mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
583 lines
21 KiB
583 lines
21 KiB
/* |
|
* G.722 ADPCM audio encoder/decoder |
|
* |
|
* Copyright (c) CMU 1993 Computer Science, Speech Group |
|
* Chengxiang Lu and Alex Hauptmann |
|
* Copyright (c) 2005 Steve Underwood <steveu at coppice.org> |
|
* Copyright (c) 2009 Kenan Gillet |
|
* Copyright (c) 2010 Martin Storsjo |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* |
|
* G.722 ADPCM audio codec |
|
* |
|
* This G.722 decoder is a bit-exact implementation of the ITU G.722 |
|
* specification for all three specified bitrates - 64000bps, 56000bps |
|
* and 48000bps. It passes the ITU tests. |
|
* |
|
* @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits |
|
* respectively of each byte are ignored. |
|
*/ |
|
|
|
#include "avcodec.h" |
|
#include "mathops.h" |
|
#include "get_bits.h" |
|
|
|
#define PREV_SAMPLES_BUF_SIZE 1024 |
|
|
|
#define FREEZE_INTERVAL 128 |
|
|
|
typedef struct { |
|
int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples |
|
int prev_samples_pos; ///< the number of values in prev_samples |
|
|
|
/** |
|
* The band[0] and band[1] correspond respectively to the lower band and higher band. |
|
*/ |
|
struct G722Band { |
|
int16_t s_predictor; ///< predictor output value |
|
int32_t s_zero; ///< previous output signal from zero predictor |
|
int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals |
|
int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4) |
|
int16_t pole_mem[2]; ///< second-order pole section coefficient buffer |
|
int32_t diff_mem[6]; ///< quantizer difference signal memory |
|
int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer |
|
int16_t log_factor; ///< delayed 2-logarithmic quantizer factor |
|
int16_t scale_factor; ///< delayed quantizer scale factor |
|
} band[2]; |
|
|
|
struct TrellisNode { |
|
struct G722Band state; |
|
uint32_t ssd; |
|
int path; |
|
} *node_buf[2], **nodep_buf[2]; |
|
|
|
struct TrellisPath { |
|
int value; |
|
int prev; |
|
} *paths[2]; |
|
} G722Context; |
|
|
|
|
|
static const int8_t sign_lookup[2] = { -1, 1 }; |
|
|
|
static const int16_t inv_log2_table[32] = { |
|
2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, |
|
2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, |
|
2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, |
|
3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 |
|
}; |
|
static const int16_t high_log_factor_step[2] = { 798, -214 }; |
|
static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 }; |
|
/** |
|
* low_log_factor_step[index] == wl[rl42[index]] |
|
*/ |
|
static const int16_t low_log_factor_step[16] = { |
|
-60, 3042, 1198, 538, 334, 172, 58, -30, |
|
3042, 1198, 538, 334, 172, 58, -30, -60 |
|
}; |
|
static const int16_t low_inv_quant4[16] = { |
|
0, -2557, -1612, -1121, -786, -530, -323, -150, |
|
2557, 1612, 1121, 786, 530, 323, 150, 0 |
|
}; |
|
static const int16_t low_inv_quant6[64] = { |
|
-17, -17, -17, -17, -3101, -2738, -2376, -2088, |
|
-1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, |
|
-899, -822, -750, -682, -618, -558, -501, -447, |
|
-396, -347, -300, -254, -211, -170, -130, -91, |
|
3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399, |
|
1279, 1170, 1072, 982, 899, 822, 750, 682, |
|
618, 558, 501, 447, 396, 347, 300, 254, |
|
211, 170, 130, 91, 54, 17, -54, -17 |
|
}; |
|
|
|
/** |
|
* quadrature mirror filter (QMF) coefficients |
|
* |
|
* ITU-T G.722 Table 11 |
|
*/ |
|
static const int16_t qmf_coeffs[12] = { |
|
3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11, |
|
}; |
|
|
|
|
|
/** |
