mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
14 KiB
460 lines
14 KiB
/* |
|
* Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com> |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Codebook Generator using the ELBG algorithm |
|
*/ |
|
|
|
#include <string.h> |
|
|
|
#include "libavutil/avassert.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/lfg.h" |
|
#include "elbg.h" |
|
|
|
#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentage error) |
|
|
|
/** |
|
* In the ELBG jargon, a cell is the set of points that are closest to a |
|
* codebook entry. Not to be confused with a RoQ Video cell. */ |
|
typedef struct cell_s { |
|
int index; |
|
struct cell_s *next; |
|
} cell; |
|
|
|
/** |
|
* ELBG internal data |
|
*/ |
|
typedef struct elbg_data { |
|
int64_t error; |
|
int dim; |
|
int numCB; |
|
int *codebook; |
|
cell **cells; |
|
int64_t *utility; |
|
int64_t *utility_inc; |
|
int *nearest_cb; |
|
int *points; |
|
AVLFG *rand_state; |
|
int *scratchbuf; |
|
} elbg_data; |
|
|
|
static inline int distance_limited(int *a, int *b, int dim, int limit) |
|
{ |
|
int i, dist=0; |
|
for (i=0; i<dim; i++) { |
|
dist += (a[i] - b[i])*(a[i] - b[i]); |
|
if (dist > limit) |
|
return INT_MAX; |
|
} |
|
|
|
return dist; |
|
} |
|
|
|
static inline void vect_division(int *res, int *vect, int div, int dim) |
|
{ |
|
int i; |
|
if (div > 1) |
|
for (i=0; i<dim; i++) |
|
res[i] = ROUNDED_DIV(vect[i],div); |
|
else if (res != vect) |
|
memcpy(res, vect, dim*sizeof(int)); |
|
|
|
} |
|
|
|
static int eval_error_cell(elbg_data *elbg, int *centroid, cell *cells) |
|
{ |
|
int error=0; |
|
for (; cells; cells=cells->next) |
|
error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX); |
|
|
|
return error; |
|
} |
|
|
|
static int get_closest_codebook(elbg_data *elbg, int index) |
|
{ |
|
int i, pick=0, diff, diff_min = INT_MAX; |
|
for (i=0; i<elbg->numCB; i++) |
|
if (i != index) { |
|
diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min); |
|
if (diff < diff_min) { |
|
pick = i; |
|
diff_min = diff; |
|
} |
|
} |
|
return pick; |
|
} |
|
|
|
static int get_high_utility_cell(elbg_data *elbg) |
|
{ |
|
int i=0; |
|
/* Using linear search, do binary if it ever turns to be speed critical */ |
|
uint64_t r; |
|
|
|
if (elbg->utility_inc[elbg->numCB-1] < INT_MAX) { |
|
r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->numCB-1] + 1; |
|
} else { |
|
r = av_lfg_get(elbg->rand_state); |
|
r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->numCB-1] + 1; |
|
} |
|
|
|
while (elbg->utility_inc[i] < r) { |
|
i++; |
|
} |
|
|
|
av_assert2(elbg->cells[i]); |
|
|
|
return i; |
|
} |
|
|
|
/** |
|
* Implementation of the simple LBG algorithm for just two codebooks |
|
*/ |
|
static int simple_lbg(elbg_data *elbg, |
|
int dim, |
|
int *centroid[3], |
|
int newutility[3], |
|
int *points, |
|
cell *cells) |
|
{ |
|
int i, idx; |
|
int numpoints[2] = {0,0}; |
|
int *newcentroid[2] = { |
|
elbg->scratchbuf + 3*dim, |
|
elbg->scratchbuf + 4*dim |
|
}; |
|
cell *tempcell; |
|
|
|
memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0])); |
|
|
|
newutility[0] = |
