You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

3255 lines
121 KiB

/*
* HEVC video Decoder
*
* Copyright (C) 2012 - 2013 Guillaume Martres
* Copyright (C) 2012 - 2013 Mickael Raulet
* Copyright (C) 2012 - 2013 Gildas Cocherel
* Copyright (C) 2012 - 2013 Wassim Hamidouche
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/atomic.h"
#include "libavutil/attributes.h"
#include "libavutil/common.h"
#include "libavutil/internal.h"
#include "libavutil/md5.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/stereo3d.h"
#include "bswapdsp.h"
#include "bytestream.h"
#include "cabac_functions.h"
#include "golomb.h"
#include "hevc.h"
const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
/**
* NOTE: Each function hls_foo correspond to the function foo in the
* specification (HLS stands for High Level Syntax).
*/
/**
* Section 5.7
*/
/* free everything allocated by pic_arrays_init() */
static void pic_arrays_free(HEVCContext *s)
{
av_freep(&s->sao);
av_freep(&s->deblock);
av_freep(&s->split_cu_flag);
av_freep(&s->skip_flag);
av_freep(&s->tab_ct_depth);
av_freep(&s->tab_ipm);
av_freep(&s->cbf_luma);
av_freep(&s->is_pcm);
av_freep(&s->qp_y_tab);
av_freep(&s->tab_slice_address);
av_freep(&s->filter_slice_edges);
av_freep(&s->horizontal_bs);
av_freep(&s->vertical_bs);
av_freep(&s->sh.entry_point_offset);
av_freep(&s->sh.size);
av_freep(&s->sh.offset);
av_buffer_pool_uninit(&s->tab_mvf_pool);
av_buffer_pool_uninit(&s->rpl_tab_pool);
}
/* allocate arrays that depend on frame dimensions */
static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
{
int log2_min_cb_size = sps->log2_min_cb_size;
int width = sps->width;
int height = sps->height;
int pic_size = width * height;
int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
((height >> log2_min_cb_size) + 1);
int ctb_count = sps->ctb_width * sps->ctb_height;
int min_pu_size = sps->min_pu_width * sps->min_pu_height;
s->bs_width = width >> 3;
s->bs_height = height >> 3;
s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
s->split_cu_flag = av_malloc(pic_size);
if (!s->sao || !s->deblock || !s->split_cu_flag)
goto fail;
s->skip_flag = av_malloc(pic_size_in_ctb);
s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
if (!s->skip_flag || !s->tab_ct_depth)
goto fail;
s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
s->tab_ipm = av_mallocz(min_pu_size);
s->is_pcm = av_malloc(min_pu_size);
if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
goto fail;
s->filter_slice_edges = av_malloc(ctb_count);
s->tab_slice_address = av_malloc(pic_size_in_ctb *
sizeof(*s->tab_slice_address));
s->qp_y_tab = av_malloc(pic_size_in_ctb *
sizeof(*s->qp_y_tab));
if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
goto fail;
s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
if (!s->horizontal_bs || !s->vertical_bs)
goto fail;
s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
av_buffer_allocz);
s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
av_buffer_allocz);
if (!s->tab_mvf_pool || !s->rpl_tab_pool)
goto fail;
return 0;
fail:
pic_arrays_free(s);
return AVERROR(ENOMEM);
}
static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
{
int i = 0;
int j = 0;
uint8_t luma_weight_l0_flag[16];
uint8_t chroma_weight_l0_flag[16];
uint8_t luma_weight_l1_flag[16];
uint8_t chroma_weight_l1_flag[16];
s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
if (s->sps->chroma_format_idc != 0) {
int delta = get_se_golomb(gb);
s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
}
for (i = 0; i < s->sh.nb_refs[L0]; i++) {
luma_weight_l0_flag[i] = get_bits1(gb);
if (!luma_weight_l0_flag[i]) {
s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
s->sh.luma_offset_l0[i] = 0;
}
}
if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
for (i = 0; i < s->sh.nb_refs[L0]; i++)
chroma_weight_l0_flag[i] = get_bits1(gb);
} else {
for (i = 0; i < s->sh.nb_refs[L0]; i++)
chroma_weight_l0_flag[i] = 0;
