mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2318 lines
80 KiB
2318 lines
80 KiB
/* |
|
* Copyright (C) 2007 Marco Gerards <marco@gnu.org> |
|
* Copyright (C) 2009 David Conrad |
|
* Copyright (C) 2011 Jordi Ortiz |
|
* |
|
* This file is part of FFmpeg. |
|
* |
|
* FFmpeg is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* FFmpeg is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with FFmpeg; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Dirac Decoder |
|
* @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com> |
|
*/ |
|
|
|
#include "libavutil/thread.h" |
|
#include "avcodec.h" |
|
#include "get_bits.h" |
|
#include "bytestream.h" |
|
#include "internal.h" |
|
#include "golomb.h" |
|
#include "dirac_arith.h" |
|
#include "dirac_vlc.h" |
|
#include "mpeg12data.h" |
|
#include "libavcodec/mpegvideo.h" |
|
#include "mpegvideoencdsp.h" |
|
#include "dirac_dwt.h" |
|
#include "dirac.h" |
|
#include "diractab.h" |
|
#include "diracdsp.h" |
|
#include "videodsp.h" |
|
|
|
/** |
|
* The spec limits this to 3 for frame coding, but in practice can be as high as 6 |
|
*/ |
|
#define MAX_REFERENCE_FRAMES 8 |
|
#define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */ |
|
#define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1) |
|
#define MAX_QUANT 255 /* max quant for VC-2 */ |
|
#define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */ |
|
|
|
/** |
|
* DiracBlock->ref flags, if set then the block does MC from the given ref |
|
*/ |
|
#define DIRAC_REF_MASK_REF1 1 |
|
#define DIRAC_REF_MASK_REF2 2 |
|
#define DIRAC_REF_MASK_GLOBAL 4 |
|
|
|
/** |
|
* Value of Picture.reference when Picture is not a reference picture, but |
|
* is held for delayed output. |
|
*/ |
|
#define DELAYED_PIC_REF 4 |
|
|
|
#define CALC_PADDING(size, depth) \ |
|
(((size + (1 << depth) - 1) >> depth) << depth) |
|
|
|
#define DIVRNDUP(a, b) (((a) + (b) - 1) / (b)) |
|
|
|
typedef struct { |
|
AVFrame *avframe; |
|
int interpolated[3]; /* 1 if hpel[] is valid */ |
|
uint8_t *hpel[3][4]; |
|
uint8_t *hpel_base[3][4]; |
|
int reference; |
|
} DiracFrame; |
|
|
|
typedef struct { |
|
union { |
|
int16_t mv[2][2]; |
|
int16_t dc[3]; |
|
} u; /* anonymous unions aren't in C99 :( */ |
|
uint8_t ref; |
|
} DiracBlock; |
|
|
|
typedef struct SubBand { |
|
int level; |
|
int orientation; |
|
int stride; /* in bytes */ |
|
int width; |
|
int height; |
|
int pshift; |
|
int quant; |
|
uint8_t *ibuf; |
|
struct SubBand *parent; |
|
|
|
/* for low delay */ |
|
unsigned length; |
|
const uint8_t *coeff_data; |
|
} SubBand; |
|
|
|
typedef struct Plane { |
|
DWTPlane idwt; |
|
|
|
int width; |
|
int height; |
|
ptrdiff_t stride; |
|
|
|
/* block length */ |
|
uint8_t xblen; |
|
uint8_t yblen; |
|
/* block separation (block n+1 starts after this many pixels in block n) */ |
|
uint8_t xbsep; |
|
uint8_t ybsep; |
|
/* amount of overspill on each edge (half of the overlap between blocks) */ |
|
uint8_t xoffset; |
|
uint8_t yoffset; |
|
|
|
SubBand band[MAX_DWT_LEVELS][4]; |
|
} Plane; |
|
|
|
/* Used by Low Delay and High Quality profiles */ |
|
typedef struct DiracSlice { |
|
GetBitContext gb; |
|
int slice_x; |
|
int slice_y; |
|
int bytes; |
|
} DiracSlice; |
|
|
|
typedef struct DiracContext { |
|
AVCodecContext *avctx; |
|
MpegvideoEncDSPContext mpvencdsp; |
|
VideoDSPContext vdsp; |
|
DiracDSPContext diracdsp; |
|
DiracGolombLUT *reader_ctx; |
|
DiracVersionInfo version; |
|
GetBitContext gb; |
|
AVDiracSeqHeader seq; |
|
int seen_sequence_header; |
|
int frame_number; /* number of the next frame to display */ |
|
Plane plane[3]; |
|
int chroma_x_shift; |
|
int chroma_y_shift; |
|
|
|
int bit_depth; /* bit depth */ |
|
int pshift; /* pixel shift = bit_depth > 8 */ |
|
|
|
int zero_res; /* zero residue flag */ |
|
int is_arith; /* whether coeffs use arith or golomb coding */ |
|
int core_syntax; /* use core syntax only */ |
|
int low_delay; /* use the low delay syntax */ |
|
int hq_picture; /* high quality picture, enables low_delay */ |
|
int ld_picture; /* use low delay picture, turns on low_delay */ |
|
int dc_prediction; /* has dc prediction */ |
|
int globalmc_flag; /* use global motion compensation */ |
|
int num_refs; /* number of reference pictures */ |
|
|
|
/* wavelet decoding */ |
|
unsigned wavelet_depth; /* depth of the IDWT */ |
|
unsigned wavelet_idx; |
|
|
|
/** |
|
* schroedinger older than 1.0.8 doesn't store |
|
* quant delta if only one codebook exists in a band |
|
*/ |
|
unsigned old_delta_quant; |
|
unsigned codeblock_mode; |
|
|
|
unsigned num_x; /* number of horizontal slices */ |
|
unsigned num_y; /* number of vertical slices */ |
|
|
|
uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */ |
|
int threads_num_buf; /* Current # of buffers allocated */ |
|
int thread_buf_size; /* Each thread has a buffer this size */ |
|
|
|
DiracSlice *slice_params_buf; |
|
int slice_params_num_buf; |
|
|
|
struct { |
|
unsigned width; |
|
unsigned height; |
|
} codeblock[MAX_DWT_LEVELS+1]; |
|
|
|
struct { |
|
AVRational bytes; /* average bytes per slice */ |
|
uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */ |
|
} lowdelay; |
|
|
|
struct { |
|
unsigned prefix_bytes; |
|
uint64_t size_scaler; |
|
} highquality; |
|
|
|
struct { |
|
int pan_tilt[2]; /* pan/tilt vector */ |
|
int zrs[2][2]; /* zoom/rotate/shear matrix */ |
|
int perspective[2]; /* perspective vector */ |
|
unsigned zrs_exp; |
|
unsigned perspective_exp; |
|
} globalmc[2]; |
|
|
|
/* motion compensation */ |
|
uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */ |
|
int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */ |
|
unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */ |
|
|
|
int blwidth; /* number of blocks (horizontally) */ |
|
int blheight; /* number of blocks (vertically) */ |
|
int sbwidth; /* number of superblocks (horizontally) */ |
|
int sbheight; /* number of superblocks (vertically) */ |
|
|
|
uint8_t *sbsplit; |
|
DiracBlock *blmotion; |
|
|
|
uint8_t *edge_emu_buffer[4]; |
|
uint8_t *edge_emu_buffer_base; |
|
|
|
uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */ |
|
uint8_t *mcscratch; |
|
int buffer_stride; |
|
|
|
DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE]; |
|
|
|
void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h); |
|
void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h); |
|
void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen); |
|
dirac_weight_func weight_func; |
|
dirac_biweight_func biweight_func; |
|
|
|
DiracFrame *current_picture; |
|
DiracFrame *ref_pics[2]; |
|
|
|
DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1]; |
|
DiracFrame *delay_frames[MAX_DELAY+1]; |
|
DiracFrame all_frames[MAX_FRAMES]; |
|
} DiracContext; |
|
|
|
enum dirac_subband { |
|
subband_ll = 0, |
|
subband_hl = 1, |
|
subband_lh = 2, |
|
subband_hh = 3, |
|
subband_nb, |
|
}; |
|
|
|
/* magic number division by 3 from schroedinger */ |
|
static inline int divide3(int x) |
|
{ |
|
return (int)((x+1U)*21845 + 10922) >> 16; |
|
} |
|
|
|
static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum) |
|
{ |
|
DiracFrame *remove_pic = NULL; |
|
int i, remove_idx = -1; |
|
|
|
for (i = 0; framelist[i]; i++) |
|
if (framelist[i]->avframe->display_picture_number == picnum) { |
|
remove_pic = framelist[i]; |
|
remove_idx = i; |
|
} |
|
|
|
if (remove_pic) |
|
for (i = remove_idx; framelist[i]; i++) |
|
framelist[i] = framelist[i+1]; |
|
|
|
return remove_pic; |
|
} |
|
|
|
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame) |
|
{ |
|
int i; |
|
for (i = 0; i < maxframes; i++) |
|
if (!framelist[i]) { |
|
framelist[i] = frame; |
|
return 0; |
|
} |
|
return -1; |
|
} |
|
|
|
static int alloc_sequence_buffers(DiracContext *s) |
|
{ |
|
int sbwidth = DIVRNDUP(s->seq.width, 4); |
|
int sbheight = DIVRNDUP(s->seq.height, 4); |
|
int i, w, h, top_padding; |
|
|
|
/* todo: think more about this / use or set Plane here */ |
|
for (i = 0; i < 3; i++) { |
|
int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0); |
|
int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0); |
|
w = s->seq.width >> (i ? s->chroma_x_shift : 0); |
|
h = s->seq.height >> (i ? s->chroma_y_shift : 0); |
|
|
|
/* we allocate the max we support here since num decompositions can |
|
* change from frame to frame. Stride is aligned to 16 for SIMD, and |
|
* 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding |
|
* MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that |
|
* on each side */ |
|
top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2); |
|
