mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1288 lines
44 KiB
1288 lines
44 KiB
/* |
|
* COOK compatible decoder |
|
* Copyright (c) 2003 Sascha Sommer |
|
* Copyright (c) 2005 Benjamin Larsson |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Cook compatible decoder. Bastardization of the G.722.1 standard. |
|
* This decoder handles RealNetworks, RealAudio G2 data. |
|
* Cook is identified by the codec name cook in RM files. |
|
* |
|
* To use this decoder, a calling application must supply the extradata |
|
* bytes provided from the RM container; 8+ bytes for mono streams and |
|
* 16+ for stereo streams (maybe more). |
|
* |
|
* Codec technicalities (all this assume a buffer length of 1024): |
|
* Cook works with several different techniques to achieve its compression. |
|
* In the timedomain the buffer is divided into 8 pieces and quantized. If |
|
* two neighboring pieces have different quantization index a smooth |
|
* quantization curve is used to get a smooth overlap between the different |
|
* pieces. |
|
* To get to the transformdomain Cook uses a modulated lapped transform. |
|
* The transform domain has 50 subbands with 20 elements each. This |
|
* means only a maximum of 50*20=1000 coefficients are used out of the 1024 |
|
* available. |
|
*/ |
|
|
|
#include "libavutil/channel_layout.h" |
|
#include "libavutil/lfg.h" |
|
|
|
#include "audiodsp.h" |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "bytestream.h" |
|
#include "fft.h" |
|
#include "internal.h" |
|
#include "sinewin.h" |
|
#include "unary.h" |
|
|
|
#include "cookdata.h" |
|
|
|
/* the different Cook versions */ |
|
#define MONO 0x1000001 |
|
#define STEREO 0x1000002 |
|
#define JOINT_STEREO 0x1000003 |
|
#define MC_COOK 0x2000000 // multichannel Cook, not supported |
|
|
|
#define SUBBAND_SIZE 20 |
|
#define MAX_SUBPACKETS 5 |
|
|
|
typedef struct cook_gains { |
|
int *now; |
|
int *previous; |
|
} cook_gains; |
|
|
|
typedef struct COOKSubpacket { |
|
int ch_idx; |
|
int size; |
|
int num_channels; |
|
int cookversion; |
|
int subbands; |
|
int js_subband_start; |
|
int js_vlc_bits; |
|
int samples_per_channel; |
|
int log2_numvector_size; |
|
unsigned int channel_mask; |
|
VLC channel_coupling; |
|
int joint_stereo; |
|
int bits_per_subpacket; |
|
int bits_per_subpdiv; |
|
int total_subbands; |
|
int numvector_size; // 1 << log2_numvector_size; |
|
|
|
float mono_previous_buffer1[1024]; |
|
float mono_previous_buffer2[1024]; |
|
|
|
cook_gains gains1; |
|
cook_gains gains2; |
|
int gain_1[9]; |
|
int gain_2[9]; |
|
int gain_3[9]; |
|
int gain_4[9]; |
|
} COOKSubpacket; |
|
|
|
typedef struct cook { |
|
/* |
|
* The following 5 functions provide the lowlevel arithmetic on |
|
* the internal audio buffers. |
|
*/ |
|
void (*scalar_dequant)(struct cook *q, int index, int quant_index, |
|
int *subband_coef_index, int *subband_coef_sign, |
|
float *mlt_p); |
|
|
|
void (*decouple)(struct cook *q, |
|
COOKSubpacket *p, |
|
int subband, |
|
float f1, float f2, |
|
float *decode_buffer, |
|
float *mlt_buffer1, float *mlt_buffer2); |
|
|
|
void (*imlt_window)(struct cook *q, float *buffer1, |
|
cook_gains *gains_ptr, float *previous_buffer); |
|
|
|
void (*interpolate)(struct cook *q, float *buffer, |
|
int gain_index, int gain_index_next); |
|
|
|
void (*saturate_output)(struct cook *q, float *out); |
|
|
|
AVCodecContext* avctx; |
|
AudioDSPContext adsp; |
|
GetBitContext gb; |
|
/* stream data */ |
|
int num_vectors; |
|
int samples_per_channel; |
|
/* states */ |
|
AVLFG random_state; |
|
int discarded_packets; |
|
|
|
/* transform data */ |
|
FFTContext mdct_ctx; |
|
float* mlt_window; |
|
|
|
/* VLC data */ |
|
VLC envelope_quant_index[13]; |
|
VLC sqvh[7]; // scalar quantization |
|
|
|
/* generatable tables and related variables */ |
|
int gain_size_factor; |
|
float gain_table[23]; |
|
|
|
/* data buffers */ |
|
|
|
uint8_t* decoded_bytes_buffer; |
|
DECLARE_ALIGNED(32, float, mono_mdct_output)[2048]; |
|
float decode_buffer_1[1024]; |
|
float decode_buffer_2[1024]; |
|
float decode_buffer_0[1060]; /* static allocation for joint decode */ |
|
|
|
const float *cplscales[5]; |
|
int num_subpackets; |
|
COOKSubpacket subpacket[MAX_SUBPACKETS]; |
|
} COOKContext; |
|
|
|
static float pow2tab[127]; |
|
static float rootpow2tab[127]; |
|
|
|
/*************** init functions ***************/ |
|
|
|
/* table generator */ |
|
static av_cold void init_pow2table(void) |
|
{ |
|
int i; |
|
for (i = -63; i < 64; i++) { |
|
pow2tab[63 + i] = pow(2, i); |
|
rootpow2tab[63 + i] = sqrt(pow(2, i)); |
|
} |
|
} |
|
|
|
/* table generator */ |
|
static av_cold void init_gain_table(COOKContext *q) |
|
{ |
|
int i; |
|
q->gain_size_factor = q->samples_per_channel / 8; |
|
for (i = 0; i < 23; i++) |
|
q->gain_table[i] = pow(pow2tab[i + 52], |
|
(1.0 / (double) q->gain_size_factor)); |
|
} |
|
|
|
|
|
