mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
779 lines
25 KiB
779 lines
25 KiB
/* |
|
* Apple ProRes compatible decoder |
|
* |
|
* Copyright (c) 2010-2011 Maxim Poliakovski |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444. |
|
* It is used for storing and editing high definition video data in Apple's Final Cut Pro. |
|
* |
|
* @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes |
|
*/ |
|
|
|
#define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once |
|
|
|
#include <stdint.h> |
|
|
|
#include "libavutil/intmath.h" |
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "internal.h" |
|
#include "proresdata.h" |
|
#include "proresdsp.h" |
|
#include "get_bits.h" |
|
|
|
typedef struct { |
|
const uint8_t *index; ///< pointers to the data of this slice |
|
int slice_num; |
|
int x_pos, y_pos; |
|
int slice_width; |
|
int prev_slice_sf; ///< scalefactor of the previous decoded slice |
|
DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64]; |
|
DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64]; |
|
DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64]; |
|
} ProresThreadData; |
|
|
|
typedef struct { |
|
ProresDSPContext dsp; |
|
AVFrame *frame; |
|
ScanTable scantable; |
|
int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced |
|
|
|
int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first |
|
int pic_format; ///< 2 = 422, 3 = 444 |
|
uint8_t qmat_luma[64]; ///< dequantization matrix for luma |
|
uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma |
|
int qmat_changed; ///< 1 - global quantization matrices changed |
|
int total_slices; ///< total number of slices in a picture |
|
ProresThreadData *slice_data; |
|
int pic_num; |
|
int chroma_factor; |
|
int mb_chroma_factor; |
|
int num_chroma_blocks; ///< number of chrominance blocks in a macroblock |
|
int num_x_slices; |
|
int num_y_slices; |
|
int slice_width_factor; |
|
int slice_height_factor; |
|
int num_x_mbs; |
|
int num_y_mbs; |
|
int alpha_info; |
|
} ProresContext; |
|
|
|
|
|
static av_cold int decode_init(AVCodecContext *avctx) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
|
|
ctx->total_slices = 0; |
|
ctx->slice_data = NULL; |
|
|
|
avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE; |
|
ff_proresdsp_init(&ctx->dsp, avctx); |
|
|
|
ctx->scantable_type = -1; // set scantable type to uninitialized |
|
memset(ctx->qmat_luma, 4, 64); |
|
memset(ctx->qmat_chroma, 4, 64); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, |
|
const int data_size, AVCodecContext *avctx) |
|
{ |
|
int hdr_size, version, width, height, flags; |
|
const uint8_t *ptr; |
|
|
|
hdr_size = AV_RB16(buf); |
|
if (hdr_size > data_size) { |
|
av_log(avctx, AV_LOG_ERROR, "frame data too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
version = AV_RB16(buf + 2); |
|
if (version >= 2) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"unsupported header version: %d\n", version); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
width = AV_RB16(buf + 8); |
|
height = AV_RB16(buf + 10); |
|
if (width != avctx->width || height != avctx->height) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"picture dimension changed: old: %d x %d, new: %d x %d\n", |
|
avctx->width, avctx->height, width, height); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->frame_type = (buf[12] >> 2) & 3; |
|
if (ctx->frame_type > 2) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"unsupported frame type: %d\n", ctx->frame_type); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->chroma_factor = (buf[12] >> 6) & 3; |
|