|
newutility[1] = 0; |
|
|
|
for (tempcell = cells; tempcell; tempcell=tempcell->next) { |
|
idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>= |
|
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX); |
|
numpoints[idx]++; |
|
for (i=0; i<dim; i++) |
|
newcentroid[idx][i] += points[tempcell->index*dim + i]; |
|
} |
|
|
|
vect_division(centroid[0], newcentroid[0], numpoints[0], dim); |
|
vect_division(centroid[1], newcentroid[1], numpoints[1], dim); |
|
|
|
for (tempcell = cells; tempcell; tempcell=tempcell->next) { |
|
int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX), |
|
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)}; |
|
int idx = dist[0] > dist[1]; |
|
newutility[idx] += dist[idx]; |
|
} |
|
|
|
return newutility[0] + newutility[1]; |
|
} |
|
|
|
static void get_new_centroids(elbg_data *elbg, int huc, int *newcentroid_i, |
|
int *newcentroid_p) |
|
{ |
|
cell *tempcell; |
|
int *min = newcentroid_i; |
|
int *max = newcentroid_p; |
|
int i; |
|
|
|
for (i=0; i< elbg->dim; i++) { |
|
min[i]=INT_MAX; |
|
max[i]=0; |
|
} |
|
|
|
for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next) |
|
for(i=0; i<elbg->dim; i++) { |
|
min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]); |
|
max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]); |
|
} |
|
|
|
for (i=0; i<elbg->dim; i++) { |
|
int ni = min[i] + (max[i] - min[i])/3; |
|
int np = min[i] + (2*(max[i] - min[i]))/3; |
|
newcentroid_i[i] = ni; |
|
newcentroid_p[i] = np; |
|
} |
|
} |
|
|
|
/** |
|
* Add the points in the low utility cell to its closest cell. Split the high |
|
* utility cell, putting the separated points in the (now empty) low utility |
|
* cell. |
|
* |
|
* @param elbg Internal elbg data |
|
* @param indexes {luc, huc, cluc} |
|
* @param newcentroid A vector with the position of the new centroids |
|
*/ |
|
static void shift_codebook(elbg_data *elbg, int *indexes, |
|
int *newcentroid[3]) |
|
{ |
|
cell *tempdata; |
|
cell **pp = &elbg->cells[indexes[2]]; |
|
|
|
while(*pp) |
|
pp= &(*pp)->next; |
|
|
|
*pp = elbg->cells[indexes[0]]; |
|
|
|
elbg->cells[indexes[0]] = NULL; |
|
tempdata = elbg->cells[indexes[1]]; |
|
elbg->cells[indexes[1]] = NULL; |
|
|
|
while(tempdata) { |
|
cell *tempcell2 = tempdata->next; |
|
int idx = distance_limited(elbg->points + tempdata->index*elbg->dim, |
|
newcentroid[0], elbg->dim, INT_MAX) > |
|
distance_limited(elbg->points + tempdata->index*elbg->dim, |
|
newcentroid[1], elbg->dim, INT_MAX); |
|
|
|
tempdata->next = elbg->cells[indexes[idx]]; |
|
elbg->cells[indexes[idx]] = tempdata; |
|
tempdata = tempcell2; |
|
} |
|
} |
|
|
|
static void evaluate_utility_inc(elbg_data *elbg) |
|
{ |
|
int i; |
|
int64_t inc=0; |
|
|
|
for (i=0; i < elbg->numCB; i++) { |
|
if (elbg->numCB*elbg->utility[i] > elbg->error) |
|
inc += elbg->utility[i]; |
|
elbg->utility_inc[i] = inc; |
|
} |
|
} |
|
|
|
|
|
static void update_utility_and_n_cb(elbg_data *elbg, int idx, int newutility) |
|
{ |
|
cell *tempcell; |
|
|
|
elbg->utility[idx] = newutility; |
|
for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next) |
|