static av_cold int init_cook_vlc_tables(COOKContext *q) |
|
{ |
|
int i, result; |
|
|
|
result = 0; |
|
for (i = 0; i < 13; i++) { |
|
result |= init_vlc(&q->envelope_quant_index[i], 9, 24, |
|
envelope_quant_index_huffbits[i], 1, 1, |
|
envelope_quant_index_huffcodes[i], 2, 2, 0); |
|
} |
|
av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n"); |
|
for (i = 0; i < 7; i++) { |
|
result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], |
|
cvh_huffbits[i], 1, 1, |
|
cvh_huffcodes[i], 2, 2, 0); |
|
} |
|
|
|
for (i = 0; i < q->num_subpackets; i++) { |
|
if (q->subpacket[i].joint_stereo == 1) { |
|
result |= init_vlc(&q->subpacket[i].channel_coupling, 6, |
|
(1 << q->subpacket[i].js_vlc_bits) - 1, |
|
ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1, |
|
ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0); |
|
av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i); |
|
} |
|
} |
|
|
|
av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n"); |
|
return result; |
|
} |
|
|
|
static av_cold int init_cook_mlt(COOKContext *q) |
|
{ |
|
int j, ret; |
|
int mlt_size = q->samples_per_channel; |
|
|
|
if ((q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))) == 0) |
|
return AVERROR(ENOMEM); |
|
|
|
/* Initialize the MLT window: simple sine window. */ |
|
ff_sine_window_init(q->mlt_window, mlt_size); |
|
for (j = 0; j < mlt_size; j++) |
|
q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel); |
|
|
|
/* Initialize the MDCT. */ |
|
if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) { |
|
av_freep(&q->mlt_window); |
|
return ret; |
|
} |
|
av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n", |
|
av_log2(mlt_size) + 1); |
|
|
|
return 0; |
|
} |
|
|
|
static av_cold void init_cplscales_table(COOKContext *q) |
|
{ |
|
int i; |
|
for (i = 0; i < 5; i++) |
|
q->cplscales[i] = cplscales[i]; |
|
} |
|
|
|
/*************** init functions end ***********/ |
|
|
|
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4) |
|
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) |
|
|
|
/** |
|
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2. |
|
* Why? No idea, some checksum/error detection method maybe. |
|
* |
|
* Out buffer size: extra bytes are needed to cope with |
|
* padding/misalignment. |
|
* Subpackets passed to the decoder can contain two, consecutive |
|
* half-subpackets, of identical but arbitrary size. |
|
* 1234 1234 1234 1234 extraA extraB |
|
* Case 1: AAAA BBBB 0 0 |
|
* Case 2: AAAA ABBB BB-- 3 3 |
|
* Case 3: AAAA AABB BBBB 2 2 |
|
* Case 4: AAAA AAAB BBBB BB-- 1 5 |
|
* |
|
* Nice way to waste CPU cycles. |
|
* |
|
* @param inbuffer pointer to byte array of indata |
|
* @param out pointer to byte array of outdata |
|
* @param bytes number of bytes |
|
*/ |
|
static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes) |
|
{ |
|
static const uint32_t tab[4] = { |
|
AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u), |
|
AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u), |
|
}; |
|
int i, off; |
|
uint32_t c; |
|
const uint32_t *buf; |
|
uint32_t *obuf = (uint32_t *) out; |
|
/* FIXME: 64 bit platforms would be able to do 64 bits at a time. |
|
* I'm too lazy though, should be something like |
|
* for (i = 0; i < bitamount / 64; i++) |
|
* (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]); |
|
* Buffer alignment needs to be checked. */ |
|
|
|
off = (intptr_t) inbuffer & 3; |
|
buf = (const uint32_t *) (inbuffer - off); |
|
c = tab[off]; |
|
bytes += 3 + off; |
|
for (i = 0; i < bytes / 4; i++) |
|
obuf[i] = c ^ buf[i]; |
|
|
|
return off; |
|
} |
|
|
|
static av_cold int cook_decode_close(AVCodecContext *avctx) |
|
{ |
|
int i; |
|
COOKContext *q = avctx->priv_data; |
|
av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n"); |
|
|
|
/* Free allocated memory buffers. */ |
|
av_freep(&q->mlt_window); |
|
av_freep(&q->decoded_bytes_buffer); |
|
|
|
/* Free the transform. */ |
|
ff_mdct_end(&q->mdct_ctx); |
|
|
|
/* Free the VLC tables. */ |
|
for (i = 0; i < 13; i++) |
|
ff_free_vlc(&q->envelope_quant_index[i]); |
|
for (i = 0; i < 7; i++) |
|
ff_free_vlc(&q->sqvh[i]); |
|
for (i = 0; i < q->num_subpackets; i++) |
|
ff_free_vlc(&q->subpacket[i].channel_coupling); |
|
|
|
av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n"); |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Fill the gain array for the timedomain quantization. |
|
* |
|
* @param gb pointer to the GetBitContext |
|
* @param gaininfo array[9] of gain indexes |
|
*/ |
|
static void decode_gain_info(GetBitContext *gb, int *gaininfo) |
|
{ |
|
int i, n; |
|
|
|
n = get_unary(gb, 0, get_bits_left(gb)); // amount of elements*2 to update |
|
|
|
i = 0; |
|
while (n--) { |
|
int index = get_bits(gb, 3); |
|
int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1; |
|
|
|
while (i <= index) |
|
gaininfo[i++] = gain; |
|
} |
|
while (i <= 8) |
|
gaininfo[i++] = 0; |
|