ctx->mb_chroma_factor = ctx->chroma_factor + 2; |
|
ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1; |
|
ctx->alpha_info = buf[17] & 0xf; |
|
|
|
if (ctx->alpha_info > 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (avctx->skip_alpha) ctx->alpha_info = 0; |
|
|
|
switch (ctx->chroma_factor) { |
|
case 2: |
|
avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10 |
|
: AV_PIX_FMT_YUV422P10; |
|
break; |
|
case 3: |
|
avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10 |
|
: AV_PIX_FMT_YUV444P10; |
|
break; |
|
default: |
|
av_log(avctx, AV_LOG_ERROR, |
|
"unsupported picture format: %d\n", ctx->pic_format); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (ctx->scantable_type != ctx->frame_type) { |
|
if (!ctx->frame_type) |
|
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, |
|
ff_prores_progressive_scan); |
|
else |
|
ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, |
|
ff_prores_interlaced_scan); |
|
ctx->scantable_type = ctx->frame_type; |
|
} |
|
|
|
if (ctx->frame_type) { /* if interlaced */ |
|
ctx->frame->interlaced_frame = 1; |
|
ctx->frame->top_field_first = ctx->frame_type & 1; |
|
} else { |
|
ctx->frame->interlaced_frame = 0; |
|
} |
|
|
|
avctx->color_primaries = buf[14]; |
|
avctx->color_trc = buf[15]; |
|
avctx->colorspace = buf[16]; |
|
|
|
ctx->qmat_changed = 0; |
|
ptr = buf + 20; |
|
flags = buf[19]; |
|
if (flags & 2) { |
|
if (ptr - buf > hdr_size - 64) { |
|
av_log(avctx, AV_LOG_ERROR, "header data too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (memcmp(ctx->qmat_luma, ptr, 64)) { |
|
memcpy(ctx->qmat_luma, ptr, 64); |
|
ctx->qmat_changed = 1; |
|
} |
|
ptr += 64; |
|
} else { |
|
memset(ctx->qmat_luma, 4, 64); |
|
ctx->qmat_changed = 1; |
|
} |
|
|
|
if (flags & 1) { |
|
if (ptr - buf > hdr_size - 64) { |
|
av_log(avctx, AV_LOG_ERROR, "header data too small\n"); |
|
return -1; |
|
} |
|
if (memcmp(ctx->qmat_chroma, ptr, 64)) { |
|
memcpy(ctx->qmat_chroma, ptr, 64); |
|
ctx->qmat_changed = 1; |
|
} |
|
} else { |
|
memset(ctx->qmat_chroma, 4, 64); |
|
ctx->qmat_changed = 1; |
|
} |
|
|
|
return hdr_size; |
|
} |
|
|
|
|
|
static int decode_picture_header(ProresContext *ctx, const uint8_t *buf, |
|
const int data_size, AVCodecContext *avctx) |
|
{ |
|
int i, hdr_size, pic_data_size, num_slices; |
|
int slice_width_factor, slice_height_factor; |
|
int remainder, num_x_slices; |
|
const uint8_t *data_ptr, *index_ptr; |
|
|
|
hdr_size = data_size > 0 ? buf[0] >> 3 : 0; |
|
if (hdr_size < 8 || hdr_size > data_size) { |
|
av_log(avctx, AV_LOG_ERROR, "picture header too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
pic_data_size = AV_RB32(buf + 1); |
|
if (pic_data_size > data_size) { |
|
av_log(avctx, AV_LOG_ERROR, "picture data too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
slice_width_factor = buf[7] >> 4; |
|
slice_height_factor = buf[7] & 0xF; |
|
if (slice_width_factor > 3 || slice_height_factor) { |
|
av_log(avctx, AV_LOG_ERROR, |
|
"unsupported slice dimension: %d x %d\n", |
|
1 << slice_width_factor, 1 << slice_height_factor); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
ctx->slice_width_factor = slice_width_factor; |
|
ctx->slice_height_factor = slice_height_factor; |
|
|
|
ctx->num_x_mbs = (avctx->width + 15) >> 4; |
|
ctx->num_y_mbs = (avctx->height + |
|
(1 << (4 + ctx->frame->interlaced_frame)) - 1) >> |
|
(4 + ctx->frame->interlaced_frame); |
|
|
|
remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1); |
|
num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) + |
|
((remainder >> 1) & 1) + ((remainder >> 2) & 1); |