w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */ |
|
h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2; |
|
|
|
s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift)); |
|
s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift); |
|
s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift); |
|
if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp) |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/* fixme: allocate using real stride here */ |
|
s->sbsplit = av_malloc_array(sbwidth, sbheight); |
|
s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion)); |
|
|
|
if (!s->sbsplit || !s->blmotion) |
|
return AVERROR(ENOMEM); |
|
return 0; |
|
} |
|
|
|
static int alloc_buffers(DiracContext *s, int stride) |
|
{ |
|
int w = s->seq.width; |
|
int h = s->seq.height; |
|
|
|
av_assert0(stride >= w); |
|
stride += 64; |
|
|
|
if (s->buffer_stride >= stride) |
|
return 0; |
|
s->buffer_stride = 0; |
|
|
|
av_freep(&s->edge_emu_buffer_base); |
|
memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer)); |
|
av_freep(&s->mctmp); |
|
av_freep(&s->mcscratch); |
|
|
|
s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE); |
|
|
|
s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp)); |
|
s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE); |
|
|
|
if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch) |
|
return AVERROR(ENOMEM); |
|
|
|
s->buffer_stride = stride; |
|
return 0; |
|
} |
|
|
|
static void free_sequence_buffers(DiracContext *s) |
|
{ |
|
int i, j, k; |
|
|
|
for (i = 0; i < MAX_FRAMES; i++) { |
|
if (s->all_frames[i].avframe->data[0]) { |
|
av_frame_unref(s->all_frames[i].avframe); |
|
memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated)); |
|
} |
|
|
|
for (j = 0; j < 3; j++) |
|
for (k = 1; k < 4; k++) |
|
av_freep(&s->all_frames[i].hpel_base[j][k]); |
|
} |
|
|
|
memset(s->ref_frames, 0, sizeof(s->ref_frames)); |
|
memset(s->delay_frames, 0, sizeof(s->delay_frames)); |
|
|
|
for (i = 0; i < 3; i++) { |
|
av_freep(&s->plane[i].idwt.buf_base); |
|
av_freep(&s->plane[i].idwt.tmp); |
|
} |
|
|
|
s->buffer_stride = 0; |
|
av_freep(&s->sbsplit); |
|
av_freep(&s->blmotion); |
|
av_freep(&s->edge_emu_buffer_base); |
|
|
|
av_freep(&s->mctmp); |
|
av_freep(&s->mcscratch); |
|
} |
|
|
|
static AVOnce dirac_arith_init = AV_ONCE_INIT; |
|
|
|
static av_cold int dirac_decode_init(AVCodecContext *avctx) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
int i, ret; |
|
|
|
s->avctx = avctx; |
|
s->frame_number = -1; |
|
|
|
s->thread_buf = NULL; |
|
s->threads_num_buf = -1; |
|
s->thread_buf_size = -1; |
|
|
|
ff_dirac_golomb_reader_init(&s->reader_ctx); |
|
ff_diracdsp_init(&s->diracdsp); |
|
ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx); |
|
ff_videodsp_init(&s->vdsp, 8); |
|
|
|
for (i = 0; i < MAX_FRAMES; i++) { |
|
s->all_frames[i].avframe = av_frame_alloc(); |
|
if (!s->all_frames[i].avframe) { |
|
while (i > 0) |
|
av_frame_free(&s->all_frames[--i].avframe); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
ret = ff_thread_once(&dirac_arith_init, ff_dirac_init_arith_tables); |
|
if (ret != 0) |
|
return AVERROR_UNKNOWN; |
|
|
|
return 0; |
|
} |
|
|
|
static void dirac_decode_flush(AVCodecContext *avctx) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
free_sequence_buffers(s); |
|
s->seen_sequence_header = 0; |
|
s->frame_number = -1; |
|
} |
|
|
|
static av_cold int dirac_decode_end(AVCodecContext *avctx) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
int i; |
|
|
|
ff_dirac_golomb_reader_end(&s->reader_ctx); |
|
|
|
dirac_decode_flush(avctx); |
|
for (i = 0; i < MAX_FRAMES; i++) |
|
av_frame_free(&s->all_frames[i].avframe); |
|
|
|
av_freep(&s->thread_buf); |
|
av_freep(&s->slice_params_buf); |
|
|
|
return 0; |
|
} |
|
|
|
static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset) |
|
{ |
|
int coeff = dirac_get_se_golomb(gb); |
|
const int sign = FFSIGN(coeff); |
|
if (coeff) |
|
coeff = sign*((sign * coeff * qfactor + qoffset) >> 2); |
|
return coeff; |
|
} |
|
|
|
#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0)) |
|
|
|
#define UNPACK_ARITH(n, type) \ |
|
static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \ |
|
SubBand *b, type *buf, int x, int y) \ |
|
{ \ |
|
int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \ |
|
unsigned coeff; \ |
|
const int mstride = -(b->stride >> (1+b->pshift)); \ |
|
if (b->parent) { \ |
|
const type *pbuf = (type *)b->parent->ibuf; \ |
|
const int stride = b->parent->stride >> (1+b->parent->pshift); \ |
|
pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \ |
|
} \ |
|
if (b->orientation == subband_hl) \ |
|
sign_pred = buf[mstride]; \ |
|
if (x) { \ |
|
pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \ |
|
if (b->orientation == subband_lh) \ |
|
sign_pred = buf[-1]; \ |
|
} else { \ |
|
pred_ctx += !buf[mstride]; \ |
|
} \ |
|
coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \ |
|
if (coeff) { \ |
|
coeff = (coeff * qfactor + qoffset) >> 2; \ |
|
sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \ |
|
coeff = (coeff ^ -sign) + sign; \ |
|
} \ |
|
*buf = coeff; \ |
|
} \ |
|
|
|
UNPACK_ARITH(8, int16_t) |
|
UNPACK_ARITH(10, int32_t) |
|
|
|
/** |
|
* Decode the coeffs in the rectangle defined by left, right, top, bottom |
|
* [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock() |
|
*/ |
|
static inline void codeblock(DiracContext *s, SubBand *b, |
|
GetBitContext *gb, DiracArith *c, |
|
int left, int right, int top, int bottom, |
|
int blockcnt_one, int is_arith) |
|
{ |
|
int x, y, zero_block; |
|
int qoffset, qfactor; |
|
uint8_t *buf; |
|
|
|
/* check for any coded coefficients in this codeblock */ |
|
if (!blockcnt_one) { |
|
if (is_arith) |
|
zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK); |
|
else |
|
zero_block = get_bits1(gb); |
|
|
|
if (zero_block) |
|
return; |
|
} |
|
|
|
if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) { |
|
int quant = b->quant; |
|
if (is_arith) |
|
quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA); |
|
else |
|
quant += dirac_get_se_golomb(gb); |
|
if (quant < 0) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n"); |
|
return; |
|
} |
|
b->quant = quant; |
|
} |
|
|
|
if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant); |
|
b->quant = 0; |
|
return; |
|
} |
|
|
|
qfactor = ff_dirac_qscale_tab[b->quant]; |
|
/* TODO: context pointer? */ |
|
if (!s->num_refs) |
|
qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2; |
|
else |
|
qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2; |
|
|
|
buf = b->ibuf + top * b->stride; |
|
if (is_arith) { |
|
for (y = top; y < bottom; y++) { |
|
for (x = left; x < right; x++) { |
|
if (b->pshift) { |
|
coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y); |
|
} else { |
|
coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y); |
|
} |
|
} |
|
buf += b->stride; |
|
} |
|
} else { |
|
for (y = top; y < bottom; y++) { |
|
for (x = left; x < right; x++) { |
|
int val = coeff_unpack_golomb(gb, qfactor, qoffset); |
|
if (b->pshift) { |
|
AV_WN32(&buf[4*x], val); |
|
} else { |
|
AV_WN16(&buf[2*x], val); |
|
} |
|
} |
|
buf += b->stride; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 13.3 intra_dc_prediction(band) |
|
*/ |
|
#define INTRA_DC_PRED(n, type) \ |
|
static inline void intra_dc_prediction_##n(SubBand *b) \ |
|
{ \ |
|
type *buf = (type*)b->ibuf; \ |
|
int x, y; \ |
|
\ |
|
for (x = 1; x < b->width; x++) \ |
|
buf[x] += buf[x-1]; \ |
|
buf += (b->stride >> (1+b->pshift)); \ |
|
\ |
|
for (y = 1; y < b->height; y++) { \ |
|
buf[0] += buf[-(b->stride >> (1+b->pshift))]; \ |
|
\ |
|
for (x = 1; x < b->width; x++) { \ |
|
int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \ |
|
buf[x] += divide3(pred); \ |
|
} \ |
|
buf += (b->stride >> (1+b->pshift)); \ |
|
} \ |
|
} \ |
|
|
|
INTRA_DC_PRED(8, int16_t) |
|
INTRA_DC_PRED(10, int32_t) |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 13.4.2 Non-skipped subbands. subband_coeffs() |
|
*/ |
|
static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith) |
|
{ |
|
int cb_x, cb_y, left, right, top, bottom; |
|
DiracArith c; |
|
GetBitContext gb; |
|
int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width; |
|
int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height; |
|
int blockcnt_one = (cb_width + cb_height) == 2; |
|
|
|
if (!b->length) |
|
return; |
|
|
|
init_get_bits8(&gb, b->coeff_data, b->length); |
|
|
|
if (is_arith) |
|
ff_dirac_init_arith_decoder(&c, &gb, b->length); |
|
|
|
top = 0; |
|
for (cb_y = 0; cb_y < cb_height; cb_y++) { |
|
bottom = (b->height * (cb_y+1LL)) / cb_height; |