} |
|
|
|
/** |
|
* Create the quant index table needed for the envelope. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param quant_index_table pointer to the array |
|
*/ |
|
static int decode_envelope(COOKContext *q, COOKSubpacket *p, |
|
int *quant_index_table) |
|
{ |
|
int i, j, vlc_index; |
|
|
|
quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize |
|
|
|
for (i = 1; i < p->total_subbands; i++) { |
|
vlc_index = i; |
|
if (i >= p->js_subband_start * 2) { |
|
vlc_index -= p->js_subband_start; |
|
} else { |
|
vlc_index /= 2; |
|
if (vlc_index < 1) |
|
vlc_index = 1; |
|
} |
|
if (vlc_index > 13) |
|
vlc_index = 13; // the VLC tables >13 are identical to No. 13 |
|
|
|
j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table, |
|
q->envelope_quant_index[vlc_index - 1].bits, 2); |
|
quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding |
|
if (quant_index_table[i] > 63 || quant_index_table[i] < -63) { |
|
av_log(q->avctx, AV_LOG_ERROR, |
|
"Invalid quantizer %d at position %d, outside [-63, 63] range\n", |
|
quant_index_table[i], i); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Calculate the category and category_index vector. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param quant_index_table pointer to the array |
|
* @param category pointer to the category array |
|
* @param category_index pointer to the category_index array |
|
*/ |
|
static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table, |
|
int *category, int *category_index) |
|
{ |
|
int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j; |
|
int exp_index2[102] = { 0 }; |
|
int exp_index1[102] = { 0 }; |
|
|
|
int tmp_categorize_array[128 * 2] = { 0 }; |
|
int tmp_categorize_array1_idx = p->numvector_size; |
|
int tmp_categorize_array2_idx = p->numvector_size; |
|
|
|
bits_left = p->bits_per_subpacket - get_bits_count(&q->gb); |
|
|
|
if (bits_left > q->samples_per_channel) |
|
bits_left = q->samples_per_channel + |
|
((bits_left - q->samples_per_channel) * 5) / 8; |
|
|
|
bias = -32; |
|
|
|
/* Estimate bias. */ |
|
for (i = 32; i > 0; i = i / 2) { |
|
num_bits = 0; |
|
index = 0; |
|
for (j = p->total_subbands; j > 0; j--) { |
|
exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3); |
|
index++; |
|
num_bits += expbits_tab[exp_idx]; |
|
} |
|
if (num_bits >= bits_left - 32) |
|
bias += i; |
|
} |
|
|
|
/* Calculate total number of bits. */ |
|
num_bits = 0; |
|
for (i = 0; i < p->total_subbands; i++) { |
|
exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3); |
|
num_bits += expbits_tab[exp_idx]; |
|
exp_index1[i] = exp_idx; |
|
exp_index2[i] = exp_idx; |
|
} |
|
tmpbias1 = tmpbias2 = num_bits; |
|
|
|
for (j = 1; j < p->numvector_size; j++) { |
|
if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */ |
|
int max = -999999; |
|
index = -1; |
|
for (i = 0; i < p->total_subbands; i++) { |
|
if (exp_index1[i] < 7) { |
|
v = (-2 * exp_index1[i]) - quant_index_table[i] + bias; |
|
if (v >= max) { |
|
max = v; |
|
index = i; |
|
} |
|
} |
|
} |
|
if (index == -1) |
|
break; |
|
tmp_categorize_array[tmp_categorize_array1_idx++] = index; |
|
tmpbias1 -= expbits_tab[exp_index1[index]] - |
|
expbits_tab[exp_index1[index] + 1]; |
|
++exp_index1[index]; |
|
} else { /* <--- */ |
|
int min = 999999; |
|
index = -1; |
|
for (i = 0; i < p->total_subbands; i++) { |
|
if (exp_index2[i] > 0) { |
|
v = (-2 * exp_index2[i]) - quant_index_table[i] + bias; |
|
if (v < min) { |
|
min = v; |
|
index = i; |
|
} |
|
} |
|
} |
|
if (index == -1) |
|
break; |
|
tmp_categorize_array[--tmp_categorize_array2_idx] = index; |
|
tmpbias2 -= expbits_tab[exp_index2[index]] - |
|
expbits_tab[exp_index2[index] - 1]; |
|
--exp_index2[index]; |
|
} |
|
} |
|
|
|
for (i = 0; i < p->total_subbands; i++) |
|
category[i] = exp_index2[i]; |
|
|
|
for (i = 0; i < p->numvector_size - 1; i++) |
|
category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; |
|
} |
|
|
|
|
|
/** |
|
* Expand the category vector. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param category pointer to the category array |
|
* @param category_index pointer to the category_index array |
|
*/ |
|
static inline void expand_category(COOKContext *q, int *category, |
|
int *category_index) |
|
{ |
|
int i; |
|
for (i = 0; i < q->num_vectors; i++) |
|
{ |
|
int idx = category_index[i]; |
|
if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab)) |
|
--category[idx]; |
|
} |
|
} |
|
|
|
/** |
|
* The real requantization of the mltcoefs |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param index index |
|
* @param quant_index quantisation index |
|
* @param subband_coef_index array of indexes to quant_centroid_tab |
|
* @param subband_coef_sign signs of coefficients |
|
* @param mlt_p pointer into the mlt buffer |
|
*/ |
|
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, |
|
int *subband_coef_index, int *subband_coef_sign, |