}
for (i = 0; i < s->sh.nb_refs[L0]; i++) {
if (luma_weight_l0_flag[i]) {
int delta_luma_weight_l0 = get_se_golomb(gb);
s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
s->sh.luma_offset_l0[i] = get_se_golomb(gb);
}
if (chroma_weight_l0_flag[i]) {
for (j = 0; j < 2; j++) {
int delta_chroma_weight_l0 = get_se_golomb(gb);
int delta_chroma_offset_l0 = get_se_golomb(gb);
s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
>> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
}
} else {
s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l0[i][0] = 0;
s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l0[i][1] = 0;
}
}
if (s->sh.slice_type == B_SLICE) {
for (i = 0; i < s->sh.nb_refs[L1]; i++) {
luma_weight_l1_flag[i] = get_bits1(gb);
if (!luma_weight_l1_flag[i]) {
s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
s->sh.luma_offset_l1[i] = 0;
}
}
if (s->sps->chroma_format_idc != 0) {
for (i = 0; i < s->sh.nb_refs[L1]; i++)
chroma_weight_l1_flag[i] = get_bits1(gb);
} else {
for (i = 0; i < s->sh.nb_refs[L1]; i++)
chroma_weight_l1_flag[i] = 0;
}
for (i = 0; i < s->sh.nb_refs[L1]; i++) {
if (luma_weight_l1_flag[i]) {
int delta_luma_weight_l1 = get_se_golomb(gb);
s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
s->sh.luma_offset_l1[i] = get_se_golomb(gb);
}
if (chroma_weight_l1_flag[i]) {
for (j = 0; j < 2; j++) {
int delta_chroma_weight_l1 = get_se_golomb(gb);
int delta_chroma_offset_l1 = get_se_golomb(gb);
s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
>> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
}
} else {
s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l1[i][0] = 0;
s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
s->sh.chroma_offset_l1[i][1] = 0;
}
}
}
}
static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
{
const HEVCSPS *sps = s->sps;
int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
int prev_delta_msb = 0;
unsigned int nb_sps = 0, nb_sh;
int i;
rps->nb_refs = 0;
if (!sps->long_term_ref_pics_present_flag)
return 0;
if (sps->num_long_term_ref_pics_sps > 0)
nb_sps = get_ue_golomb_long(gb);
nb_sh = get_ue_golomb_long(gb);
if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
return AVERROR_INVALIDDATA;
rps->nb_refs = nb_sh + nb_sps;
for (i = 0; i < rps->nb_refs; i++) {
uint8_t delta_poc_msb_present;
if (i < nb_sps) {
uint8_t lt_idx_sps = 0;
if (sps->num_long_term_ref_pics_sps > 1)
lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
} else {
rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
rps->used[i] = get_bits1(gb);
}
delta_poc_msb_present = get_bits1(gb);
if (delta_poc_msb_present) {
int delta = get_ue_golomb_long(gb);
if (i && i != nb_sps)
delta += prev_delta_msb;
rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
prev_delta_msb = delta;
}
}
return 0;
}
static int set_sps(HEVCContext *s, const HEVCSPS *sps)
{
int ret;
unsigned int num = 0, den = 0;
pic_arrays_free(s);
ret = pic_arrays_init(s, sps);
if (ret < 0)
goto fail;
s->avctx->coded_width = sps->width;
s->avctx->coded_height = sps->height;
s->avctx->width = sps->output_width;
s->avctx->height = sps->output_height;
s->avctx->pix_fmt = sps->pix_fmt;
s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
ff_set_sar(s->avctx, sps->vui.sar);
if (sps->vui.video_signal_type_present_flag)
s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
else
s->avctx->color_range = AVCOL_RANGE_MPEG;
if (sps->vui.colour_description_present_flag) {
s->avctx->color_primaries = sps->vui.colour_primaries;
s->avctx->color_trc = sps->vui.transfer_characteristic;
s->avctx->colorspace = sps->vui.matrix_coeffs;
} else {
s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
s->avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
s->avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
}
ff_hevc_pred_init(&s->hpc, sps->bit_depth);
ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