|
left = 0; |
|
for (cb_x = 0; cb_x < cb_width; cb_x++) { |
|
right = (b->width * (cb_x+1LL)) / cb_width; |
|
codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith); |
|
left = right; |
|
} |
|
top = bottom; |
|
} |
|
|
|
if (b->orientation == subband_ll && s->num_refs == 0) { |
|
if (s->pshift) { |
|
intra_dc_prediction_10(b); |
|
} else { |
|
intra_dc_prediction_8(b); |
|
} |
|
} |
|
} |
|
|
|
static int decode_subband_arith(AVCodecContext *avctx, void *b) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
decode_subband_internal(s, b, 1); |
|
return 0; |
|
} |
|
|
|
static int decode_subband_golomb(AVCodecContext *avctx, void *arg) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
SubBand **b = arg; |
|
decode_subband_internal(s, *b, 0); |
|
return 0; |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* [DIRAC_STD] 13.4.1 core_transform_data() |
|
*/ |
|
static void decode_component(DiracContext *s, int comp) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
SubBand *bands[3*MAX_DWT_LEVELS+1]; |
|
enum dirac_subband orientation; |
|
int level, num_bands = 0; |
|
|
|
/* Unpack all subbands at all levels. */ |
|
for (level = 0; level < s->wavelet_depth; level++) { |
|
for (orientation = !!level; orientation < 4; orientation++) { |
|
SubBand *b = &s->plane[comp].band[level][orientation]; |
|
bands[num_bands++] = b; |
|
|
|
align_get_bits(&s->gb); |
|
/* [DIRAC_STD] 13.4.2 subband() */ |
|
b->length = get_interleaved_ue_golomb(&s->gb); |
|
if (b->length) { |
|
b->quant = get_interleaved_ue_golomb(&s->gb); |
|
align_get_bits(&s->gb); |
|
b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8; |
|
b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0)); |
|
skip_bits_long(&s->gb, b->length*8); |
|
} |
|
} |
|
/* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */ |
|
if (s->is_arith) |
|
avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level], |
|
NULL, 4-!!level, sizeof(SubBand)); |
|
} |
|
/* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */ |
|
if (!s->is_arith) |
|
avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*)); |
|
} |
|
|
|
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \ |
|
type *buf = (type *)buf1; \ |
|
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \ |
|
if (get_bits_count(gb) >= ebits) \ |
|
return; \ |
|
if (buf2) { \ |
|
buf = (type *)buf2; \ |
|
buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \ |
|
if (get_bits_count(gb) >= ebits) \ |
|
return; \ |
|
} \ |
|
|
|
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, |
|
int slice_x, int slice_y, int bits_end, |
|
SubBand *b1, SubBand *b2) |
|
{ |
|
int left = b1->width * slice_x / s->num_x; |
|
int right = b1->width *(slice_x+1) / s->num_x; |
|
int top = b1->height * slice_y / s->num_y; |
|
int bottom = b1->height *(slice_y+1) / s->num_y; |
|
|
|
int qfactor, qoffset; |
|
|
|
uint8_t *buf1 = b1->ibuf + top * b1->stride; |
|
uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL; |
|
int x, y; |
|
|
|
if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant); |
|
return; |
|
} |
|
qfactor = ff_dirac_qscale_tab[quant]; |
|
qoffset = ff_dirac_qoffset_intra_tab[quant] + 2; |
|
/* we have to constantly check for overread since the spec explicitly |
|
requires this, with the meaning that all remaining coeffs are set to 0 */ |
|
if (get_bits_count(gb) >= bits_end) |
|
return; |
|
|
|
if (s->pshift) { |
|
for (y = top; y < bottom; y++) { |
|
for (x = left; x < right; x++) { |
|
PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2); |
|
} |
|
buf1 += b1->stride; |
|
if (buf2) |
|
buf2 += b2->stride; |
|
} |
|
} |
|
else { |
|
for (y = top; y < bottom; y++) { |
|
for (x = left; x < right; x++) { |
|
PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2); |
|
} |
|
buf1 += b1->stride; |
|
if (buf2) |
|
buf2 += b2->stride; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 13.5.2 Slices. slice(sx,sy) |
|
*/ |
|
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
DiracSlice *slice = arg; |
|
GetBitContext *gb = &slice->gb; |
|
enum dirac_subband orientation; |
|
int level, quant, chroma_bits, chroma_end; |
|
|
|
int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */ |
|
int length_bits = av_log2(8 * slice->bytes)+1; |
|
int luma_bits = get_bits_long(gb, length_bits); |
|
int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb)); |
|
|
|
/* [DIRAC_STD] 13.5.5.2 luma_slice_band */ |
|
for (level = 0; level < s->wavelet_depth; level++) |
|
for (orientation = !!level; orientation < 4; orientation++) { |
|
quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0); |
|
decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end, |
|
&s->plane[0].band[level][orientation], NULL); |
|
} |
|
|
|
/* consume any unused bits from luma */ |
|
skip_bits_long(gb, get_bits_count(gb) - luma_end); |
|
|
|
chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits; |
|
chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb)); |
|
/* [DIRAC_STD] 13.5.5.3 chroma_slice_band */ |
|
for (level = 0; level < s->wavelet_depth; level++) |
|
for (orientation = !!level; orientation < 4; orientation++) { |
|
quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0); |
|
decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end, |
|
&s->plane[1].band[level][orientation], |
|
&s->plane[2].band[level][orientation]); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
typedef struct SliceCoeffs { |
|
int left; |
|
int top; |
|
int tot_h; |
|
int tot_v; |
|
int tot; |
|
} SliceCoeffs; |
|
|
|
static int subband_coeffs(DiracContext *s, int x, int y, int p, |
|
SliceCoeffs c[MAX_DWT_LEVELS]) |
|
{ |
|
int level, coef = 0; |
|
for (level = 0; level < s->wavelet_depth; level++) { |
|
SliceCoeffs *o = &c[level]; |
|
SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */ |
|
o->top = b->height * y / s->num_y; |
|
o->left = b->width * x / s->num_x; |
|
o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left; |
|
o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top; |
|
o->tot = o->tot_h*o->tot_v; |
|
coef += o->tot * (4 - !!level); |
|
} |
|
return coef; |
|
} |
|
|
|
/** |
|
* VC-2 Specification -> |
|
* 13.5.3 hq_slice(sx,sy) |
|
*/ |
|
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf) |
|
{ |
|
int i, level, orientation, quant_idx; |
|
int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4]; |
|
GetBitContext *gb = &slice->gb; |
|
SliceCoeffs coeffs_num[MAX_DWT_LEVELS]; |
|
|
|
skip_bits_long(gb, 8*s->highquality.prefix_bytes); |
|
quant_idx = get_bits(gb, 8); |
|
|
|
if (quant_idx > DIRAC_MAX_QUANT_INDEX - 1) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* Slice quantization (slice_quantizers() in the specs) */ |
|
for (level = 0; level < s->wavelet_depth; level++) { |
|
for (orientation = !!level; orientation < 4; orientation++) { |
|
const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0); |
|
qfactor[level][orientation] = ff_dirac_qscale_tab[quant]; |
|
qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2; |
|
} |
|
} |
|
|
|
/* Luma + 2 Chroma planes */ |
|
for (i = 0; i < 3; i++) { |
|
int coef_num, coef_par, off = 0; |
|
int64_t length = s->highquality.size_scaler*get_bits(gb, 8); |
|
int64_t bits_end = get_bits_count(gb) + 8*length; |
|
const uint8_t *addr = align_get_bits(gb); |
|
|
|
if (length*8 > get_bits_left(gb)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "end too far away\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num); |
|
|
|
if (s->pshift) |
|
coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr, |
|
length, tmp_buf, coef_num); |
|
else |
|
coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr, |
|
length, tmp_buf, coef_num); |
|
|
|
if (coef_num > coef_par) { |
|
const int start_b = coef_par * (1 << (s->pshift + 1)); |
|
const int end_b = coef_num * (1 << (s->pshift + 1)); |
|
memset(&tmp_buf[start_b], 0, end_b - start_b); |
|
} |
|
|
|
for (level = 0; level < s->wavelet_depth; level++) { |
|
const SliceCoeffs *c = &coeffs_num[level]; |
|
for (orientation = !!level; orientation < 4; orientation++) { |
|
const SubBand *b1 = &s->plane[i].band[level][orientation]; |
|
uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1)); |
|
|
|
/* Change to c->tot_h <= 4 for AVX2 dequantization */ |
|
const int qfunc = s->pshift + 2*(c->tot_h <= 2); |
|
s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride, |
|
qfactor[level][orientation], |
|
qoffset[level][orientation], |
|
c->tot_v, c->tot_h); |
|
|
|
off += c->tot << (s->pshift + 1); |
|
} |
|
} |
|
|
|
skip_bits_long(gb, bits_end - get_bits_count(gb)); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) |