|
float *mlt_p) |
|
{ |
|
int i; |
|
float f1; |
|
|
|
for (i = 0; i < SUBBAND_SIZE; i++) { |
|
if (subband_coef_index[i]) { |
|
f1 = quant_centroid_tab[index][subband_coef_index[i]]; |
|
if (subband_coef_sign[i]) |
|
f1 = -f1; |
|
} else { |
|
/* noise coding if subband_coef_index[i] == 0 */ |
|
f1 = dither_tab[index]; |
|
if (av_lfg_get(&q->random_state) < 0x80000000) |
|
f1 = -f1; |
|
} |
|
mlt_p[i] = f1 * rootpow2tab[quant_index + 63]; |
|
} |
|
} |
|
/** |
|
* Unpack the subband_coef_index and subband_coef_sign vectors. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param category pointer to the category array |
|
* @param subband_coef_index array of indexes to quant_centroid_tab |
|
* @param subband_coef_sign signs of coefficients |
|
*/ |
|
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, |
|
int *subband_coef_index, int *subband_coef_sign) |
|
{ |
|
int i, j; |
|
int vlc, vd, tmp, result; |
|
|
|
vd = vd_tab[category]; |
|
result = 0; |
|
for (i = 0; i < vpr_tab[category]; i++) { |
|
vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3); |
|
if (p->bits_per_subpacket < get_bits_count(&q->gb)) { |
|
vlc = 0; |
|
result = 1; |
|
} |
|
for (j = vd - 1; j >= 0; j--) { |
|
tmp = (vlc * invradix_tab[category]) / 0x100000; |
|
subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1); |
|
vlc = tmp; |
|
} |
|
for (j = 0; j < vd; j++) { |
|
if (subband_coef_index[i * vd + j]) { |
|
if (get_bits_count(&q->gb) < p->bits_per_subpacket) { |
|
subband_coef_sign[i * vd + j] = get_bits1(&q->gb); |
|
} else { |
|
result = 1; |
|
subband_coef_sign[i * vd + j] = 0; |
|
} |
|
} else { |
|
subband_coef_sign[i * vd + j] = 0; |
|
} |
|
} |
|
} |
|
return result; |
|
} |
|
|
|
|
|
/** |
|
* Fill the mlt_buffer with mlt coefficients. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param category pointer to the category array |
|
* @param quant_index_table pointer to the array |
|
* @param mlt_buffer pointer to mlt coefficients |
|
*/ |
|
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category, |
|
int *quant_index_table, float *mlt_buffer) |
|
{ |
|
/* A zero in this table means that the subband coefficient is |
|
random noise coded. */ |
|
int subband_coef_index[SUBBAND_SIZE]; |
|
/* A zero in this table means that the subband coefficient is a |
|
positive multiplicator. */ |
|
int subband_coef_sign[SUBBAND_SIZE]; |
|
int band, j; |
|
int index = 0; |
|
|
|
for (band = 0; band < p->total_subbands; band++) { |
|
index = category[band]; |
|
if (category[band] < 7) { |
|
if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) { |
|
index = 7; |
|
for (j = 0; j < p->total_subbands; j++) |
|
category[band + j] = 7; |
|
} |
|
} |
|
if (index >= 7) { |
|
memset(subband_coef_index, 0, sizeof(subband_coef_index)); |
|
memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); |
|
} |
|
q->scalar_dequant(q, index, quant_index_table[band], |
|
subband_coef_index, subband_coef_sign, |
|
&mlt_buffer[band * SUBBAND_SIZE]); |
|
} |
|
|
|
/* FIXME: should this be removed, or moved into loop above? */ |
|
if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel) |
|
return; |
|
} |
|
|
|
|
|
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer) |
|
{ |
|
int category_index[128] = { 0 }; |
|
int category[128] = { 0 }; |
|
int quant_index_table[102]; |
|
int res, i; |
|
|
|
if ((res = decode_envelope(q, p, quant_index_table)) < 0) |
|
return res; |
|
q->num_vectors = get_bits(&q->gb, p->log2_numvector_size); |
|
categorize(q, p, quant_index_table, category, category_index); |
|
expand_category(q, category, category_index); |
|
for (i=0; i<p->total_subbands; i++) { |
|
if (category[i] > 7) |
|
return AVERROR_INVALIDDATA; |
|
} |
|
decode_vectors(q, p, category, quant_index_table, mlt_buffer); |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/** |
|
* the actual requantization of the timedomain samples |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param buffer pointer to the timedomain buffer |
|
* @param gain_index index for the block multiplier |
|
* @param gain_index_next index for the next block multiplier |
|
*/ |
|
static void interpolate_float(COOKContext *q, float *buffer, |
|
int gain_index, int gain_index_next) |
|
{ |
|
int i; |
|
float fc1, fc2; |
|
fc1 = pow2tab[gain_index + 63]; |
|
|
|
if (gain_index == gain_index_next) { // static gain |
|
for (i = 0; i < q->gain_size_factor; i++) |
|
buffer[i] *= fc1; |
|
} else { // smooth gain |
|
fc2 = q->gain_table[11 + (gain_index_next - gain_index)]; |
|
for (i = 0; i < q->gain_size_factor; i++) { |
|
buffer[i] *= fc1; |
|
fc1 *= fc2; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Apply transform window, overlap buffers. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to the mltcoefficients |
|
* @param gains_ptr current and previous gains |
|
* @param previous_buffer pointer to the previous buffer to be used for overlapping |