ff_videodsp_init (&s->vdsp, sps->bit_depth);
if (sps->sao_enabled) {
av_frame_unref(s->tmp_frame);
ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
if (ret < 0)
goto fail;
s->frame = s->tmp_frame;
}
s->sps = sps;
s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
if (s->vps->vps_timing_info_present_flag) {
num = s->vps->vps_num_units_in_tick;
den = s->vps->vps_time_scale;
} else if (sps->vui.vui_timing_info_present_flag) {
num = sps->vui.vui_num_units_in_tick;
den = sps->vui.vui_time_scale;
}
if (num != 0 && den != 0)
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
num, den, 1 << 30);
return 0;
fail:
pic_arrays_free(s);
s->sps = NULL;
return ret;
}
static int is_sps_exist(HEVCContext *s, const HEVCSPS* last_sps)
{
int i;
for( i = 0; i < MAX_SPS_COUNT; i++)
if(s->sps_list[i])
if (last_sps == (HEVCSPS*)s->sps_list[i]->data)
return 1;
return 0;
}
static int hls_slice_header(HEVCContext *s)
{
GetBitContext *gb = &s->HEVClc->gb;
SliceHeader *sh = &s->sh;
int i, j, ret;
// Coded parameters
sh->first_slice_in_pic_flag = get_bits1(gb);
if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
if (IS_IDR(s))
ff_hevc_clear_refs(s);
}
sh->no_output_of_prior_pics_flag = 0;
if (IS_IRAP(s))
sh->no_output_of_prior_pics_flag = get_bits1(gb);
if (s->nal_unit_type == NAL_CRA_NUT && s->last_eos == 1)
sh->no_output_of_prior_pics_flag = 1;
sh->pps_id = get_ue_golomb_long(gb);
if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
return AVERROR_INVALIDDATA;
}
if (!sh->first_slice_in_pic_flag &&
s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
return AVERROR_INVALIDDATA;
}
s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
const HEVCSPS* last_sps = s->sps;
s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
if (last_sps) {
if (is_sps_exist(s, last_sps)) {
if (s->sps->width != last_sps->width || s->sps->height != last_sps->height ||
s->sps->temporal_layer[s->sps->max_sub_layers - 1].max_dec_pic_buffering != last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
sh->no_output_of_prior_pics_flag = 0;
} else
sh->no_output_of_prior_pics_flag = 0;
}
ff_hevc_clear_refs(s);
ret = set_sps(s, s->sps);
if (ret < 0)
return ret;
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
}
s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
s->avctx->level = s->sps->ptl.general_ptl.level_idc;
sh->dependent_slice_segment_flag = 0;
if (!sh->first_slice_in_pic_flag) {
int slice_address_length;
if (s->pps->dependent_slice_segments_enabled_flag)
sh->dependent_slice_segment_flag = get_bits1(gb);
slice_address_length = av_ceil_log2(s->sps->ctb_width *
s->sps->ctb_height);
sh->slice_segment_addr = get_bits(gb, slice_address_length);
if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid slice segment address: %u.\n",
sh->slice_segment_addr);
return AVERROR_INVALIDDATA;
}
if (!sh->dependent_slice_segment_flag) {
sh->slice_addr = sh->slice_segment_addr;
s->slice_idx++;
}
} else {
sh->slice_segment_addr = sh->slice_addr = 0;
s->slice_idx = 0;
s->slice_initialized = 0;
}
if (!sh->dependent_slice_segment_flag) {
s->slice_initialized = 0;
for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
sh->slice_type = get_ue_golomb_long(gb);
if (!(sh->slice_type == I_SLICE ||
sh->slice_type == P_SLICE ||
sh->slice_type == B_SLICE)) {
av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
sh->slice_type);
return AVERROR_INVALIDDATA;
}
if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
return AVERROR_INVALIDDATA;
}
sh->pic_output_flag = 1;
if (s->pps->output_flag_present_flag)
sh->pic_output_flag = get_bits1(gb);
if (s->sps->separate_colour_plane_flag)
sh->colour_plane_id = get_bits(gb, 2);
if (!IS_IDR(s)) {
int short_term_ref_pic_set_sps_flag, poc;
sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
if (!sh->first_slice_in_pic_flag && poc != s->poc) {
av_log(s->avctx, AV_LOG_WARNING,
"Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
poc = s->poc;
}
s->poc = poc;