|
|
|
num_slices = num_x_slices * ctx->num_y_mbs; |
|
if (num_slices != AV_RB16(buf + 5)) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (ctx->total_slices != num_slices) { |
|
av_freep(&ctx->slice_data); |
|
ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0])); |
|
if (!ctx->slice_data) |
|
return AVERROR(ENOMEM); |
|
ctx->total_slices = num_slices; |
|
} |
|
|
|
if (hdr_size + num_slices * 2 > data_size) { |
|
av_log(avctx, AV_LOG_ERROR, "slice table too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* parse slice table allowing quick access to the slice data */ |
|
index_ptr = buf + hdr_size; |
|
data_ptr = index_ptr + num_slices * 2; |
|
|
|
for (i = 0; i < num_slices; i++) { |
|
ctx->slice_data[i].index = data_ptr; |
|
ctx->slice_data[i].prev_slice_sf = 0; |
|
data_ptr += AV_RB16(index_ptr + i * 2); |
|
} |
|
ctx->slice_data[i].index = data_ptr; |
|
ctx->slice_data[i].prev_slice_sf = 0; |
|
|
|
if (data_ptr > buf + data_size) { |
|
av_log(avctx, AV_LOG_ERROR, "out of slice data\n"); |
|
return -1; |
|
} |
|
|
|
return pic_data_size; |
|
} |
|
|
|
|
|
/** |
|
* Read an unsigned rice/exp golomb codeword. |
|
*/ |
|
static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook) |
|
{ |
|
unsigned int rice_order, exp_order, switch_bits; |
|
unsigned int buf, code; |
|
int log, prefix_len, len; |
|
|
|
OPEN_READER(re, gb); |
|
UPDATE_CACHE(re, gb); |
|
buf = GET_CACHE(re, gb); |
|
|
|
/* number of prefix bits to switch between Rice and expGolomb */ |
|
switch_bits = (codebook & 3) + 1; |
|
rice_order = codebook >> 5; /* rice code order */ |
|
exp_order = (codebook >> 2) & 7; /* exp golomb code order */ |
|
|
|
log = 31 - av_log2(buf); /* count prefix bits (zeroes) */ |
|
|
|
if (log < switch_bits) { /* ok, we got a rice code */ |
|
if (!rice_order) { |
|
/* shortcut for faster decoding of rice codes without remainder */ |
|
code = log; |
|
LAST_SKIP_BITS(re, gb, log + 1); |
|
} else { |
|
prefix_len = log + 1; |
|
code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order); |
|
LAST_SKIP_BITS(re, gb, prefix_len + rice_order); |
|
} |
|
} else { /* otherwise we got a exp golomb code */ |
|
len = (log << 1) - switch_bits + exp_order + 1; |
|
code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order); |
|
LAST_SKIP_BITS(re, gb, len); |
|
} |
|
|
|
CLOSE_READER(re, gb); |
|
|
|
return code; |
|
} |
|
|
|
#define LSB2SIGN(x) (-((x) & 1)) |
|
#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x)) |
|
|
|
/** |
|
* Decode DC coefficients for all blocks in a slice. |
|
*/ |
|
static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out, |
|
int nblocks) |
|
{ |
|
int16_t prev_dc; |
|
int i, sign; |
|
int16_t delta; |
|
unsigned int code; |
|
|
|
code = decode_vlc_codeword(gb, FIRST_DC_CB); |
|
out[0] = prev_dc = TOSIGNED(code); |
|
|
|
out += 64; /* move to the DC coeff of the next block */ |
|
delta = 3; |
|
|
|
for (i = 1; i < nblocks; i++, out += 64) { |
|
code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]); |
|
|
|
sign = -(((delta >> 15) & 1) ^ (code & 1)); |
|
delta = (((code + 1) >> 1) ^ sign) - sign; |
|
prev_dc += delta; |
|
out[0] = prev_dc; |
|
} |
|
} |
|
|
|
|
|
/** |
|
* Decode AC coefficients for all blocks in a slice. |
|
*/ |
|
static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out, |
|
int blocks_per_slice, |
|
int plane_size_factor, |
|
const uint8_t *scan) |
|
{ |
|
int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index; |
|
int max_coeffs, bits_left; |
|
|
|
/* set initial prediction values */ |
|
run = 4; |
|
level = 2; |
|
|
|
max_coeffs = blocks_per_slice << 6; |