elbg->nearest_cb[tempcell->index] = idx; |
|
} |
|
|
|
/** |
|
* Evaluate if a shift lower the error. If it does, call shift_codebooks |
|
* and update elbg->error, elbg->utility and elbg->nearest_cb. |
|
* |
|
* @param elbg Internal elbg data |
|
* @param idx {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)} |
|
*/ |
|
static void try_shift_candidate(elbg_data *elbg, int idx[3]) |
|
{ |
|
int j, k, cont=0; |
|
int64_t olderror=0, newerror; |
|
int newutility[3]; |
|
int *newcentroid[3] = { |
|
elbg->scratchbuf, |
|
elbg->scratchbuf + elbg->dim, |
|
elbg->scratchbuf + 2*elbg->dim |
|
}; |
|
cell *tempcell; |
|
|
|
for (j=0; j<3; j++) |
|
olderror += elbg->utility[idx[j]]; |
|
|
|
memset(newcentroid[2], 0, elbg->dim*sizeof(int)); |
|
|
|
for (k=0; k<2; k++) |
|
for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) { |
|
cont++; |
|
for (j=0; j<elbg->dim; j++) |
|
newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j]; |
|
} |
|
|
|
vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim); |
|
|
|
get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]); |
|
|
|
newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]); |
|
newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]); |
|
|
|
newerror = newutility[2]; |
|
|
|
newerror += simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points, |
|
elbg->cells[idx[1]]); |
|
|
|
if (olderror > newerror) { |
|
shift_codebook(elbg, idx, newcentroid); |
|
|
|
elbg->error += newerror - olderror; |
|
|
|
for (j=0; j<3; j++) |
|
update_utility_and_n_cb(elbg, idx[j], newutility[j]); |
|
|
|
evaluate_utility_inc(elbg); |
|
} |
|
} |
|
|
|
/** |
|
* Implementation of the ELBG block |
|
*/ |
|
static void do_shiftings(elbg_data *elbg) |
|
{ |
|
int idx[3]; |
|
|
|
evaluate_utility_inc(elbg); |
|
|
|
for (idx[0]=0; idx[0] < elbg->numCB; idx[0]++) |
|
if (elbg->numCB*elbg->utility[idx[0]] < elbg->error) { |
|
if (elbg->utility_inc[elbg->numCB-1] == 0) |
|
return; |
|
|
|
idx[1] = get_high_utility_cell(elbg); |
|
idx[2] = get_closest_codebook(elbg, idx[0]); |
|
|
|
if (idx[1] != idx[0] && idx[1] != idx[2]) |
|
try_shift_candidate(elbg, idx); |
|
} |
|
} |
|
|
|
int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook, |
|
int numCB, int max_steps, int *closest_cb, |
|
AVLFG *rand_state) |
|
{ |
|
int dist; |
|
elbg_data elbg_d; |
|
elbg_data *elbg = &elbg_d; |
|
int i, j, k, steps = 0, ret = 0; |
|
int *size_part = av_malloc_array(numCB, sizeof(int)); |
|
cell *list_buffer = av_malloc_array(numpoints, sizeof(cell)); |
|
cell *free_cells; |
|
int best_dist, best_idx = 0; |
|
int64_t last_error; |
|
|
|
elbg->error = INT64_MAX; |
|
elbg->dim = dim; |
|
elbg->numCB = numCB; |
|
elbg->codebook = codebook; |
|
elbg->cells = av_malloc_array(numCB, sizeof(cell *)); |
|
elbg->utility = av_malloc_array(numCB, sizeof(*elbg->utility)); |
|
elbg->nearest_cb = closest_cb; |
|
elbg->points = points; |
|
elbg->utility_inc = av_malloc_array(numCB, sizeof(*elbg->utility_inc)); |
|
elbg->scratchbuf = av_malloc_array(5*dim, sizeof(int)); |
|
|
|
if (!size_part || !list_buffer || !elbg->cells || |
|
!elbg->utility || !elbg->utility_inc || !elbg->scratchbuf) { |