|
{ |
|
int i; |
|
DiracContext *s = avctx->priv_data; |
|
DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr; |
|
uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr]; |
|
for (i = 0; i < s->num_x; i++) |
|
decode_hq_slice(s, &slices[i], thread_buf); |
|
return 0; |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 13.5.1 low_delay_transform_data() |
|
*/ |
|
static int decode_lowdelay(DiracContext *s) |
|
{ |
|
AVCodecContext *avctx = s->avctx; |
|
int slice_x, slice_y, bufsize; |
|
int64_t coef_buf_size, bytes = 0; |
|
const uint8_t *buf; |
|
DiracSlice *slices; |
|
SliceCoeffs tmp[MAX_DWT_LEVELS]; |
|
int slice_num = 0; |
|
|
|
if (s->slice_params_num_buf != (s->num_x * s->num_y)) { |
|
s->slice_params_buf = av_realloc_f(s->slice_params_buf, s->num_x * s->num_y, sizeof(DiracSlice)); |
|
if (!s->slice_params_buf) { |
|
av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n"); |
|
s->slice_params_num_buf = 0; |
|
return AVERROR(ENOMEM); |
|
} |
|
s->slice_params_num_buf = s->num_x * s->num_y; |
|
} |
|
slices = s->slice_params_buf; |
|
|
|
/* 8 becacuse that's how much the golomb reader could overread junk data |
|
* from another plane/slice at most, and 512 because SIMD */ |
|
coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8; |
|
coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512; |
|
|
|
if (s->threads_num_buf != avctx->thread_count || |
|
s->thread_buf_size != coef_buf_size) { |
|
s->threads_num_buf = avctx->thread_count; |
|
s->thread_buf_size = coef_buf_size; |
|
s->thread_buf = av_realloc_f(s->thread_buf, avctx->thread_count, s->thread_buf_size); |
|
if (!s->thread_buf) { |
|
av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n"); |
|
return AVERROR(ENOMEM); |
|
} |
|
} |
|
|
|
align_get_bits(&s->gb); |
|
/*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */ |
|
buf = s->gb.buffer + get_bits_count(&s->gb)/8; |
|
bufsize = get_bits_left(&s->gb); |
|
|
|
if (s->hq_picture) { |
|
int i; |
|
|
|
for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) { |
|
for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) { |
|
bytes = s->highquality.prefix_bytes + 1; |
|
for (i = 0; i < 3; i++) { |
|
if (bytes <= bufsize/8) |
|
bytes += buf[bytes] * s->highquality.size_scaler + 1; |
|
} |
|
if (bytes >= INT_MAX || bytes*8 > bufsize) { |
|
av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
slices[slice_num].bytes = bytes; |
|
slices[slice_num].slice_x = slice_x; |
|
slices[slice_num].slice_y = slice_y; |
|
init_get_bits(&slices[slice_num].gb, buf, bufsize); |
|
slice_num++; |
|
|
|
buf += bytes; |
|
if (bufsize/8 >= bytes) |
|
bufsize -= bytes*8; |
|
else |
|
bufsize = 0; |
|
} |
|
} |
|
|
|
if (s->num_x*s->num_y != slice_num) { |
|
av_log(s->avctx, AV_LOG_ERROR, "too few slices\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y); |
|
} else { |
|
for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) { |
|
for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) { |
|
bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den |
|
- slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den; |
|
slices[slice_num].bytes = bytes; |
|
slices[slice_num].slice_x = slice_x; |
|
slices[slice_num].slice_y = slice_y; |
|
init_get_bits(&slices[slice_num].gb, buf, bufsize); |
|
slice_num++; |
|
|
|
buf += bytes; |
|
if (bufsize/8 >= bytes) |
|
bufsize -= bytes*8; |
|
else |
|
bufsize = 0; |
|
} |
|
} |
|
avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num, |
|
sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */ |
|
} |
|
|
|
if (s->dc_prediction) { |
|
if (s->pshift) { |
|
intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */ |
|
intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */ |
|
intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */ |
|
} else { |
|
intra_dc_prediction_8(&s->plane[0].band[0][0]); |
|
intra_dc_prediction_8(&s->plane[1].band[0][0]); |
|
intra_dc_prediction_8(&s->plane[2].band[0][0]); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void init_planes(DiracContext *s) |
|
{ |
|
int i, w, h, level, orientation; |
|
|
|
for (i = 0; i < 3; i++) { |
|
Plane *p = &s->plane[i]; |
|
|
|
p->width = s->seq.width >> (i ? s->chroma_x_shift : 0); |
|
p->height = s->seq.height >> (i ? s->chroma_y_shift : 0); |
|
p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth); |
|
p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth); |
|
p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift); |
|
|
|
for (level = s->wavelet_depth-1; level >= 0; level--) { |
|
w = w>>1; |
|
h = h>>1; |
|
for (orientation = !!level; orientation < 4; orientation++) { |
|
SubBand *b = &p->band[level][orientation]; |
|
|
|
b->pshift = s->pshift; |
|
b->ibuf = p->idwt.buf; |
|
b->level = level; |
|
b->stride = p->idwt.stride << (s->wavelet_depth - level); |
|
b->width = w; |
|
b->height = h; |
|
b->orientation = orientation; |
|
|
|
if (orientation & 1) |
|
b->ibuf += w << (1+b->pshift); |
|
if (orientation > 1) |
|
b->ibuf += (b->stride>>1); |
|
|
|
if (level) |
|
b->parent = &p->band[level-1][orientation]; |
|
} |
|
} |
|
|
|
if (i > 0) { |
|
p->xblen = s->plane[0].xblen >> s->chroma_x_shift; |
|
p->yblen = s->plane[0].yblen >> s->chroma_y_shift; |
|
p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift; |
|
p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift; |
|
} |
|
|
|
p->xoffset = (p->xblen - p->xbsep)/2; |
|
p->yoffset = (p->yblen - p->ybsep)/2; |
|
} |
|
} |
|
|
|
/** |
|
* Unpack the motion compensation parameters |
|
* Dirac Specification -> |
|
* 11.2 Picture prediction data. picture_prediction() |
|
*/ |
|
static int dirac_unpack_prediction_parameters(DiracContext *s) |
|
{ |
|
static const uint8_t default_blen[] = { 4, 12, 16, 24 }; |
|
|
|
GetBitContext *gb = &s->gb; |
|
unsigned idx, ref; |
|
|
|
align_get_bits(gb); |
|
/* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */ |
|
/* Luma and Chroma are equal. 11.2.3 */ |
|
idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */ |
|
|
|
if (idx > 4) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if (idx == 0) { |
|
s->plane[0].xblen = get_interleaved_ue_golomb(gb); |
|
s->plane[0].yblen = get_interleaved_ue_golomb(gb); |
|
s->plane[0].xbsep = get_interleaved_ue_golomb(gb); |
|
s->plane[0].ybsep = get_interleaved_ue_golomb(gb); |
|
} else { |
|
/*[DIRAC_STD] preset_block_params(index). Table 11.1 */ |
|
s->plane[0].xblen = default_blen[idx-1]; |
|
s->plane[0].yblen = default_blen[idx-1]; |
|
s->plane[0].xbsep = 4 * idx; |
|
s->plane[0].ybsep = 4 * idx; |
|
} |
|
/*[DIRAC_STD] 11.2.4 motion_data_dimensions() |
|
Calculated in function dirac_unpack_block_motion_data */ |
|
|
|
if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 || |
|
s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 || |
|
!s->plane[0].xblen || !s->plane[0].yblen) { |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n", |
|
s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n"); |
|
return AVERROR_PATCHWELCOME; |
|
} |
|
|
|
/*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision() |
|
Read motion vector precision */ |
|
s->mv_precision = get_interleaved_ue_golomb(gb); |
|
if (s->mv_precision > 3) { |
|
av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/*[DIRAC_STD] 11.2.6 Global motion. global_motion() |
|
Read the global motion compensation parameters */ |
|
s->globalmc_flag = get_bits1(gb); |
|
if (s->globalmc_flag) { |
|
memset(s->globalmc, 0, sizeof(s->globalmc)); |
|
/* [DIRAC_STD] pan_tilt(gparams) */ |
|
for (ref = 0; ref < s->num_refs; ref++) { |
|
if (get_bits1(gb)) { |
|
s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb); |
|
s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb); |
|
} |
|
/* [DIRAC_STD] zoom_rotate_shear(gparams) |
|
zoom/rotation/shear parameters */ |
|
if (get_bits1(gb)) { |
|
s->globalmc[ref].zrs_exp = get_interleaved_ue_golomb(gb); |
|
s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb); |
|
s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb); |
|
s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb); |
|
s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb); |
|
} else { |
|
s->globalmc[ref].zrs[0][0] = 1; |
|
s->globalmc[ref].zrs[1][1] = 1; |
|
} |
|
/* [DIRAC_STD] perspective(gparams) */ |
|
if (get_bits1(gb)) { |
|
s->globalmc[ref].perspective_exp = get_interleaved_ue_golomb(gb); |
|
s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb); |
|
s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb); |
|
} |
|
} |
|
} |
|
|
|
/*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode() |