|
block_mask = blocks_per_slice - 1; |
|
|
|
for (pos = blocks_per_slice - 1; pos < max_coeffs;) { |
|
run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)]; |
|
lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)]; |
|
|
|
bits_left = get_bits_left(gb); |
|
if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left))) |
|
return 0; |
|
|
|
run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]); |
|
|
|
bits_left = get_bits_left(gb); |
|
if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left))) |
|
return AVERROR_INVALIDDATA; |
|
|
|
level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1; |
|
|
|
pos += run + 1; |
|
if (pos >= max_coeffs) |
|
break; |
|
|
|
sign = get_sbits(gb, 1); |
|
out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] = |
|
(level ^ sign) - sign; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* Decode a slice plane (luma or chroma). |
|
*/ |
|
static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td, |
|
const uint8_t *buf, |
|
int data_size, uint16_t *out_ptr, |
|
int linesize, int mbs_per_slice, |
|
int blocks_per_mb, int plane_size_factor, |
|
const int16_t *qmat, int is_chroma) |
|
{ |
|
GetBitContext gb; |
|
int16_t *block_ptr; |
|
int mb_num, blocks_per_slice, ret; |
|
|
|
blocks_per_slice = mbs_per_slice * blocks_per_mb; |
|
|
|
memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks)); |
|
|
|
init_get_bits(&gb, buf, data_size << 3); |
|
|
|
decode_dc_coeffs(&gb, td->blocks, blocks_per_slice); |
|
|
|
ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice, |
|
plane_size_factor, ctx->scantable.permutated); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* inverse quantization, inverse transform and output */ |
|
block_ptr = td->blocks; |
|
|
|
if (!is_chroma) { |
|
for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) { |
|
ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
if (blocks_per_mb > 2) { |
|
ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
} |
|
ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
if (blocks_per_mb > 2) { |
|
ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
} |
|
} |
|
} else { |
|
for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) { |
|
ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
if (blocks_per_mb > 2) { |
|
ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat); |
|
block_ptr += 64; |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
|
|
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, |
|
const int num_bits) |
|
{ |
|
const int mask = (1 << num_bits) - 1; |
|
int i, idx, val, alpha_val; |
|
|
|
idx = 0; |
|
alpha_val = mask; |
|
do { |
|
do { |
|
if (get_bits1(gb)) |
|
val = get_bits(gb, num_bits); |
|
else { |
|
int sign; |
|
val = get_bits(gb, num_bits == 16 ? 7 : 4); |
|
sign = val & 1; |
|
val = (val + 2) >> 1; |
|
if (sign) |
|
val = -val; |
|
} |
|
alpha_val = (alpha_val + val) & mask; |
|
if (num_bits == 16) |
|
dst[idx++] = alpha_val >> 6; |
|
else |
|
dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); |
|
if (idx >= num_coeffs) { |
|
break; |
|
} |
|
} while (get_bits1(gb)); |
|
val = get_bits(gb, 4); |
|
if (!val) |
|
val = get_bits(gb, 11); |
|
if (idx + val > num_coeffs) |
|
val = num_coeffs - idx; |
|
if (num_bits == 16) |
|
for (i = 0; i < val; i++) |
|
dst[idx++] = alpha_val >> 6; |
|
else |
|
for (i = 0; i < val; i++) |
|
dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); |
|
} while (idx < num_coeffs); |
|
} |
|
|
|
/** |
|
* Decode alpha slice plane. |
|
*/ |
|
static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td, |
|