|
* adaptive predictor |
|
* |
|
* @param cur_diff the dequantized and scaled delta calculated from the |
|
* current codeword |
|
*/ |
|
static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) |
|
{ |
|
int sg[2], limit, i, cur_qtzd_reconst; |
|
|
|
const int cur_part_reconst = band->s_zero + cur_diff < 0; |
|
|
|
sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]]; |
|
sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]]; |
|
band->part_reconst_mem[1] = band->part_reconst_mem[0]; |
|
band->part_reconst_mem[0] = cur_part_reconst; |
|
|
|
band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) + |
|
(sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288); |
|
|
|
limit = 15360 - band->pole_mem[1]; |
|
band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit); |
|
|
|
|
|
if (cur_diff) { |
|
for (i = 0; i < 6; i++) |
|
band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) + |
|
((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128); |
|
} else |
|
for (i = 0; i < 6; i++) |
|
band->zero_mem[i] = (band->zero_mem[i]*255) >> 8; |
|
|
|
for (i = 5; i > 0; i--) |
|
band->diff_mem[i] = band->diff_mem[i-1]; |
|
band->diff_mem[0] = av_clip_int16(cur_diff << 1); |
|
|
|
band->s_zero = 0; |
|
for (i = 5; i >= 0; i--) |
|
band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15; |
|
|
|
|
|
cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1); |
|
band->s_predictor = av_clip_int16(band->s_zero + |
|
(band->pole_mem[0] * cur_qtzd_reconst >> 15) + |
|
(band->pole_mem[1] * band->prev_qtzd_reconst >> 15)); |
|
band->prev_qtzd_reconst = cur_qtzd_reconst; |
|
} |
|
|
|
static int inline linear_scale_factor(const int log_factor) |
|
{ |
|
const int wd1 = inv_log2_table[(log_factor >> 6) & 31]; |
|
const int shift = log_factor >> 11; |
|
return shift < 0 ? wd1 >> -shift : wd1 << shift; |
|
} |
|
|
|
static void update_low_predictor(struct G722Band *band, const int ilow) |
|
{ |
|
do_adaptive_prediction(band, |
|
band->scale_factor * low_inv_quant4[ilow] >> 10); |
|
|
|
// quantizer adaptation |
|
band->log_factor = av_clip((band->log_factor * 127 >> 7) + |
|
low_log_factor_step[ilow], 0, 18432); |
|
band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); |
|
} |
|
|
|
static void update_high_predictor(struct G722Band *band, const int dhigh, |
|
const int ihigh) |
|
{ |
|
do_adaptive_prediction(band, dhigh); |
|
|
|
// quantizer adaptation |
|
band->log_factor = av_clip((band->log_factor * 127 >> 7) + |
|
high_log_factor_step[ihigh&1], 0, 22528); |
|
band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); |
|
} |
|
|
|
static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) |
|
{ |
|
int i; |
|
|
|
*xout1 = 0; |
|
*xout2 = 0; |
|
for (i = 0; i < 12; i++) { |
|
MAC16(*xout2, prev_samples[2*i ], qmf_coeffs[i ]); |
|
MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]); |
|
} |
|
} |
|
|
|
static av_cold int g722_init(AVCodecContext * avctx) |
|
{ |
|
G722Context *c = avctx->priv_data; |
|
|
|
if (avctx->channels != 1) { |
|
av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
|
|
switch (avctx->bits_per_coded_sample) { |
|
case 8: |
|
case 7: |
|
case 6: |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " |
|
"assuming 8\n", |
|
avctx->bits_per_coded_sample); |
|
case 0: |
|
avctx->bits_per_coded_sample = 8; |
|
break; |
|
} |
|
|
|
c->band[0].scale_factor = 8; |
|
c->band[1].scale_factor = 2; |
|
c->prev_samples_pos = 22; |
|
|
|
if (avctx->lowres) |
|
avctx->sample_rate /= 2; |
|
|
|
if (avctx->trellis) { |
|
int frontier = 1 << avctx->trellis; |
|
int max_paths = frontier * FREEZE_INTERVAL; |