|
Picture prediction mode, not currently used. */ |
|
if (get_interleaved_ue_golomb(gb)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights() |
|
just data read, weight calculation will be done later on. */ |
|
s->weight_log2denom = 1; |
|
s->weight[0] = 1; |
|
s->weight[1] = 1; |
|
|
|
if (get_bits1(gb)) { |
|
s->weight_log2denom = get_interleaved_ue_golomb(gb); |
|
if (s->weight_log2denom < 1 || s->weight_log2denom > 8) { |
|
av_log(s->avctx, AV_LOG_ERROR, "weight_log2denom unsupported or invalid\n"); |
|
s->weight_log2denom = 1; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->weight[0] = dirac_get_se_golomb(gb); |
|
if (s->num_refs == 2) |
|
s->weight[1] = dirac_get_se_golomb(gb); |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 11.3 Wavelet transform data. wavelet_transform() |
|
*/ |
|
static int dirac_unpack_idwt_params(DiracContext *s) |
|
{ |
|
GetBitContext *gb = &s->gb; |
|
int i, level; |
|
unsigned tmp; |
|
|
|
#define CHECKEDREAD(dst, cond, errmsg) \ |
|
tmp = get_interleaved_ue_golomb(gb); \ |
|
if (cond) { \ |
|
av_log(s->avctx, AV_LOG_ERROR, errmsg); \ |
|
return AVERROR_INVALIDDATA; \ |
|
}\ |
|
dst = tmp; |
|
|
|
align_get_bits(gb); |
|
|
|
s->zero_res = s->num_refs ? get_bits1(gb) : 0; |
|
if (s->zero_res) |
|
return 0; |
|
|
|
/*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */ |
|
CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n") |
|
|
|
CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n") |
|
|
|
if (!s->low_delay) { |
|
/* Codeblock parameters (core syntax only) */ |
|
if (get_bits1(gb)) { |
|
for (i = 0; i <= s->wavelet_depth; i++) { |
|
CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n") |
|
CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n") |
|
} |
|
|
|
CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n") |
|
} |
|
else { |
|
for (i = 0; i <= s->wavelet_depth; i++) |
|
s->codeblock[i].width = s->codeblock[i].height = 1; |
|
} |
|
} |
|
else { |
|
s->num_x = get_interleaved_ue_golomb(gb); |
|
s->num_y = get_interleaved_ue_golomb(gb); |
|
if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX) { |
|
av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n"); |
|
s->num_x = s->num_y = 0; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (s->ld_picture) { |
|
s->lowdelay.bytes.num = get_interleaved_ue_golomb(gb); |
|
s->lowdelay.bytes.den = get_interleaved_ue_golomb(gb); |
|
if (s->lowdelay.bytes.den <= 0) { |
|
av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} else if (s->hq_picture) { |
|
s->highquality.prefix_bytes = get_interleaved_ue_golomb(gb); |
|
s->highquality.size_scaler = get_interleaved_ue_golomb(gb); |
|
if (s->highquality.prefix_bytes >= INT_MAX / 8) { |
|
av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
/* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */ |
|
if (get_bits1(gb)) { |
|
av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n"); |
|
/* custom quantization matrix */ |
|
for (level = 0; level < s->wavelet_depth; level++) { |
|
for (i = !!level; i < 4; i++) { |
|
s->lowdelay.quant[level][i] = get_interleaved_ue_golomb(gb); |
|
} |
|
} |
|
} else { |
|
if (s->wavelet_depth > 4) { |
|
av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
/* default quantization matrix */ |
|
for (level = 0; level < s->wavelet_depth; level++) |
|
for (i = 0; i < 4; i++) { |
|
s->lowdelay.quant[level][i] = ff_dirac_default_qmat[s->wavelet_idx][level][i]; |
|
/* haar with no shift differs for different depths */ |
|
if (s->wavelet_idx == 3) |
|
s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level); |
|
} |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y) |
|
{ |
|
static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 }; |
|
|
|
if (!(x|y)) |
|
return 0; |
|
else if (!y) |
|
return sbsplit[-1]; |
|
else if (!x) |
|
return sbsplit[-stride]; |
|
|
|
return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]]; |
|
} |
|
|
|
static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask) |
|
{ |
|
int pred; |
|
|
|
if (!(x|y)) |
|
return 0; |
|
else if (!y) |
|
return block[-1].ref & refmask; |
|
else if (!x) |
|
return block[-stride].ref & refmask; |
|
|
|
/* return the majority */ |
|
pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask); |
|
return (pred >> 1) & refmask; |
|
} |
|
|
|
static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y) |
|
{ |
|
int i, n = 0; |
|
|
|
memset(block->u.dc, 0, sizeof(block->u.dc)); |
|
|
|
if (x && !(block[-1].ref & 3)) { |
|
for (i = 0; i < 3; i++) |
|
block->u.dc[i] += block[-1].u.dc[i]; |
|
n++; |
|
} |
|
|
|
if (y && !(block[-stride].ref & 3)) { |
|
for (i = 0; i < 3; i++) |
|
block->u.dc[i] += block[-stride].u.dc[i]; |
|
n++; |
|
} |
|
|
|
if (x && y && !(block[-1-stride].ref & 3)) { |
|
for (i = 0; i < 3; i++) |
|
block->u.dc[i] += block[-1-stride].u.dc[i]; |
|
n++; |
|
} |
|
|
|
if (n == 2) { |
|
for (i = 0; i < 3; i++) |
|
block->u.dc[i] = (block->u.dc[i]+1)>>1; |
|
} else if (n == 3) { |
|
for (i = 0; i < 3; i++) |
|
block->u.dc[i] = divide3(block->u.dc[i]); |
|
} |
|
} |
|
|
|
static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref) |
|
{ |
|
int16_t *pred[3]; |
|
int refmask = ref+1; |
|
int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */ |
|
int n = 0; |
|
|
|
if (x && (block[-1].ref & mask) == refmask) |
|
pred[n++] = block[-1].u.mv[ref]; |
|
|
|
if (y && (block[-stride].ref & mask) == refmask) |
|
pred[n++] = block[-stride].u.mv[ref]; |
|
|
|
if (x && y && (block[-stride-1].ref & mask) == refmask) |
|
pred[n++] = block[-stride-1].u.mv[ref]; |
|
|
|
switch (n) { |
|
case 0: |
|
block->u.mv[ref][0] = 0; |
|
block->u.mv[ref][1] = 0; |
|
break; |
|
case 1: |
|
block->u.mv[ref][0] = pred[0][0]; |
|
block->u.mv[ref][1] = pred[0][1]; |
|
break; |
|
case 2: |
|
block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1; |
|
block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1; |
|
break; |
|
case 3: |
|
block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]); |
|
block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]); |
|
break; |
|
} |
|
} |
|
|
|
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref) |
|
{ |
|
int ez = s->globalmc[ref].zrs_exp; |
|
int ep = s->globalmc[ref].perspective_exp; |
|
int (*A)[2] = s->globalmc[ref].zrs; |
|
int *b = s->globalmc[ref].pan_tilt; |
|
int *c = s->globalmc[ref].perspective; |
|
|
|
int m = (1<<ep) - (c[0]*x + c[1]*y); |
|
int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]); |
|
int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]); |
|
|
|
block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep); |
|
block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep); |
|
} |
|
|
|
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, |
|
int stride, int x, int y) |
|
{ |
|
int i; |
|
|
|
block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1); |
|
block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1); |
|
|
|
if (s->num_refs == 2) { |
|
block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2); |
|
block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1; |
|
} |
|
|
|
if (!block->ref) { |
|
pred_block_dc(block, stride, x, y); |
|
for (i = 0; i < 3; i++) |
|
block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA); |
|
return; |
|
} |
|
|
|
if (s->globalmc_flag) { |
|
block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL); |
|
block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2; |
|
} |
|
|
|
for (i = 0; i < s->num_refs; i++) |
|
if (block->ref & (i+1)) { |
|
if (block->ref & DIRAC_REF_MASK_GLOBAL) { |
|
global_mv(s, block, x, y, i); |
|
} else { |
|
pred_mv(block, stride, x, y, i); |
|
block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA); |
|
block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA); |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* Copies the current block to the other blocks covered by the current superblock split mode |
|
*/ |
|
static void propagate_block_data(DiracBlock *block, int stride, int size) |
|
{ |
|
int x, y; |
|
DiracBlock *dst = block; |
|
|
|
for (x = 1; x < size; x++) |
|
dst[x] = *block; |
|
|
|
for (y = 1; y < size; y++) { |
|
dst += stride; |
|
for (x = 0; x < size; x++) |
|
dst[x] = *block; |
|
} |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 12. Block motion data syntax |
|
*/ |
|
static int dirac_unpack_block_motion_data(DiracContext *s) |
|
{ |
|
GetBitContext *gb = &s->gb; |
|
uint8_t *sbsplit = s->sbsplit; |
|
int i, x, y, q, p; |
|
DiracArith arith[8]; |
|
|
|
align_get_bits(gb); |
|
|
|
/* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */ |
|
s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep); |
|
s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep); |
|
s->blwidth = 4 * s->sbwidth; |
|
s->blheight = 4 * s->sbheight; |
|
|
|
/* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes() |
|
decode superblock split modes */ |
|
ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */ |
|
for (y = 0; y < s->sbheight; y++) { |
|
for (x = 0; x < s->sbwidth; x++) { |
|
unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA); |
|
if (split > 2) |
|
return AVERROR_INVALIDDATA; |
|
sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3; |
|
} |
|
sbsplit += s->sbwidth; |
|
} |
|
|
|
/* setup arith decoding */ |
|
ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); |
|
for (i = 0; i < s->num_refs; i++) { |
|
ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb)); |
|
ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb)); |
|
} |
|
for (i = 0; i < 3; i++) |
|
ff_dirac_init_arith_decoder(arith+1+i, gb, get_interleaved_ue_golomb(gb)); |
|
|
|
for (y = 0; y < s->sbheight; y++) |
|
for (x = 0; x < s->sbwidth; x++) { |
|
int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x]; |
|
int step = 4 >> s->sbsplit[y * s->sbwidth + x]; |
|
|
|
for (q = 0; q < blkcnt; q++) |
|
for (p = 0; p < blkcnt; p++) { |
|
int bx = 4 * x + p*step; |
|
int by = 4 * y + q*step; |
|
DiracBlock *block = &s->blmotion[by*s->blwidth + bx]; |
|
decode_block_params(s, arith, block, s->blwidth, bx, by); |
|
propagate_block_data(block, s->blwidth, step); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int weight(int i, int blen, int offset) |
|
{ |
|
#define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \ |
|
(1 + (6*(i) + offset - 1) / (2*offset - 1)) |
|
|
|
if (i < 2*offset) |
|
return ROLLOFF(i); |
|
else if (i > blen-1 - 2*offset) |
|
return ROLLOFF(blen-1 - i); |
|
return 8; |
|
} |
|
|
|
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, |
|
int left, int right, int wy) |
|
{ |
|
int x; |
|
for (x = 0; left && x < p->xblen >> 1; x++) |
|
obmc_weight[x] = wy*8; |
|
for (; x < p->xblen >> right; x++) |
|
obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset); |
|
for (; x < p->xblen; x++) |
|
obmc_weight[x] = wy*8; |
|
for (; x < stride; x++) |
|
obmc_weight[x] = 0; |
|
} |
|
|
|
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, |
|
int left, int right, int top, int bottom) |
|
{ |
|
int y; |
|
for (y = 0; top && y < p->yblen >> 1; y++) { |
|
init_obmc_weight_row(p, obmc_weight, stride, left, right, 8); |
|
obmc_weight += stride; |
|
} |
|
for (; y < p->yblen >> bottom; y++) { |
|
int wy = weight(y, p->yblen, p->yoffset); |
|
init_obmc_weight_row(p, obmc_weight, stride, left, right, wy); |
|
obmc_weight += stride; |
|
} |
|
for (; y < p->yblen; y++) { |
|
init_obmc_weight_row(p, obmc_weight, stride, left, right, 8); |
|
obmc_weight += stride; |
|
} |
|
} |
|
|
|
static void init_obmc_weights(DiracContext *s, Plane *p, int by) |
|
{ |
|
int top = !by; |
|
int bottom = by == s->blheight-1; |
|
|
|
/* don't bother re-initing for rows 2 to blheight-2, the weights don't change */ |
|
if (top || bottom || by == 1) { |
|
init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom); |
|
init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom); |
|
init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom); |
|
} |
|
} |
|
|
|
static const uint8_t epel_weights[4][4][4] = { |
|
{{ 16, 0, 0, 0 }, |
|
{ 12, 4, 0, 0 }, |
|
{ 8, 8, 0, 0 }, |
|
{ 4, 12, 0, 0 }}, |
|
{{ 12, 0, 4, 0 }, |
|
{ 9, 3, 3, 1 }, |
|
{ 6, 6, 2, 2 }, |
|
{ 3, 9, 1, 3 }}, |
|
{{ 8, 0, 8, 0 }, |
|
{ 6, 2, 6, 2 }, |
|
{ 4, 4, 4, 4 }, |
|
{ 2, 6, 2, 6 }}, |
|
{{ 4, 0, 12, 0 }, |
|
{ 3, 1, 9, 3 }, |
|
{ 2, 2, 6, 6 }, |
|
{ 1, 3, 3, 9 }} |
|
}; |
|
|
|
/** |
|
* For block x,y, determine which of the hpel planes to do bilinear |
|
* interpolation from and set src[] to the location in each hpel plane |
|
* to MC from. |
|
* |
|
* @return the index of the put_dirac_pixels_tab function to use |
|
* 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel |
|
*/ |
|
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], |
|
int x, int y, int ref, int plane) |
|
{ |
|
Plane *p = &s->plane[plane]; |
|
uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane]; |
|
int motion_x = block->u.mv[ref][0]; |
|
int motion_y = block->u.mv[ref][1]; |
|
int mx, my, i, epel, nplanes = 0; |
|
|
|
if (plane) { |
|
motion_x >>= s->chroma_x_shift; |
|
motion_y >>= s->chroma_y_shift; |
|
} |
|
|
|
mx = motion_x & ~(-1U << s->mv_precision); |
|
my = motion_y & ~(-1U << s->mv_precision); |
|
motion_x >>= s->mv_precision; |
|
motion_y >>= s->mv_precision; |
|
/* normalize subpel coordinates to epel */ |
|
/* TODO: template this function? */ |
|
mx <<= 3 - s->mv_precision; |
|
my <<= 3 - s->mv_precision; |
|
|
|
x += motion_x; |
|
y += motion_y; |
|
epel = (mx|my)&1; |
|
|
|
/* hpel position */ |
|
if (!((mx|my)&3)) { |
|
nplanes = 1; |
|
src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x; |
|
} else { |
|
/* qpel or epel */ |
|
nplanes = 4; |
|
for (i = 0; i < 4; i++) |
|
src[i] = ref_hpel[i] + y*p->stride + x; |
|
|
|
/* if we're interpolating in the right/bottom halves, adjust the planes as needed |
|
we increment x/y because the edge changes for half of the pixels */ |
|
if (mx > 4) { |
|
src[0] += 1; |
|
src[2] += 1; |
|
x++; |
|
} |
|
if (my > 4) { |
|
src[0] += p->stride; |
|
src[1] += p->stride; |
|
y++; |
|
} |
|
|
|
/* hpel planes are: |
|
[0]: F [1]: H |
|
[2]: V [3]: C */ |
|
if (!epel) { |
|
/* check if we really only need 2 planes since either mx or my is |
|
a hpel position. (epel weights of 0 handle this there) */ |
|
if (!(mx&3)) { |
|
/* mx == 0: average [0] and [2] |
|
mx == 4: average [1] and [3] */ |
|
src[!mx] = src[2 + !!mx]; |
|
nplanes = 2; |
|
} else if (!(my&3)) { |
|
src[0] = src[(my>>1) ]; |
|
src[1] = src[(my>>1)+1]; |
|
nplanes = 2; |
|
} |
|
} else { |
|
/* adjust the ordering if needed so the weights work */ |
|
if (mx > 4) { |
|
FFSWAP(const uint8_t *, src[0], src[1]); |
|
FFSWAP(const uint8_t *, src[2], src[3]); |
|
} |
|
if (my > 4) { |
|
FFSWAP(const uint8_t *, src[0], src[2]); |
|
FFSWAP(const uint8_t *, src[1], src[3]); |
|
} |
|
src[4] = epel_weights[my&3][mx&3]; |
|
} |
|
} |
|
|
|
/* fixme: v/h _edge_pos */ |
|
if (x + p->xblen > p->width +EDGE_WIDTH/2 || |
|
y + p->yblen > p->height+EDGE_WIDTH/2 || |
|
x < 0 || y < 0) { |
|
for (i = 0; i < nplanes; i++) { |
|
s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i], |
|
p->stride, p->stride, |
|
p->xblen, p->yblen, x, y, |
|
p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2); |
|
src[i] = s->edge_emu_buffer[i]; |
|
} |
|
} |
|
return (nplanes>>1) + epel; |
|
} |
|
|
|
static void add_dc(uint16_t *dst, int dc, int stride, |
|
uint8_t *obmc_weight, int xblen, int yblen) |
|
{ |
|
int x, y; |
|
dc += 128; |
|
|
|
for (y = 0; y < yblen; y++) { |
|
for (x = 0; x < xblen; x += 2) { |
|
dst[x ] += dc * obmc_weight[x ]; |
|
dst[x+1] += dc * obmc_weight[x+1]; |
|
} |
|
dst += stride; |
|
obmc_weight += MAX_BLOCKSIZE; |
|
} |
|
} |
|
|
|
static void block_mc(DiracContext *s, DiracBlock *block, |
|
uint16_t *mctmp, uint8_t *obmc_weight, |
|
int plane, int dstx, int dsty) |
|
{ |
|
Plane *p = &s->plane[plane]; |
|
const uint8_t *src[5]; |
|
int idx; |
|
|
|
switch (block->ref&3) { |
|
case 0: /* DC */ |
|
add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen); |
|
return; |
|
case 1: |
|
case 2: |
|
idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane); |
|
s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); |
|
if (s->weight_func) |
|
s->weight_func(s->mcscratch, p->stride, s->weight_log2denom, |
|
s->weight[0] + s->weight[1], p->yblen); |
|
break; |
|
case 3: |
|
idx = mc_subpel(s, block, src, dstx, dsty, 0, plane); |
|
s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); |
|
idx = mc_subpel(s, block, src, dstx, dsty, 1, plane); |
|
if (s->biweight_func) { |
|
/* fixme: +32 is a quick hack */ |
|
s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen); |
|
s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom, |
|
s->weight[0], s->weight[1], p->yblen); |
|
} else |
|
s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen); |
|
break; |
|
} |
|
s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen); |
|
} |
|
|
|
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty) |
|
{ |
|
Plane *p = &s->plane[plane]; |
|
int x, dstx = p->xbsep - p->xoffset; |
|
|
|
block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty); |
|
mctmp += p->xbsep; |
|
|
|
for (x = 1; x < s->blwidth-1; x++) { |