|
*/ |
|
static void imlt_window_float(COOKContext *q, float *inbuffer, |
|
cook_gains *gains_ptr, float *previous_buffer) |
|
{ |
|
const float fc = pow2tab[gains_ptr->previous[0] + 63]; |
|
int i; |
|
/* The weird thing here, is that the two halves of the time domain |
|
* buffer are swapped. Also, the newest data, that we save away for |
|
* next frame, has the wrong sign. Hence the subtraction below. |
|
* Almost sounds like a complex conjugate/reverse data/FFT effect. |
|
*/ |
|
|
|
/* Apply window and overlap */ |
|
for (i = 0; i < q->samples_per_channel; i++) |
|
inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] - |
|
previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i]; |
|
} |
|
|
|
/** |
|
* The modulated lapped transform, this takes transform coefficients |
|
* and transforms them into timedomain samples. |
|
* Apply transform window, overlap buffers, apply gain profile |
|
* and buffer management. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to the mltcoefficients |
|
* @param gains_ptr current and previous gains |
|
* @param previous_buffer pointer to the previous buffer to be used for overlapping |
|
*/ |
|
static void imlt_gain(COOKContext *q, float *inbuffer, |
|
cook_gains *gains_ptr, float *previous_buffer) |
|
{ |
|
float *buffer0 = q->mono_mdct_output; |
|
float *buffer1 = q->mono_mdct_output + q->samples_per_channel; |
|
int i; |
|
|
|
/* Inverse modified discrete cosine transform */ |
|
q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer); |
|
|
|
q->imlt_window(q, buffer1, gains_ptr, previous_buffer); |
|
|
|
/* Apply gain profile */ |
|
for (i = 0; i < 8; i++) |
|
if (gains_ptr->now[i] || gains_ptr->now[i + 1]) |
|
q->interpolate(q, &buffer1[q->gain_size_factor * i], |
|
gains_ptr->now[i], gains_ptr->now[i + 1]); |
|
|
|
/* Save away the current to be previous block. */ |
|
memcpy(previous_buffer, buffer0, |
|
q->samples_per_channel * sizeof(*previous_buffer)); |
|
} |
|
|
|
|
|
/** |
|
* function for getting the jointstereo coupling information |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param decouple_tab decoupling array |
|
*/ |
|
static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab) |
|
{ |
|
int i; |
|
int vlc = get_bits1(&q->gb); |
|
int start = cplband[p->js_subband_start]; |
|
int end = cplband[p->subbands - 1]; |
|
int length = end - start + 1; |
|
|
|
if (start > end) |
|
return 0; |
|
|
|
if (vlc) |
|
for (i = 0; i < length; i++) |
|
decouple_tab[start + i] = get_vlc2(&q->gb, |
|
p->channel_coupling.table, |
|
p->channel_coupling.bits, 2); |
|
else |
|
for (i = 0; i < length; i++) { |
|
int v = get_bits(&q->gb, p->js_vlc_bits); |
|
if (v == (1<<p->js_vlc_bits)-1) { |
|
av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
decouple_tab[start + i] = v; |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* function decouples a pair of signals from a single signal via multiplication. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param subband index of the current subband |
|
* @param f1 multiplier for channel 1 extraction |
|
* @param f2 multiplier for channel 2 extraction |
|
* @param decode_buffer input buffer |
|
* @param mlt_buffer1 pointer to left channel mlt coefficients |
|
* @param mlt_buffer2 pointer to right channel mlt coefficients |
|
*/ |
|
static void decouple_float(COOKContext *q, |
|
COOKSubpacket *p, |
|
int subband, |
|
float f1, float f2, |
|
float *decode_buffer, |
|
float *mlt_buffer1, float *mlt_buffer2) |
|
{ |
|
int j, tmp_idx; |
|
for (j = 0; j < SUBBAND_SIZE; j++) { |
|
tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j; |
|
mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx]; |
|
mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx]; |
|
} |
|
} |
|
|
|
/** |
|
* function for decoding joint stereo data |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param mlt_buffer1 pointer to left channel mlt coefficients |
|
* @param mlt_buffer2 pointer to right channel mlt coefficients |
|
*/ |
|
static int joint_decode(COOKContext *q, COOKSubpacket *p, |
|
float *mlt_buffer_left, float *mlt_buffer_right) |
|
{ |
|
int i, j, res; |
|
int decouple_tab[SUBBAND_SIZE] = { 0 }; |
|
float *decode_buffer = q->decode_buffer_0; |
|
int idx, cpl_tmp; |
|
float f1, f2; |
|
const float *cplscale; |
|
|
|
memset(decode_buffer, 0, sizeof(q->decode_buffer_0)); |
|
|
|
/* Make sure the buffers are zeroed out. */ |
|
memset(mlt_buffer_left, 0, 1024 * sizeof(*mlt_buffer_left)); |
|
memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right)); |
|
if ((res = decouple_info(q, p, decouple_tab)) < 0) |
|
return res; |
|
if ((res = mono_decode(q, p, decode_buffer)) < 0) |
|
return res; |
|
/* The two channels are stored interleaved in decode_buffer. */ |
|
for (i = 0; i < p->js_subband_start; i++) { |
|
for (j = 0; j < SUBBAND_SIZE; j++) { |
|
mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j]; |