short_term_ref_pic_set_sps_flag = get_bits1(gb);
if (!short_term_ref_pic_set_sps_flag) {
ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
if (ret < 0)
return ret;
sh->short_term_rps = &sh->slice_rps;
} else {
int numbits, rps_idx;
if (!s->sps->nb_st_rps) {
av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
return AVERROR_INVALIDDATA;
}
numbits = av_ceil_log2(s->sps->nb_st_rps);
rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
sh->short_term_rps = &s->sps->st_rps[rps_idx];
}
ret = decode_lt_rps(s, &sh->long_term_rps, gb);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return AVERROR_INVALIDDATA;
}
if (s->sps->sps_temporal_mvp_enabled_flag)
sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
else
sh->slice_temporal_mvp_enabled_flag = 0;
} else {
s->sh.short_term_rps = NULL;
s->poc = 0;
}
/* 8.3.1 */
if (s->temporal_id == 0 &&
s->nal_unit_type != NAL_TRAIL_N &&
s->nal_unit_type != NAL_TSA_N &&
s->nal_unit_type != NAL_STSA_N &&
s->nal_unit_type != NAL_RADL_N &&
s->nal_unit_type != NAL_RADL_R &&
s->nal_unit_type != NAL_RASL_N &&
s->nal_unit_type != NAL_RASL_R)
s->pocTid0 = s->poc;
if (s->sps->sao_enabled) {
sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
sh->slice_sample_adaptive_offset_flag[1] =
sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
} else {
sh->slice_sample_adaptive_offset_flag[0] = 0;
sh->slice_sample_adaptive_offset_flag[1] = 0;
sh->slice_sample_adaptive_offset_flag[2] = 0;
}
sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
int nb_refs;
sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
if (sh->slice_type == B_SLICE)
sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
if (get_bits1(gb)) { // num_ref_idx_active_override_flag
sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
if (sh->slice_type == B_SLICE)
sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
}
if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
sh->nb_refs[L0], sh->nb_refs[L1]);
return AVERROR_INVALIDDATA;
}
sh->rpl_modification_flag[0] = 0;
sh->rpl_modification_flag[1] = 0;
nb_refs = ff_hevc_frame_nb_refs(s);
if (!nb_refs) {
av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
return AVERROR_INVALIDDATA;
}
if (s->pps->lists_modification_present_flag && nb_refs > 1) {
sh->rpl_modification_flag[0] = get_bits1(gb);
if (sh->rpl_modification_flag[0]) {
for (i = 0; i < sh->nb_refs[L0]; i++)
sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
}
if (sh->slice_type == B_SLICE) {
sh->rpl_modification_flag[1] = get_bits1(gb);
if (sh->rpl_modification_flag[1] == 1)
for (i = 0; i < sh->nb_refs[L1]; i++)
sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
}
}
if (sh->slice_type == B_SLICE)
sh->mvd_l1_zero_flag = get_bits1(gb);
if (s->pps->cabac_init_present_flag)
sh->cabac_init_flag = get_bits1(gb);
else
sh->cabac_init_flag = 0;
sh->collocated_ref_idx = 0;
if (sh->slice_temporal_mvp_enabled_flag) {
sh->collocated_list = L0;
if (sh->slice_type == B_SLICE)
sh->collocated_list = !get_bits1(gb);
if (sh->nb_refs[sh->collocated_list] > 1) {
sh->collocated_ref_idx = get_ue_golomb_long(gb);
if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid collocated_ref_idx: %d.\n",
sh->collocated_ref_idx);
return AVERROR_INVALIDDATA;
}
}
}
if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
(s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
pred_weight_table(s, gb);
}
sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid number of merging MVP candidates: %d.\n",
sh->max_num_merge_cand);
return AVERROR_INVALIDDATA;
}
}
sh->slice_qp_delta = get_se_golomb(gb);
if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
sh->slice_cb_qp_offset = get_se_golomb(gb);
sh->slice_cr_qp_offset = get_se_golomb(gb);
} else {
sh->slice_cb_qp_offset = 0;
sh->slice_cr_qp_offset = 0;
}
if (s->pps->deblocking_filter_control_present_flag) {
int deblocking_filter_override_flag = 0;
if (s->pps->deblocking_filter_override_enabled_flag)