|
block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty); |
|
dstx += p->xbsep; |
|
mctmp += p->xbsep; |
|
} |
|
block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty); |
|
} |
|
|
|
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen) |
|
{ |
|
int idx = 0; |
|
if (xblen > 8) |
|
idx = 1; |
|
if (xblen > 16) |
|
idx = 2; |
|
|
|
memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab)); |
|
memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab)); |
|
s->add_obmc = s->diracdsp.add_dirac_obmc[idx]; |
|
if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) { |
|
s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx]; |
|
s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx]; |
|
} else { |
|
s->weight_func = NULL; |
|
s->biweight_func = NULL; |
|
} |
|
} |
|
|
|
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height) |
|
{ |
|
/* chroma allocates an edge of 8 when subsampled |
|
which for 4:2:2 means an h edge of 16 and v edge of 8 |
|
just use 8 for everything for the moment */ |
|
int i, edge = EDGE_WIDTH/2; |
|
|
|
ref->hpel[plane][0] = ref->avframe->data[plane]; |
|
s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */ |
|
|
|
/* no need for hpel if we only have fpel vectors */ |
|
if (!s->mv_precision) |
|
return 0; |
|
|
|
for (i = 1; i < 4; i++) { |
|
if (!ref->hpel_base[plane][i]) |
|
ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32); |
|
if (!ref->hpel_base[plane][i]) { |
|
return AVERROR(ENOMEM); |
|
} |
|
/* we need to be 16-byte aligned even for chroma */ |
|
ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16; |
|
} |
|
|
|
if (!ref->interpolated[plane]) { |
|
s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2], |
|
ref->hpel[plane][3], ref->hpel[plane][0], |
|
ref->avframe->linesize[plane], width, height); |
|
s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); |
|
s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); |
|
s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); |
|
} |
|
ref->interpolated[plane] = 1; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 13.0 Transform data syntax. transform_data() |
|
*/ |
|
static int dirac_decode_frame_internal(DiracContext *s) |
|
{ |
|
DWTContext d; |
|
int y, i, comp, dsty; |
|
int ret; |
|
|
|
if (s->low_delay) { |
|
/* [DIRAC_STD] 13.5.1 low_delay_transform_data() */ |
|
if (!s->hq_picture) { |
|
for (comp = 0; comp < 3; comp++) { |
|
Plane *p = &s->plane[comp]; |
|
memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height); |
|
} |
|
} |
|
if (!s->zero_res) { |
|
if ((ret = decode_lowdelay(s)) < 0) |
|
return ret; |
|
} |
|
} |
|
|
|
for (comp = 0; comp < 3; comp++) { |
|
Plane *p = &s->plane[comp]; |
|
uint8_t *frame = s->current_picture->avframe->data[comp]; |
|
|
|
/* FIXME: small resolutions */ |
|
for (i = 0; i < 4; i++) |
|
s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16); |
|
|
|
if (!s->zero_res && !s->low_delay) |
|
{ |
|
memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height); |
|
decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */ |
|
} |
|
ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2, |
|
s->wavelet_depth, s->bit_depth); |
|
if (ret < 0) |
|
return ret; |
|
|
|
if (!s->num_refs) { /* intra */ |
|
for (y = 0; y < p->height; y += 16) { |
|
int idx = (s->bit_depth - 8) >> 1; |
|
ff_spatial_idwt_slice2(&d, y+16); /* decode */ |
|
s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride, |
|
p->stride, |
|
p->idwt.buf + y*p->idwt.stride, |
|
p->idwt.stride, p->width, 16); |
|
} |
|
} else { /* inter */ |
|
int rowheight = p->ybsep*p->stride; |
|
|
|
select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen); |
|
|
|
for (i = 0; i < s->num_refs; i++) { |
|
int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
memset(s->mctmp, 0, 4*p->yoffset*p->stride); |
|
|
|
dsty = -p->yoffset; |
|
for (y = 0; y < s->blheight; y++) { |
|
int h = 0, |
|
start = FFMAX(dsty, 0); |
|
uint16_t *mctmp = s->mctmp + y*rowheight; |
|
DiracBlock *blocks = s->blmotion + y*s->blwidth; |
|
|
|
init_obmc_weights(s, p, y); |
|
|
|
if (y == s->blheight-1 || start+p->ybsep > p->height) |
|
h = p->height - start; |
|
else |
|
h = p->ybsep - (start - dsty); |
|
if (h < 0) |
|
break; |
|
|
|
memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight); |
|
mc_row(s, blocks, mctmp, comp, dsty); |
|
|
|
mctmp += (start - dsty)*p->stride + p->xoffset; |
|
ff_spatial_idwt_slice2(&d, start + h); /* decode */ |
|
/* NOTE: add_rect_clamped hasn't been templated hence the shifts. |
|
* idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */ |
|
s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride, |
|
(int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h); |
|
|
|
dsty += p->ybsep; |
|
} |
|
} |
|
} |
|
|
|
|
|
return 0; |
|
} |
|
|
|
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags) |
|
{ |
|
int ret, i; |
|
int chroma_x_shift, chroma_y_shift; |
|
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift); |
|
|
|
f->width = avctx->width + 2 * EDGE_WIDTH; |
|
f->height = avctx->height + 2 * EDGE_WIDTH + 2; |
|
ret = ff_get_buffer(avctx, f, flags); |
|
if (ret < 0) |
|
return ret; |
|
|
|
for (i = 0; f->data[i]; i++) { |
|
int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) * |
|
f->linesize[i] + 32; |
|
f->data[i] += offset; |
|
} |
|
f->width = avctx->width; |
|
f->height = avctx->height; |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 11.1.1 Picture Header. picture_header() |
|
*/ |
|
static int dirac_decode_picture_header(DiracContext *s) |
|
{ |
|
unsigned retire, picnum; |
|
int i, j, ret; |
|
int64_t refdist, refnum; |
|
GetBitContext *gb = &s->gb; |
|
|
|
/* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */ |
|
picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32); |
|
|
|
|
|
av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum); |
|
|
|
/* if this is the first keyframe after a sequence header, start our |
|
reordering from here */ |
|
if (s->frame_number < 0) |
|
s->frame_number = picnum; |
|
|
|
s->ref_pics[0] = s->ref_pics[1] = NULL; |
|
for (i = 0; i < s->num_refs; i++) { |
|
refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF; |
|
refdist = INT64_MAX; |
|
|
|
/* find the closest reference to the one we want */ |
|
/* Jordi: this is needed if the referenced picture hasn't yet arrived */ |
|
for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++) |
|
if (s->ref_frames[j] |
|
&& FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) { |
|
s->ref_pics[i] = s->ref_frames[j]; |
|
refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum); |
|
} |
|
|
|
if (!s->ref_pics[i] || refdist) |
|
av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n"); |
|
|
|
/* if there were no references at all, allocate one */ |
|
if (!s->ref_pics[i]) |
|
for (j = 0; j < MAX_FRAMES; j++) |
|
if (!s->all_frames[j].avframe->data[0]) { |
|
s->ref_pics[i] = &s->all_frames[j]; |
|
ret = get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF); |
|
if (ret < 0) |
|
return ret; |
|
break; |
|
} |
|
|
|
if (!s->ref_pics[i]) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
} |
|
|
|
/* retire the reference frames that are not used anymore */ |
|
if (s->current_picture->reference) { |
|
retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF; |
|
if (retire != picnum) { |
|
DiracFrame *retire_pic = remove_frame(s->ref_frames, retire); |
|
|
|
if (retire_pic) |
|
retire_pic->reference &= DELAYED_PIC_REF; |
|
else |
|
av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n"); |
|
} |
|
|
|
/* if reference array is full, remove the oldest as per the spec */ |
|
while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) { |
|
av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n"); |
|
remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF; |
|
} |
|
} |
|
|
|
if (s->num_refs) { |
|
ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */ |
|
if (ret < 0) |
|
return ret; |
|
ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */ |
|
if (ret < 0) |
|
return ret; |
|
} |
|
ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */ |
|
if (ret < 0) |
|
return ret; |
|
|
|
init_planes(s); |
|
return 0; |
|
} |
|
|
|
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame) |
|
{ |
|
DiracFrame *out = s->delay_frames[0]; |
|
int i, out_idx = 0; |
|
int ret; |
|
|
|
/* find frame with lowest picture number */ |
|
for (i = 1; s->delay_frames[i]; i++) |
|
if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) { |
|
out = s->delay_frames[i]; |
|
out_idx = i; |
|
} |
|
|
|
for (i = out_idx; s->delay_frames[i]; i++) |