const uint8_t *buf, int data_size, |
|
uint16_t *out_ptr, int linesize, |
|
int mbs_per_slice) |
|
{ |
|
GetBitContext gb; |
|
int i; |
|
uint16_t *block_ptr; |
|
|
|
memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks)); |
|
|
|
init_get_bits(&gb, buf, data_size << 3); |
|
|
|
if (ctx->alpha_info == 2) |
|
unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16); |
|
else |
|
unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8); |
|
|
|
block_ptr = td->blocks; |
|
|
|
for (i = 0; i < 16; i++) { |
|
memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr)); |
|
out_ptr += linesize >> 1; |
|
block_ptr += 16 * mbs_per_slice; |
|
} |
|
} |
|
|
|
static int decode_slice(AVCodecContext *avctx, void *tdata) |
|
{ |
|
ProresThreadData *td = tdata; |
|
ProresContext *ctx = avctx->priv_data; |
|
int mb_x_pos = td->x_pos; |
|
int mb_y_pos = td->y_pos; |
|
int pic_num = ctx->pic_num; |
|
int slice_num = td->slice_num; |
|
int mbs_per_slice = td->slice_width; |
|
const uint8_t *buf; |
|
uint8_t *y_data, *u_data, *v_data, *a_data; |
|
AVFrame *pic = ctx->frame; |
|
int i, sf, slice_width_factor; |
|
int slice_data_size, hdr_size; |
|
int y_data_size, u_data_size, v_data_size, a_data_size; |
|
int y_linesize, u_linesize, v_linesize, a_linesize; |
|
int coff[4]; |
|
int ret; |
|
|
|
buf = ctx->slice_data[slice_num].index; |
|
slice_data_size = ctx->slice_data[slice_num + 1].index - buf; |
|
|
|
slice_width_factor = av_log2(mbs_per_slice); |
|
|
|
y_data = pic->data[0]; |
|
u_data = pic->data[1]; |
|
v_data = pic->data[2]; |
|
a_data = pic->data[3]; |
|
y_linesize = pic->linesize[0]; |
|
u_linesize = pic->linesize[1]; |
|
v_linesize = pic->linesize[2]; |
|
a_linesize = pic->linesize[3]; |
|
|
|
if (pic->interlaced_frame) { |
|
if (!(pic_num ^ pic->top_field_first)) { |
|
y_data += y_linesize; |
|
u_data += u_linesize; |
|
v_data += v_linesize; |
|
if (a_data) |
|
a_data += a_linesize; |
|
} |
|
y_linesize <<= 1; |
|
u_linesize <<= 1; |
|
v_linesize <<= 1; |
|
a_linesize <<= 1; |
|
} |
|
y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5); |
|
u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor); |
|
v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor); |
|
if (a_data) |
|
a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5); |
|
|
|
if (slice_data_size < 6) { |
|
av_log(avctx, AV_LOG_ERROR, "slice data too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* parse slice header */ |
|
hdr_size = buf[0] >> 3; |
|
coff[0] = hdr_size; |
|
y_data_size = AV_RB16(buf + 2); |
|
coff[1] = coff[0] + y_data_size; |
|
u_data_size = AV_RB16(buf + 4); |
|
coff[2] = coff[1] + u_data_size; |
|
v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2]; |
|
coff[3] = coff[2] + v_data_size; |
|
a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0; |
|
|
|
/* if V or alpha component size is negative that means that previous |
|
component sizes are too large */ |
|
if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid data size\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
sf = av_clip(buf[1], 1, 224); |
|
sf = sf > 128 ? (sf - 96) << 2 : sf; |
|
|
|
/* scale quantization matrixes according with slice's scale factor */ |
|
/* TODO: this can be SIMD-optimized a lot */ |
|
if (ctx->qmat_changed || sf != td->prev_slice_sf) { |
|
td->prev_slice_sf = sf; |
|
for (i = 0; i < 64; i++) { |
|
td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf; |
|
td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf; |
|
} |
|
} |
|
|
|
/* decode luma plane */ |
|
ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size, |