deblocking_filter_override_flag = get_bits1(gb);
if (deblocking_filter_override_flag) {
sh->disable_deblocking_filter_flag = get_bits1(gb);
if (!sh->disable_deblocking_filter_flag) {
sh->beta_offset = get_se_golomb(gb) * 2;
sh->tc_offset = get_se_golomb(gb) * 2;
}
} else {
sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
sh->beta_offset = s->pps->beta_offset;
sh->tc_offset = s->pps->tc_offset;
}
} else {
sh->disable_deblocking_filter_flag = 0;
sh->beta_offset = 0;
sh->tc_offset = 0;
}
if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
(sh->slice_sample_adaptive_offset_flag[0] ||
sh->slice_sample_adaptive_offset_flag[1] ||
!sh->disable_deblocking_filter_flag)) {
sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
} else {
sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
}
} else if (!s->slice_initialized) {
av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
return AVERROR_INVALIDDATA;
}
sh->num_entry_point_offsets = 0;
if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
sh->num_entry_point_offsets = get_ue_golomb_long(gb);
if (sh->num_entry_point_offsets > 0) {
int offset_len = get_ue_golomb_long(gb) + 1;
int segments = offset_len >> 4;
int rest = (offset_len & 15);
av_freep(&sh->entry_point_offset);
av_freep(&sh->offset);
av_freep(&sh->size);
sh->entry_point_offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
sh->offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
sh->size = av_malloc(sh->num_entry_point_offsets * sizeof(int));
if (!sh->entry_point_offset || !sh->offset || !sh->size) {
sh->num_entry_point_offsets = 0;
av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
return AVERROR(ENOMEM);
}
for (i = 0; i < sh->num_entry_point_offsets; i++) {
int val = 0;
for (j = 0; j < segments; j++) {
val <<= 16;
val += get_bits(gb, 16);
}
if (rest) {
val <<= rest;
val += get_bits(gb, rest);
}
sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
}
if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) {
s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
s->threads_number = 1;
} else
s->enable_parallel_tiles = 0;
} else
s->enable_parallel_tiles = 0;
}
if (s->pps->slice_header_extension_present_flag) {
unsigned int length = get_ue_golomb_long(gb);
for (i = 0; i < length; i++)
skip_bits(gb, 8); // slice_header_extension_data_byte
}
// Inferred parameters
sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
if (sh->slice_qp > 51 ||
sh->slice_qp < -s->sps->qp_bd_offset) {
av_log(s->avctx, AV_LOG_ERROR,
"The slice_qp %d is outside the valid range "
"[%d, 51].\n",
sh->slice_qp,
-s->sps->qp_bd_offset);
return AVERROR_INVALIDDATA;
}
sh->slice_ctb_addr_rs = sh->slice_segment_addr;
if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
return AVERROR_INVALIDDATA;
}
s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
if (!s->pps->cu_qp_delta_enabled_flag)
s->HEVClc->qp_y = s->sh.slice_qp;
s->slice_initialized = 1;
return 0;
}
#define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
#define SET_SAO(elem, value) \
do { \
if (!sao_merge_up_flag && !sao_merge_left_flag) \
sao->elem = value; \
else if (sao_merge_left_flag) \
sao->elem = CTB(s->sao, rx-1, ry).elem; \
else if (sao_merge_up_flag) \
sao->elem = CTB(s->sao, rx, ry-1).elem; \
else \
sao->elem = 0; \
} while (0)
static void hls_sao_param(HEVCContext *s, int rx, int ry)
{
HEVCLocalContext *lc = s->HEVClc;
int sao_merge_left_flag = 0;
int sao_merge_up_flag = 0;
int shift = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
SAOParams *sao = &CTB(s->sao, rx, ry);
int c_idx, i;
if (s->sh.slice_sample_adaptive_offset_flag[0] ||
s->sh.slice_sample_adaptive_offset_flag[1]) {
if (rx > 0) {
if (lc->ctb_left_flag)
sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
}
if (ry > 0 && !sao_merge_left_flag) {
if (lc->ctb_up_flag)
sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
}
}
for (c_idx = 0; c_idx < 3; c_idx++) {