|
mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j]; |
|
} |
|
} |
|
|
|
/* When we reach js_subband_start (the higher frequencies) |
|
the coefficients are stored in a coupling scheme. */ |
|
idx = (1 << p->js_vlc_bits) - 1; |
|
for (i = p->js_subband_start; i < p->subbands; i++) { |
|
cpl_tmp = cplband[i]; |
|
idx -= decouple_tab[cpl_tmp]; |
|
cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table |
|
f1 = cplscale[decouple_tab[cpl_tmp] + 1]; |
|
f2 = cplscale[idx]; |
|
q->decouple(q, p, i, f1, f2, decode_buffer, |
|
mlt_buffer_left, mlt_buffer_right); |
|
idx = (1 << p->js_vlc_bits) - 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* First part of subpacket decoding: |
|
* decode raw stream bytes and read gain info. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to raw stream data |
|
* @param gains_ptr array of current/prev gain pointers |
|
*/ |
|
static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, |
|
const uint8_t *inbuffer, |
|
cook_gains *gains_ptr) |
|
{ |
|
int offset; |
|
|
|
offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, |
|
p->bits_per_subpacket / 8); |
|
init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, |
|
p->bits_per_subpacket); |
|
decode_gain_info(&q->gb, gains_ptr->now); |
|
|
|
/* Swap current and previous gains */ |
|
FFSWAP(int *, gains_ptr->now, gains_ptr->previous); |
|
} |
|
|
|
/** |
|
* Saturate the output signal and interleave. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param out pointer to the output vector |
|
*/ |
|
static void saturate_output_float(COOKContext *q, float *out) |
|
{ |
|
q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel, |
|
-1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8)); |
|
} |
|
|
|
|
|
/** |
|
* Final part of subpacket decoding: |
|
* Apply modulated lapped transform, gain compensation, |
|
* clip and convert to integer. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param decode_buffer pointer to the mlt coefficients |
|
* @param gains_ptr array of current/prev gain pointers |
|
* @param previous_buffer pointer to the previous buffer to be used for overlapping |
|
* @param out pointer to the output buffer |
|
*/ |
|
static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer, |
|
cook_gains *gains_ptr, float *previous_buffer, |
|
float *out) |
|
{ |
|
imlt_gain(q, decode_buffer, gains_ptr, previous_buffer); |
|
if (out) |
|
q->saturate_output(q, out); |
|
} |
|
|
|
|
|
/** |
|
* Cook subpacket decoding. This function returns one decoded subpacket, |
|
* usually 1024 samples per channel. |
|
* |
|
* @param q pointer to the COOKContext |
|
* @param inbuffer pointer to the inbuffer |
|
* @param outbuffer pointer to the outbuffer |
|
*/ |
|
static int decode_subpacket(COOKContext *q, COOKSubpacket *p, |
|
const uint8_t *inbuffer, float **outbuffer) |
|
{ |
|
int sub_packet_size = p->size; |
|
int res; |
|
|
|
memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1)); |
|
decode_bytes_and_gain(q, p, inbuffer, &p->gains1); |
|
|
|
if (p->joint_stereo) { |
|
if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0) |
|
return res; |
|
} else { |
|
if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0) |
|
return res; |
|
|
|
if (p->num_channels == 2) { |
|
decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2); |
|
if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0) |
|
return res; |
|
} |
|
} |
|
|
|
mlt_compensate_output(q, q->decode_buffer_1, &p->gains1, |
|
p->mono_previous_buffer1, |
|
outbuffer ? outbuffer[p->ch_idx] : NULL); |
|
|
|
if (p->num_channels == 2) { |
|
if (p->joint_stereo) |
|
mlt_compensate_output(q, q->decode_buffer_2, &p->gains1, |
|
p->mono_previous_buffer2, |
|
outbuffer ? outbuffer[p->ch_idx + 1] : NULL); |
|
else |
|
mlt_compensate_output(q, q->decode_buffer_2, &p->gains2, |
|
p->mono_previous_buffer2, |
|
outbuffer ? outbuffer[p->ch_idx + 1] : NULL); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
|
|
static int cook_decode_frame(AVCodecContext *avctx, void *data, |
|
int *got_frame_ptr, AVPacket *avpkt) |
|
{ |
|
AVFrame *frame = data; |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
COOKContext *q = avctx->priv_data; |
|
float **samples = NULL; |
|
int i, ret; |
|
int offset = 0; |
|
int chidx = 0; |
|
|
|
if (buf_size < avctx->block_align) |
|
return buf_size; |
|
|
|
/* get output buffer */ |
|
if (q->discarded_packets >= 2) { |
|
frame->nb_samples = q->samples_per_channel; |
|
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
|
return ret; |
|
samples = (float **)frame->extended_data; |
|
} |
|
|
|
/* estimate subpacket sizes */ |
|
q->subpacket[0].size = avctx->block_align; |
|
|
|
for (i = 1; i < q->num_subpackets; i++) { |
|
q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i]; |
|
q->subpacket[0].size -= q->subpacket[i].size + 1; |
|
if (q->subpacket[0].size < 0) { |