|
(uint16_t*) y_data, y_linesize, |
|
mbs_per_slice, 4, slice_width_factor + 2, |
|
td->qmat_luma_scaled, 0); |
|
|
|
if (ret < 0) |
|
return ret; |
|
|
|
/* decode U chroma plane */ |
|
ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size, |
|
(uint16_t*) u_data, u_linesize, |
|
mbs_per_slice, ctx->num_chroma_blocks, |
|
slice_width_factor + ctx->chroma_factor - 1, |
|
td->qmat_chroma_scaled, 1); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* decode V chroma plane */ |
|
ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size, |
|
(uint16_t*) v_data, v_linesize, |
|
mbs_per_slice, ctx->num_chroma_blocks, |
|
slice_width_factor + ctx->chroma_factor - 1, |
|
td->qmat_chroma_scaled, 1); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* decode alpha plane if available */ |
|
if (a_data && a_data_size) |
|
decode_alpha_plane(ctx, td, buf + coff[3], a_data_size, |
|
(uint16_t*) a_data, a_linesize, |
|
mbs_per_slice); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int decode_picture(ProresContext *ctx, int pic_num, |
|
AVCodecContext *avctx) |
|
{ |
|
int slice_num, slice_width, x_pos, y_pos; |
|
|
|
slice_num = 0; |
|
|
|
ctx->pic_num = pic_num; |
|
for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) { |
|
slice_width = 1 << ctx->slice_width_factor; |
|
|
|
for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width; |
|
x_pos += slice_width) { |
|
while (ctx->num_x_mbs - x_pos < slice_width) |
|
slice_width >>= 1; |
|
|
|
ctx->slice_data[slice_num].slice_num = slice_num; |
|
ctx->slice_data[slice_num].x_pos = x_pos; |
|
ctx->slice_data[slice_num].y_pos = y_pos; |
|
ctx->slice_data[slice_num].slice_width = slice_width; |
|
|
|
slice_num++; |
|
} |
|
} |
|
|
|
return avctx->execute(avctx, decode_slice, |
|
ctx->slice_data, NULL, slice_num, |
|
sizeof(ctx->slice_data[0])); |
|
} |
|
|
|
|
|
#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes) |
|
|
|
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, |
|
AVPacket *avpkt) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
int frame_hdr_size, pic_num, pic_data_size; |
|
|
|
ctx->frame = data; |
|
ctx->frame->pict_type = AV_PICTURE_TYPE_I; |
|
ctx->frame->key_frame = 1; |
|
|
|
/* check frame atom container */ |
|
if (buf_size < 28 || buf_size < AV_RB32(buf) || |
|
AV_RB32(buf + 4) != FRAME_ID) { |
|
av_log(avctx, AV_LOG_ERROR, "invalid frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
MOVE_DATA_PTR(8); |
|
|
|
frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx); |
|
if (frame_hdr_size < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
MOVE_DATA_PTR(frame_hdr_size); |
|
|
|
if (ff_get_buffer(avctx, ctx->frame, 0) < 0) |
|
return -1; |
|
|
|
for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) { |
|
pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx); |
|
if (pic_data_size < 0) |
|
return AVERROR_INVALIDDATA; |
|
|
|
if (decode_picture(ctx, pic_num, avctx)) |
|
return -1; |
|
|
|
MOVE_DATA_PTR(pic_data_size); |
|
} |
|
|
|
ctx->frame = NULL; |
|
*got_frame = 1; |
|
|
|
return avpkt->size; |
|
} |
|
|
|
|
|
static av_cold int decode_close(AVCodecContext *avctx) |
|
{ |
|
ProresContext *ctx = avctx->priv_data; |
|
|
|
av_freep(&ctx->slice_data); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
AVCodec ff_prores_lgpl_decoder = { |
|
.name = "prores_lgpl", |
|
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_PRORES, |
|
.priv_data_size = sizeof(ProresContext), |
|
.init = decode_init, |
|
.close = decode_close, |
|
.decode = decode_frame, |
|
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS, |
|
};
|
|
|