put_bits(&s->pb, 1, !!pulse->num_pulse);
if (!pulse->num_pulse)
return;
put_bits(&s->pb, 2, pulse->num_pulse - 1);
put_bits(&s->pb, 6, pulse->start);
for (i = 0; i < pulse->num_pulse; i++) {
put_bits(&s->pb, 5, pulse->pos[i]);
put_bits(&s->pb, 4, pulse->amp[i]);
}
}
/**
* Encode spectral coefficients processed by psychoacoustic model.
*/
static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
{
int start, i, w, w2;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (i = 0; i < sce->ics.max_sfb; i++) {
if (sce->zeroes[w*16 + i]) {
start += sce->ics.swb_sizes[i];
continue;
}
for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++)
s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
sce->ics.swb_sizes[i],
sce->sf_idx[w*16 + i],
sce->band_type[w*16 + i],
s->lambda);
start += sce->ics.swb_sizes[i];
}
}
}
/**
* Encode one channel of audio data.
*/
static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
int common_window)
{
put_bits(&s->pb, 8, sce->sf_idx[0]);
if (!common_window)
put_ics_info(s, &sce->ics);
encode_band_info(s, sce);
encode_scale_factors(avctx, s, sce);
encode_pulses(s, &sce->pulse);
put_bits(&s->pb, 1, 0); //tns
put_bits(&s->pb, 1, 0); //ssr
encode_spectral_coeffs(s, sce);
return 0;
}
/**
* Write some auxiliary information about the created AAC file.
*/
static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s,
const char *name)
{
int i, namelen, padbits;
namelen = strlen(name) + 2;
put_bits(&s->pb, 3, TYPE_FIL);
put_bits(&s->pb, 4, FFMIN(namelen, 15));
if (namelen >= 15)
put_bits(&s->pb, 8, namelen - 16);
put_bits(&s->pb, 4, 0); //extension type - filler
padbits = 8 - (put_bits_count(&s->pb) & 7);
align_put_bits(&s->pb);
for (i = 0; i < namelen - 2; i++)
put_bits(&s->pb, 8, name[i]);
put_bits(&s->pb, 12 - padbits, 0);
}
static int aac_encode_frame(AVCodecContext *avctx,
uint8_t *frame, int buf_size, void *data)
{
AACEncContext *s = avctx->priv_data;
int16_t *samples = s->samples, *samples2, *la;
ChannelElement *cpe;
int i, j, chans, tag, start_ch;
const uint8_t *chan_map = aac_chan_configs[avctx->channels-1];
int chan_el_counter[4];
FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
if (s->last_frame)
return 0;
if (data) {
if (!s->psypp) {
memcpy(s->samples + 1024 * avctx->channels, data,
1024 * avctx->channels * sizeof(s->samples[0]));
} else {
start_ch = 0;
samples2 = s->samples + 1024 * avctx->channels;
for (i = 0; i < chan_map[0]; i++) {
tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch,
samples2 + start_ch, start_ch, chans);
start_ch += chans;
}
}
}
if (!avctx->frame_number) {
memcpy(s->samples, s->samples + 1024 * avctx->channels,
1024 * avctx->channels * sizeof(s->samples[0]));
return 0;
}
start_ch = 0;
for (i = 0; i < chan_map[0]; i++) {
FFPsyWindowInfo* wi = windows + start_ch;
tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
samples2 = samples + start_ch;
la = samples2 + (448+64) * avctx->channels + start_ch;
if (!data)
la = NULL;
for (j = 0; j < chans; j++) {
IndividualChannelStream *ics = &cpe->ch[j].ics;
int k;
wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, start_ch + j, ics->window_sequence[0]);
ics->window_sequence[1] = ics->window_sequence[0];
ics->window_sequence[0] = wi[j].window_type[0];
ics->use_kb_window[1] = ics->use_kb_window[0];
ics->use_kb_window[0] = wi[j].window_shape;
ics->num_windows = wi[j].num_windows;
ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
ics->num_swb = s->psy.num_bands[ics->num_windows == 8];
for (k = 0; k < ics->num_windows; k++)
ics->group_len[k] = wi[j].grouping[k];
s->cur_channel = start_ch + j;
apply_window_and_mdct(avctx, s, &cpe->ch[j], samples2, j);
}
start_ch += chans;
}
do {
int frame_bits;
init_put_bits(&s->pb, frame, buf_size*8);
if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT))
put_bitstream_info(avctx, s, LIBAVCODEC_IDENT);
start_ch = 0;
memset(chan_el_counter, 0, sizeof(chan_el_counter));
for (i = 0; i < chan_map[0]; i++) {
FFPsyWindowInfo* wi = windows + start_ch;
tag = chan_map[i+1];
chans = tag == TYPE_CPE ? 2 : 1;
cpe = &s->cpe[i];
for (j = 0; j < chans; j++) {
s->cur_channel = start_ch + j;
ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]);
s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda);
}
cpe->common_window = 0;
if (chans > 1
&& wi[0].window_type[0] == wi[1].window_type[0]
&& wi[0].window_shape == wi[1].window_shape) {
cpe->common_window = 1;
for (j = 0; j < wi[0].num_windows; j++) {
if (wi[0].grouping[j] != wi[1].grouping[j]) {
cpe->common_window = 0;
break;
}
}
}
s->cur_channel = start_ch;
if (cpe->common_window && s->coder->search_for_ms)
s->coder->search_for_ms(s, cpe, s->lambda);
adjust_frame_information(s, cpe, chans);
put_bits(&s->pb, 3, tag);
put_bits(&s->pb, 4, chan_el_counter[tag]++);
if (chans == 2) {
put_bits(&s->pb, 1, cpe->common_window);
if (cpe->common_window) {
put_ics_info(s, &cpe->ch[0].ics);
encode_ms_info(&s->pb, cpe);
}
}
for (j = 0; j < chans; j++) {
s->cur_channel = start_ch + j;
encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window);
}
start_ch += chans;
}
frame_bits = put_bits_count(&s->pb);
if (frame_bits <= 6144 * avctx->channels - 3)
break;
s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
} while (1);
put_bits(&s->pb, 3, TYPE_END);
flush_put_bits(&s->pb);
avctx->frame_bits = put_bits_count(&s->pb);
// rate control stuff
if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
s->lambda *= ratio;
s->lambda = FFMIN(s->lambda, 65536.f);
}
if (!data)
s->last_frame = 1;
memcpy(s->samples, s->samples + 1024 * avctx->channels,
1024 * avctx->channels * sizeof(s->samples[0]));
return put_bits_count(&s->pb)>>3;
}
static av_cold int aac_encode_end(AVCodecContext *avctx)
{
AACEncContext *s = avctx->priv_data;
ff_mdct_end(&s->mdct1024);
ff_mdct_end(&s->mdct128);
ff_psy_end(&s->psy);
ff_psy_preprocess_end(s->psypp);
av_freep(&s->samples);
av_freep(&s->cpe);
return 0;
}
AVCodec aac_encoder = {
"aac",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_AAC,
sizeof(AACEncContext),
aac_encode_init,
aac_encode_frame,
aac_encode_end,
.capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY | CODEC_CAP_EXPERIMENTAL,
.sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
.long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
};