|
av_log(avctx, AV_LOG_DEBUG, |
|
"frame subpacket size total > avctx->block_align!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
/* decode supbackets */ |
|
for (i = 0; i < q->num_subpackets; i++) { |
|
q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >> |
|
q->subpacket[i].bits_per_subpdiv; |
|
q->subpacket[i].ch_idx = chidx; |
|
av_log(avctx, AV_LOG_DEBUG, |
|
"subpacket[%i] size %i js %i %i block_align %i\n", |
|
i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset, |
|
avctx->block_align); |
|
|
|
if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0) |
|
return ret; |
|
offset += q->subpacket[i].size; |
|
chidx += q->subpacket[i].num_channels; |
|
av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n", |
|
i, q->subpacket[i].size * 8, get_bits_count(&q->gb)); |
|
} |
|
|
|
/* Discard the first two frames: no valid audio. */ |
|
if (q->discarded_packets < 2) { |
|
q->discarded_packets++; |
|
*got_frame_ptr = 0; |
|
return avctx->block_align; |
|
} |
|
|
|
*got_frame_ptr = 1; |
|
|
|
return avctx->block_align; |
|
} |
|
|
|
static void dump_cook_context(COOKContext *q) |
|
{ |
|
//int i=0; |
|
#define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b); |
|
ff_dlog(q->avctx, "COOKextradata\n"); |
|
ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion); |
|
if (q->subpacket[0].cookversion > STEREO) { |
|
PRINT("js_subband_start", q->subpacket[0].js_subband_start); |
|
PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits); |
|
} |
|
ff_dlog(q->avctx, "COOKContext\n"); |
|
PRINT("nb_channels", q->avctx->channels); |
|
PRINT("bit_rate", q->avctx->bit_rate); |
|
PRINT("sample_rate", q->avctx->sample_rate); |
|
PRINT("samples_per_channel", q->subpacket[0].samples_per_channel); |
|
PRINT("subbands", q->subpacket[0].subbands); |
|
PRINT("js_subband_start", q->subpacket[0].js_subband_start); |
|
PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size); |
|
PRINT("numvector_size", q->subpacket[0].numvector_size); |
|
PRINT("total_subbands", q->subpacket[0].total_subbands); |
|
} |
|
|
|
/** |
|
* Cook initialization |
|
* |
|
* @param avctx pointer to the AVCodecContext |
|
*/ |
|
static av_cold int cook_decode_init(AVCodecContext *avctx) |
|
{ |
|
COOKContext *q = avctx->priv_data; |
|
const uint8_t *edata_ptr = avctx->extradata; |
|
const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size; |
|
int extradata_size = avctx->extradata_size; |
|
int s = 0; |
|
unsigned int channel_mask = 0; |
|
int samples_per_frame = 0; |
|
int ret; |
|
q->avctx = avctx; |
|
|
|
/* Take care of the codec specific extradata. */ |
|
if (extradata_size < 8) { |
|
av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size); |
|
|
|
/* Take data from the AVCodecContext (RM container). */ |
|
if (!avctx->channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* Initialize RNG. */ |
|
av_lfg_init(&q->random_state, 0); |
|
|
|
ff_audiodsp_init(&q->adsp); |
|
|
|
while (edata_ptr < edata_ptr_end) { |
|
/* 8 for mono, 16 for stereo, ? for multichannel |
|
Swap to right endianness so we don't need to care later on. */ |
|
if (extradata_size >= 8) { |
|
q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); |
|
samples_per_frame = bytestream_get_be16(&edata_ptr); |
|
q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr); |
|
extradata_size -= 8; |
|
} |
|
if (extradata_size >= 8) { |
|
bytestream_get_be32(&edata_ptr); // Unknown unused |
|
q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); |
|
if (q->subpacket[s].js_subband_start >= 51) { |
|
av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); |
|
extradata_size -= 8; |
|
} |
|
|
|
/* Initialize extradata related variables. */ |
|
q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels; |
|
q->subpacket[s].bits_per_subpacket = avctx->block_align * 8; |
|
|
|
/* Initialize default data states. */ |
|
q->subpacket[s].log2_numvector_size = 5; |
|
q->subpacket[s].total_subbands = q->subpacket[s].subbands; |
|
q->subpacket[s].num_channels = 1; |
|
|
|
/* Initialize version-dependent variables */ |
|
|
|
av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s, |
|
q->subpacket[s].cookversion); |
|
q->subpacket[s].joint_stereo = 0; |
|
switch (q->subpacket[s].cookversion) { |
|
case MONO: |
|
if (avctx->channels != 1) { |
|
avpriv_request_sample(avctx, "Container channels != 1"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, "MONO\n"); |
|
break; |
|
case STEREO: |
|
if (avctx->channels != 1) { |
|
q->subpacket[s].bits_per_subpdiv = 1; |
|
q->subpacket[s].num_channels = 2; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, "STEREO\n"); |
|
break; |
|
case JOINT_STEREO: |
|
if (avctx->channels != 2) { |
|
avpriv_request_sample(avctx, "Container channels != 2"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n"); |
|
if (avctx->extradata_size >= 16) { |
|
q->subpacket[s].total_subbands = q->subpacket[s].subbands + |