|
int i; |
|
for (i = 0; i < 2; i++) { |
|
c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths)); |
|
c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf)); |
|
c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf)); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold int g722_close(AVCodecContext *avctx) |
|
{ |
|
G722Context *c = avctx->priv_data; |
|
int i; |
|
for (i = 0; i < 2; i++) { |
|
av_freep(&c->paths[i]); |
|
av_freep(&c->node_buf[i]); |
|
av_freep(&c->nodep_buf[i]); |
|
} |
|
return 0; |
|
} |
|
|
|
#if CONFIG_ADPCM_G722_DECODER |
|
static const int16_t low_inv_quant5[32] = { |
|
-35, -35, -2919, -2195, -1765, -1458, -1219, -1023, |
|
-858, -714, -587, -473, -370, -276, -190, -110, |
|
2919, 2195, 1765, 1458, 1219, 1023, 858, 714, |
|
587, 473, 370, 276, 190, 110, 35, -35 |
|
}; |
|
|
|
static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5, |
|
low_inv_quant4 }; |
|
|
|
static int g722_decode_frame(AVCodecContext *avctx, void *data, |
|
int *data_size, AVPacket *avpkt) |
|
{ |
|
G722Context *c = avctx->priv_data; |
|
int16_t *out_buf = data; |
|
int j, out_len = 0; |
|
const int skip = 8 - avctx->bits_per_coded_sample; |
|
const int16_t *quantizer_table = low_inv_quants[skip]; |
|
GetBitContext gb; |
|
|
|
init_get_bits(&gb, avpkt->data, avpkt->size * 8); |
|
|
|
for (j = 0; j < avpkt->size; j++) { |
|
int ilow, ihigh, rlow; |
|
|
|
ihigh = get_bits(&gb, 2); |
|
ilow = get_bits(&gb, 6 - skip); |
|
skip_bits(&gb, skip); |
|
|
|
rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) |
|
+ c->band[0].s_predictor, -16384, 16383); |
|
|
|
update_low_predictor(&c->band[0], ilow >> (2 - skip)); |
|
|
|
if (!avctx->lowres) { |
|
const int dhigh = c->band[1].scale_factor * |
|
high_inv_quant[ihigh] >> 10; |
|
const int rhigh = av_clip(dhigh + c->band[1].s_predictor, |
|
-16384, 16383); |
|
int xout1, xout2; |
|
|
|
update_high_predictor(&c->band[1], dhigh, ihigh); |
|
|
|
c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; |
|
c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; |
|
apply_qmf(c->prev_samples + c->prev_samples_pos - 24, |
|
&xout1, &xout2); |
|
out_buf[out_len++] = av_clip_int16(xout1 >> 12); |
|
out_buf[out_len++] = av_clip_int16(xout2 >> 12); |
|
if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { |
|
memmove(c->prev_samples, |
|
c->prev_samples + c->prev_samples_pos - 22, |
|
22 * sizeof(c->prev_samples[0])); |
|
c->prev_samples_pos = 22; |
|
} |
|
} else |
|
out_buf[out_len++] = rlow; |
|
} |
|
*data_size = out_len << 1; |
|
return avpkt->size; |
|
} |
|
|
|
AVCodec ff_adpcm_g722_decoder = { |
|
.name = "g722", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = CODEC_ID_ADPCM_G722, |
|
.priv_data_size = sizeof(G722Context), |
|
.init = g722_init, |
|
.decode = g722_decode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), |
|
.max_lowres = 1, |
|
}; |
|
#endif |
|
|
|
#if CONFIG_ADPCM_G722_ENCODER |
|
static const int16_t low_quant[33] = { |
|
35, 72, 110, 150, 190, 233, 276, 323, |
|
370, 422, 473, 530, 587, 650, 714, 786, |
|
858, 940, 1023, 1121, 1219, 1339, 1458, 1612, |
|
1765, 1980, 2195, 2557, 2919 |
|
}; |
|
|
|
static inline void filter_samples(G722Context *c, const int16_t *samples, |
|
int *xlow, int *xhigh) |
|
{ |
|
int xout1, xout2; |
|
c->prev_samples[c->prev_samples_pos++] = samples[0]; |
|
c->prev_samples[c->prev_samples_pos++] = samples[1]; |
|
apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2); |
|
*xlow = xout1 + xout2 >> 13; |
|
*xhigh = xout1 - xout2 >> 13; |
|
if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { |
|
memmove(c->prev_samples, |