|
ret = AVERROR(ENOMEM); |
|
goto out; |
|
} |
|
|
|
elbg->rand_state = rand_state; |
|
|
|
do { |
|
free_cells = list_buffer; |
|
last_error = elbg->error; |
|
steps++; |
|
memset(elbg->utility, 0, numCB*sizeof(*elbg->utility)); |
|
memset(elbg->cells, 0, numCB*sizeof(cell *)); |
|
|
|
elbg->error = 0; |
|
|
|
/* This loop evaluate the actual Voronoi partition. It is the most |
|
costly part of the algorithm. */ |
|
for (i=0; i < numpoints; i++) { |
|
best_dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + best_idx*elbg->dim, dim, INT_MAX); |
|
for (k=0; k < elbg->numCB; k++) { |
|
dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + k*elbg->dim, dim, best_dist); |
|
if (dist < best_dist) { |
|
best_dist = dist; |
|
best_idx = k; |
|
} |
|
} |
|
elbg->nearest_cb[i] = best_idx; |
|
elbg->error += best_dist; |
|
elbg->utility[elbg->nearest_cb[i]] += best_dist; |
|
free_cells->index = i; |
|
free_cells->next = elbg->cells[elbg->nearest_cb[i]]; |
|
elbg->cells[elbg->nearest_cb[i]] = free_cells; |
|
free_cells++; |
|
} |
|
|
|
do_shiftings(elbg); |
|
|
|
memset(size_part, 0, numCB*sizeof(int)); |
|
|
|
memset(elbg->codebook, 0, elbg->numCB*dim*sizeof(int)); |
|
|
|
for (i=0; i < numpoints; i++) { |
|
size_part[elbg->nearest_cb[i]]++; |
|
for (j=0; j < elbg->dim; j++) |
|
elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] += |
|
elbg->points[i*elbg->dim + j]; |
|
} |
|
|
|
for (i=0; i < elbg->numCB; i++) |
|
vect_division(elbg->codebook + i*elbg->dim, |
|
elbg->codebook + i*elbg->dim, size_part[i], elbg->dim); |
|
|
|
} while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) && |
|
(steps < max_steps)); |
|
|
|
out: |
|
av_free(size_part); |
|
av_free(elbg->utility); |
|
av_free(list_buffer); |
|
av_free(elbg->cells); |
|
av_free(elbg->utility_inc); |
|
av_free(elbg->scratchbuf); |
|
return ret; |
|
} |
|
|
|
#define BIG_PRIME 433494437LL |
|
|
|
int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook, |
|
int num_cb, int max_steps, int *closest_cb, |
|
AVLFG *rand_state) |
|
{ |
|
int ret = 0; |
|
|
|
if (numpoints > 24LL * num_cb) { |
|
/* ELBG is very costly for a big number of points. So if we have a lot |
|
of them, get a good initial codebook to save on iterations */ |
|
int *temp_points = av_malloc_array(dim, (numpoints/8)*sizeof(*temp_points)); |
|
if (!temp_points) |
|
return AVERROR(ENOMEM); |
|
for (int i = 0; i < numpoints / 8; i++) { |
|
int k = (i*BIG_PRIME) % numpoints; |
|
memcpy(temp_points + i*dim, points + k*dim, dim * sizeof(*temp_points)); |
|
} |
|
|
|
ret = avpriv_init_elbg(temp_points, dim, numpoints / 8, codebook, |
|
num_cb, 2 * max_steps, closest_cb, rand_state); |
|
if (ret < 0) { |
|
av_freep(&temp_points); |
|
return ret; |
|
} |
|
ret = avpriv_do_elbg(temp_points, dim, numpoints / 8, codebook, |
|
num_cb, 2 * max_steps, closest_cb, rand_state); |
|
av_free(temp_points); |
|
} else // If not, initialize the codebook with random positions |
|
for (int i = 0; i < num_cb; i++) |
|
memcpy(codebook + i * dim, points + ((i*BIG_PRIME)%numpoints)*dim, |
|
dim * sizeof(*codebook)); |
|
return ret; |
|
}
|
|
|