|
q->subpacket[s].js_subband_start; |
|
q->subpacket[s].joint_stereo = 1; |
|
q->subpacket[s].num_channels = 2; |
|
} |
|
if (q->subpacket[s].samples_per_channel > 256) { |
|
q->subpacket[s].log2_numvector_size = 6; |
|
} |
|
if (q->subpacket[s].samples_per_channel > 512) { |
|
q->subpacket[s].log2_numvector_size = 7; |
|
} |
|
break; |
|
case MC_COOK: |
|
av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n"); |
|
if (extradata_size >= 4) |
|
channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); |
|
|
|
if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) { |
|
q->subpacket[s].total_subbands = q->subpacket[s].subbands + |
|
q->subpacket[s].js_subband_start; |
|
q->subpacket[s].joint_stereo = 1; |
|
q->subpacket[s].num_channels = 2; |
|
q->subpacket[s].samples_per_channel = samples_per_frame >> 1; |
|
|
|
if (q->subpacket[s].samples_per_channel > 256) { |
|
q->subpacket[s].log2_numvector_size = 6; |
|
} |
|
if (q->subpacket[s].samples_per_channel > 512) { |
|
q->subpacket[s].log2_numvector_size = 7; |
|
} |
|
} else |
|
q->subpacket[s].samples_per_channel = samples_per_frame; |
|
|
|
break; |
|
default: |
|
avpriv_request_sample(avctx, "Cook version %d", |
|
q->subpacket[s].cookversion); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) { |
|
av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n"); |
|
return AVERROR_INVALIDDATA; |
|
} else |
|
q->samples_per_channel = q->subpacket[0].samples_per_channel; |
|
|
|
|
|
/* Initialize variable relations */ |
|
q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size); |
|
|
|
/* Try to catch some obviously faulty streams, othervise it might be exploitable */ |
|
if (q->subpacket[s].total_subbands > 53) { |
|
avpriv_request_sample(avctx, "total_subbands > 53"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
if ((q->subpacket[s].js_vlc_bits > 6) || |
|
(q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) { |
|
av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n", |
|
q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (q->subpacket[s].subbands > 50) { |
|
avpriv_request_sample(avctx, "subbands > 50"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
if (q->subpacket[s].subbands == 0) { |
|
avpriv_request_sample(avctx, "subbands = 0"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
q->subpacket[s].gains1.now = q->subpacket[s].gain_1; |
|
q->subpacket[s].gains1.previous = q->subpacket[s].gain_2; |
|
q->subpacket[s].gains2.now = q->subpacket[s].gain_3; |
|
q->subpacket[s].gains2.previous = q->subpacket[s].gain_4; |
|
|
|
if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) { |
|
av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
q->num_subpackets++; |
|
s++; |
|
if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) { |
|
avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align)); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
} |
|
/* Generate tables */ |
|
init_pow2table(); |
|
init_gain_table(q); |
|
init_cplscales_table(q); |
|
|
|
if ((ret = init_cook_vlc_tables(q))) |
|
return ret; |
|
|
|
|
|
if (avctx->block_align >= UINT_MAX / 2) |
|
return AVERROR(EINVAL); |
|
|
|
/* Pad the databuffer with: |
|
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(), |
|
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */ |
|
q->decoded_bytes_buffer = |
|
av_mallocz(avctx->block_align |
|
+ DECODE_BYTES_PAD1(avctx->block_align) |
|
+ FF_INPUT_BUFFER_PADDING_SIZE); |
|
if (!q->decoded_bytes_buffer) |
|
return AVERROR(ENOMEM); |
|
|
|
/* Initialize transform. */ |
|
if ((ret = init_cook_mlt(q))) |
|
return ret; |
|
|
|
/* Initialize COOK signal arithmetic handling */ |
|
if (1) { |
|
q->scalar_dequant = scalar_dequant_float; |
|
q->decouple = decouple_float; |
|
q->imlt_window = imlt_window_float; |
|
q->interpolate = interpolate_float; |
|
q->saturate_output = saturate_output_float; |
|
} |
|
|
|
/* Try to catch some obviously faulty streams, othervise it might be exploitable */ |
|
if (q->samples_per_channel != 256 && q->samples_per_channel != 512 && |
|
q->samples_per_channel != 1024) { |
|
avpriv_request_sample(avctx, "samples_per_channel = %d", |
|
q->samples_per_channel); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; |
|
if (channel_mask) |
|
avctx->channel_layout = channel_mask; |
|
else |
|
avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO; |
|
|
|
|
|
dump_cook_context(q); |
|
|
|
return 0; |
|
} |
|
|
|
AVCodec ff_cook_decoder = { |
|
.name = "cook", |
|
.long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"), |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = AV_CODEC_ID_COOK, |
|
.priv_data_size = sizeof(COOKContext), |
|
.init = cook_decode_init, |
|
.close = cook_decode_close, |
|
.decode = cook_decode_frame, |
|
.capabilities = CODEC_CAP_DR1, |
|
.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP, |
|
AV_SAMPLE_FMT_NONE }, |
|
};
|
|
|