|
c->prev_samples + c->prev_samples_pos - 22, |
|
22 * sizeof(c->prev_samples[0])); |
|
c->prev_samples_pos = 22; |
|
} |
|
} |
|
|
|
static inline int encode_high(const struct G722Band *state, int xhigh) |
|
{ |
|
int diff = av_clip_int16(xhigh - state->s_predictor); |
|
int pred = 141 * state->scale_factor >> 8; |
|
/* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ |
|
return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); |
|
} |
|
|
|
static inline int encode_low(const struct G722Band* state, int xlow) |
|
{ |
|
int diff = av_clip_int16(xlow - state->s_predictor); |
|
/* = diff >= 0 ? diff : -(diff + 1) */ |
|
int limit = diff ^ (diff >> (sizeof(diff)*8-1)); |
|
int i = 0; |
|
limit = limit + 1 << 10; |
|
if (limit > low_quant[8] * state->scale_factor) |
|
i = 9; |
|
while (i < 29 && limit > low_quant[i] * state->scale_factor) |
|
i++; |
|
return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; |
|
} |
|
|
|
static int g722_encode_trellis(AVCodecContext *avctx, |
|
uint8_t *dst, int buf_size, void *data) |
|
{ |
|
G722Context *c = avctx->priv_data; |
|
const int16_t *samples = data; |
|
int i, j, k; |
|
int frontier = 1 << avctx->trellis; |
|
struct TrellisNode **nodes[2]; |
|
struct TrellisNode **nodes_next[2]; |
|
int pathn[2] = {0, 0}, froze = -1; |
|
struct TrellisPath *p[2]; |
|
|
|
for (i = 0; i < 2; i++) { |
|
nodes[i] = c->nodep_buf[i]; |
|
nodes_next[i] = c->nodep_buf[i] + frontier; |
|
memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf)); |
|
nodes[i][0] = c->node_buf[i] + frontier; |
|
nodes[i][0]->ssd = 0; |
|
nodes[i][0]->path = 0; |
|
nodes[i][0]->state = c->band[i]; |
|
} |
|
|
|
for (i = 0; i < buf_size >> 1; i++) { |
|
int xlow, xhigh; |
|
struct TrellisNode *next[2]; |
|
int heap_pos[2] = {0, 0}; |
|
|
|
for (j = 0; j < 2; j++) { |
|
next[j] = c->node_buf[j] + frontier*(i & 1); |
|
memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); |
|
} |
|
|
|
filter_samples(c, &samples[2*i], &xlow, &xhigh); |
|
|
|
for (j = 0; j < frontier && nodes[0][j]; j++) { |
|
/* Only k >> 2 affects the future adaptive state, therefore testing |
|
* small steps that don't change k >> 2 is useless, the orignal |
|
* value from encode_low is better than them. Since we step k |
|
* in steps of 4, make sure range is a multiple of 4, so that |
|
* we don't miss the original value from encode_low. */ |
|
int range = j < frontier/2 ? 4 : 0; |
|
struct TrellisNode *cur_node = nodes[0][j]; |
|
|
|
int ilow = encode_low(&cur_node->state, xlow); |
|
|
|
for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { |
|
int decoded, dec_diff, pos; |
|
uint32_t ssd; |
|
struct TrellisNode* node; |
|
|
|
if (k < 0) |
|
continue; |
|
|
|
decoded = av_clip((cur_node->state.scale_factor * |
|
low_inv_quant6[k] >> 10) |
|
+ cur_node->state.s_predictor, -16384, 16383); |
|
dec_diff = xlow - decoded; |
|
|
|
#define STORE_NODE(index, UPDATE, VALUE)\ |
|
ssd = cur_node->ssd + dec_diff*dec_diff;\ |
|
/* Check for wraparound. Using 64 bit ssd counters would \ |
|
* be simpler, but is slower on x86 32 bit. */\ |
|
if (ssd < cur_node->ssd)\ |
|
continue;\ |
|
if (heap_pos[index] < frontier) {\ |
|
pos = heap_pos[index]++;\ |
|
assert(pathn[index] < FREEZE_INTERVAL * frontier);\ |
|
node = nodes_next[index][pos] = next[index]++;\ |
|
node->path = pathn[index]++;\ |
|
} else {\ |
|
/* Try to replace one of the leaf nodes with the new \ |
|
* one, but not always testing the same leaf position */\ |
|
pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ |
|
if (ssd >= nodes_next[index][pos]->ssd)\ |
|
continue;\ |
|
heap_pos[index]++;\ |