|
s->delay_frames[i] = s->delay_frames[i+1]; |
|
|
|
if (out) { |
|
out->reference ^= DELAYED_PIC_REF; |
|
if((ret = av_frame_ref(picture, out->avframe)) < 0) |
|
return ret; |
|
*got_frame = 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/** |
|
* Dirac Specification -> |
|
* 9.6 Parse Info Header Syntax. parse_info() |
|
* 4 byte start code + byte parse code + 4 byte size + 4 byte previous size |
|
*/ |
|
#define DATA_UNIT_HEADER_SIZE 13 |
|
|
|
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 |
|
inside the function parse_sequence() */ |
|
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
DiracFrame *pic = NULL; |
|
AVDiracSeqHeader *dsh; |
|
int ret, i; |
|
uint8_t parse_code; |
|
unsigned tmp; |
|
|
|
if (size < DATA_UNIT_HEADER_SIZE) |
|
return AVERROR_INVALIDDATA; |
|
|
|
parse_code = buf[4]; |
|
|
|
init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE)); |
|
|
|
if (parse_code == DIRAC_PCODE_SEQ_HEADER) { |
|
if (s->seen_sequence_header) |
|
return 0; |
|
|
|
/* [DIRAC_STD] 10. Sequence header */ |
|
ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx); |
|
if (ret < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "error parsing sequence header"); |
|
return ret; |
|
} |
|
|
|
if (CALC_PADDING((int64_t)dsh->width, MAX_DWT_LEVELS) * CALC_PADDING((int64_t)dsh->height, MAX_DWT_LEVELS) > avctx->max_pixels) |
|
ret = AVERROR(ERANGE); |
|
if (ret >= 0) |
|
ret = ff_set_dimensions(avctx, dsh->width, dsh->height); |
|
if (ret < 0) { |
|
av_freep(&dsh); |
|
return ret; |
|
} |
|
|
|
ff_set_sar(avctx, dsh->sample_aspect_ratio); |
|
avctx->pix_fmt = dsh->pix_fmt; |
|
avctx->color_range = dsh->color_range; |
|
avctx->color_trc = dsh->color_trc; |
|
avctx->color_primaries = dsh->color_primaries; |
|
avctx->colorspace = dsh->colorspace; |
|
avctx->profile = dsh->profile; |
|
avctx->level = dsh->level; |
|
avctx->framerate = dsh->framerate; |
|
s->bit_depth = dsh->bit_depth; |
|
s->version.major = dsh->version.major; |
|
s->version.minor = dsh->version.minor; |
|
s->seq = *dsh; |
|
av_freep(&dsh); |
|
|
|
s->pshift = s->bit_depth > 8; |
|
|
|
avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); |
|
|
|
ret = alloc_sequence_buffers(s); |
|
if (ret < 0) |
|
return ret; |
|
|
|
s->seen_sequence_header = 1; |
|
} else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */ |
|
free_sequence_buffers(s); |
|
s->seen_sequence_header = 0; |
|
} else if (parse_code == DIRAC_PCODE_AUX) { |
|
if (buf[13] == 1) { /* encoder implementation/version */ |
|
int ver[3]; |
|
/* versions older than 1.0.8 don't store quant delta for |
|
subbands with only one codeblock */ |
|
if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3) |
|
if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7) |
|
s->old_delta_quant = 1; |
|
} |
|
} else if (parse_code & 0x8) { /* picture data unit */ |
|
if (!s->seen_sequence_header) { |
|
av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
/* find an unused frame */ |
|
for (i = 0; i < MAX_FRAMES; i++) |
|
if (s->all_frames[i].avframe->data[0] == NULL) |
|
pic = &s->all_frames[i]; |
|
if (!pic) { |
|
av_log(avctx, AV_LOG_ERROR, "framelist full\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
av_frame_unref(pic->avframe); |
|
|
|
/* [DIRAC_STD] Defined in 9.6.1 ... */ |
|
tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */ |
|
if (tmp > 2) { |
|
av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->num_refs = tmp; |
|
s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */ |
|
s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */ |
|
s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */ |
|
s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */ |
|
s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */ |
|
s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */ |
|
pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */ |
|
pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */ |
|
pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */ |
|
|
|
/* VC-2 Low Delay has a different parse code than the Dirac Low Delay */ |
|
if (s->version.minor == 2 && parse_code == 0x88) |
|
s->ld_picture = 1; |
|
|
|
if (s->low_delay && !(s->ld_picture || s->hq_picture) ) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0) |
|
return ret; |
|
s->current_picture = pic; |
|
s->plane[0].stride = pic->avframe->linesize[0]; |
|
s->plane[1].stride = pic->avframe->linesize[1]; |
|
s->plane[2].stride = pic->avframe->linesize[2]; |
|
|
|
if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0) |
|
return AVERROR(ENOMEM); |
|
|
|
/* [DIRAC_STD] 11.1 Picture parse. picture_parse() */ |
|
ret = dirac_decode_picture_header(s); |
|
if (ret < 0) |
|
return ret; |
|
|
|
/* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */ |
|
ret = dirac_decode_frame_internal(s); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
return 0; |
|
} |
|
|
|
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt) |
|
{ |
|
DiracContext *s = avctx->priv_data; |
|
AVFrame *picture = data; |
|
uint8_t *buf = pkt->data; |
|
int buf_size = pkt->size; |
|
int i, buf_idx = 0; |
|
int ret; |
|
unsigned data_unit_size; |
|
|
|
/* release unused frames */ |
|
for (i = 0; i < MAX_FRAMES; i++) |
|
if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) { |
|
av_frame_unref(s->all_frames[i].avframe); |
|
memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated)); |
|
} |
|
|
|
s->current_picture = NULL; |
|
*got_frame = 0; |
|
|
|
/* end of stream, so flush delayed pics */ |
|
if (buf_size == 0) |
|
return get_delayed_pic(s, (AVFrame *)data, got_frame); |
|
|
|
for (;;) { |
|
/*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6 |
|
[DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646 |
|
BBCD start code search */ |
|
for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) { |
|
if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' && |
|
buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D') |
|
break; |
|
} |
|
/* BBCD found or end of data */ |
|
if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size) |
|
break; |
|
|
|
data_unit_size = AV_RB32(buf+buf_idx+5); |
|
if (data_unit_size > buf_size - buf_idx || !data_unit_size) { |
|
if(data_unit_size > buf_size - buf_idx) |
|
av_log(s->avctx, AV_LOG_ERROR, |
|
"Data unit with size %d is larger than input buffer, discarding\n", |
|
data_unit_size); |
|
buf_idx += 4; |
|
continue; |
|
} |
|
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */ |
|
ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size); |
|
if (ret < 0) |
|
{ |
|
av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n"); |
|
return ret; |
|
} |
|
buf_idx += data_unit_size; |
|
} |
|
|
|
if (!s->current_picture) |
|
return buf_size; |
|
|
|
if (s->current_picture->avframe->display_picture_number > s->frame_number) { |
|
DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number); |
|
|
|
s->current_picture->reference |= DELAYED_PIC_REF; |
|
|
|
if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) { |
|
int min_num = s->delay_frames[0]->avframe->display_picture_number; |
|
/* Too many delayed frames, so we display the frame with the lowest pts */ |
|
av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n"); |
|
|
|
for (i = 1; s->delay_frames[i]; i++) |
|
if (s->delay_frames[i]->avframe->display_picture_number < min_num) |
|
min_num = s->delay_frames[i]->avframe->display_picture_number; |
|
|
|
delayed_frame = remove_frame(s->delay_frames, min_num); |
|
add_frame(s->delay_frames, MAX_DELAY, s->current_picture); |
|
} |
|
|
|
if (delayed_frame) { |
|
delayed_frame->reference ^= DELAYED_PIC_REF; |
|
if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0) |
|
return ret; |
|
*got_frame = 1; |
|
} |
|
} else if (s->current_picture->avframe->display_picture_number == s->frame_number) { |
|
/* The right frame at the right time :-) */ |
|
if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0) |
|
return ret; |
|
*got_frame = 1; |
|
} |
|
|
|
if (*got_frame) |
|
s->frame_number = picture->display_picture_number + 1; |
|
|
|
return buf_idx; |
|
} |
|
|
|
AVCodec ff_dirac_decoder = { |
|
.name = "dirac", |
|
.long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"), |
|
.type = AVMEDIA_TYPE_VIDEO, |
|
.id = AV_CODEC_ID_DIRAC, |
|
.priv_data_size = sizeof(DiracContext), |
|
.init = dirac_decode_init, |
|
.close = dirac_decode_end, |
|
.decode = dirac_decode_frame, |
|
.capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1, |
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, |
|
.flush = dirac_decode_flush, |
|
};
|
|
|