|
node = nodes_next[index][pos];\ |
|
}\ |
|
node->ssd = ssd;\ |
|
node->state = cur_node->state;\ |
|
UPDATE;\ |
|
c->paths[index][node->path].value = VALUE;\ |
|
c->paths[index][node->path].prev = cur_node->path;\ |
|
/* Sift the newly inserted node up in the heap to restore \ |
|
* the heap property */\ |
|
while (pos > 0) {\ |
|
int parent = (pos - 1) >> 1;\ |
|
if (nodes_next[index][parent]->ssd <= ssd)\ |
|
break;\ |
|
FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ |
|
nodes_next[index][pos]);\ |
|
pos = parent;\ |
|
} |
|
STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k); |
|
} |
|
} |
|
|
|
for (j = 0; j < frontier && nodes[1][j]; j++) { |
|
int ihigh; |
|
struct TrellisNode *cur_node = nodes[1][j]; |
|
|
|
/* We don't try to get any initial guess for ihigh via |
|
* encode_high - since there's only 4 possible values, test |
|
* them all. Testing all of these gives a much, much larger |
|
* gain than testing a larger range around ilow. */ |
|
for (ihigh = 0; ihigh < 4; ihigh++) { |
|
int dhigh, decoded, dec_diff, pos; |
|
uint32_t ssd; |
|
struct TrellisNode* node; |
|
|
|
dhigh = cur_node->state.scale_factor * |
|
high_inv_quant[ihigh] >> 10; |
|
decoded = av_clip(dhigh + cur_node->state.s_predictor, |
|
-16384, 16383); |
|
dec_diff = xhigh - decoded; |
|
|
|
STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh); |
|
} |
|
} |
|
|
|
for (j = 0; j < 2; j++) { |
|
FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); |
|
|
|
if (nodes[j][0]->ssd > (1 << 16)) { |
|
for (k = 1; k < frontier && nodes[j][k]; k++) |
|
nodes[j][k]->ssd -= nodes[j][0]->ssd; |
|
nodes[j][0]->ssd = 0; |
|
} |
|
} |
|
|
|
if (i == froze + FREEZE_INTERVAL) { |
|
p[0] = &c->paths[0][nodes[0][0]->path]; |
|
p[1] = &c->paths[1][nodes[1][0]->path]; |
|
for (j = i; j > froze; j--) { |
|
dst[j] = p[1]->value << 6 | p[0]->value; |
|
p[0] = &c->paths[0][p[0]->prev]; |
|
p[1] = &c->paths[1][p[1]->prev]; |
|
} |
|
froze = i; |
|
pathn[0] = pathn[1] = 0; |
|
memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); |
|
memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); |
|
} |
|
} |
|
|
|
p[0] = &c->paths[0][nodes[0][0]->path]; |
|
p[1] = &c->paths[1][nodes[1][0]->path]; |
|
for (j = i; j > froze; j--) { |
|
dst[j] = p[1]->value << 6 | p[0]->value; |
|
p[0] = &c->paths[0][p[0]->prev]; |
|
p[1] = &c->paths[1][p[1]->prev]; |
|
} |
|
c->band[0] = nodes[0][0]->state; |
|
c->band[1] = nodes[1][0]->state; |
|
|
|
return i; |
|
} |
|
|
|
static int g722_encode_frame(AVCodecContext *avctx, |
|
uint8_t *dst, int buf_size, void *data) |
|
{ |
|
G722Context *c = avctx->priv_data; |
|
const int16_t *samples = data; |
|
int i; |
|
|
|
if (avctx->trellis) |
|
return g722_encode_trellis(avctx, dst, buf_size, data); |
|
|
|
for (i = 0; i < buf_size >> 1; i++) { |
|
int xlow, xhigh, ihigh, ilow; |
|
filter_samples(c, &samples[2*i], &xlow, &xhigh); |
|
ihigh = encode_high(&c->band[1], xhigh); |
|
ilow = encode_low(&c->band[0], xlow); |
|
update_high_predictor(&c->band[1], c->band[1].scale_factor * |
|
high_inv_quant[ihigh] >> 10, ihigh); |
|
update_low_predictor(&c->band[0], ilow >> 2); |
|
*dst++ = ihigh << 6 | ilow; |
|
} |
|
return i; |
|
} |
|
|
|
AVCodec ff_adpcm_g722_encoder = { |
|
.name = "g722", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = CODEC_ID_ADPCM_G722, |
|
.priv_data_size = sizeof(G722Context), |
|
.init = g722_init, |
|
.close = g722_close, |
|
.encode = g722_encode_frame, |
|
.long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), |
|
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, |
|
}; |
|
#endif |
|
|
|
|