if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
sao->type_idx[c_idx] = SAO_NOT_APPLIED;
continue;
}
if (c_idx == 2) {
sao->type_idx[2] = sao->type_idx[1];
sao->eo_class[2] = sao->eo_class[1];
} else {
SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
}
if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
continue;
for (i = 0; i < 4; i++)
SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
if (sao->type_idx[c_idx] == SAO_BAND) {
for (i = 0; i < 4; i++) {
if (sao->offset_abs[c_idx][i]) {
SET_SAO(offset_sign[c_idx][i],
ff_hevc_sao_offset_sign_decode(s));
} else {
sao->offset_sign[c_idx][i] = 0;
}
}
SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
} else if (c_idx != 2) {
SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
}
// Inferred parameters
sao->offset_val[c_idx][0] = 0;
for (i = 0; i < 4; i++) {
sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
if (sao->type_idx[c_idx] == SAO_EDGE) {
if (i > 1)
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
} else if (sao->offset_sign[c_idx][i]) {
sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
}
}
}
}
#undef SET_SAO
#undef CTB
static int hls_transform_unit(HEVCContext *s, int x0, int y0,
int xBase, int yBase, int cb_xBase, int cb_yBase,
int log2_cb_size, int log2_trafo_size,
int trafo_depth, int blk_idx)
{
HEVCLocalContext *lc = s->HEVClc;
if (lc->cu.pred_mode == MODE_INTRA) {
int trafo_size = 1 << log2_trafo_size;
ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
if (log2_trafo_size > 2) {
trafo_size = trafo_size << (s->sps->hshift[1] - 1);
ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
} else if (blk_idx == 3) {
trafo_size = trafo_size << s->sps->hshift[1];
ff_hevc_set_neighbour_available(s, xBase, yBase,
trafo_size, trafo_size);
s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
}
}
if (lc->tt.cbf_luma ||
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
int scan_idx = SCAN_DIAG;
int scan_idx_c = SCAN_DIAG;
if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
if (lc->tu.cu_qp_delta != 0)
if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
lc->tu.is_cu_qp_delta_coded = 1;
if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
lc->tu.cu_qp_delta > (25 + s->sps->qp_bd_offset / 2)) {
av_log(s->avctx, AV_LOG_ERROR,
"The cu_qp_delta %d is outside the valid range "
"[%d, %d].\n",
lc->tu.cu_qp_delta,
-(26 + s->sps->qp_bd_offset / 2),
(25 + s->sps->qp_bd_offset / 2));
return AVERROR_INVALIDDATA;
}
ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
}
if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
if (lc->tu.cur_intra_pred_mode >= 6 &&
lc->tu.cur_intra_pred_mode <= 14) {
scan_idx = SCAN_VERT;
} else if (lc->tu.cur_intra_pred_mode >= 22 &&
lc->tu.cur_intra_pred_mode <= 30) {
scan_idx = SCAN_HORIZ;
}
if (lc->pu.intra_pred_mode_c >= 6 &&
lc->pu.intra_pred_mode_c <= 14) {
scan_idx_c = SCAN_VERT;
} else if (lc->pu.intra_pred_mode_c >= 22 &&
lc->pu.intra_pred_mode_c <= 30) {
scan_idx_c = SCAN_HORIZ;
}
}
if (lc->tt.cbf_luma)
ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
if (log2_trafo_size > 2) {
if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0))
ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0))
ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
} else if (blk_idx == 3) {
if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase))
ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase))
ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
}
}
return 0;
}
static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
int cb_size = 1 << log2_cb_size;
int log2_min_pu_size = s->sps->log2_min_pu_size;
int min_pu_width = s->sps->min_pu_width;
int x_end = FFMIN(x0 + cb_size, s->sps->width);
int y_end = FFMIN(y0 + cb_size, s->sps->height);
int i, j;
for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
s->is_pcm[i + j * min_pu_width] = 2;
}
static int hls_transform_tree(HEVCContext *s, int x0, int y0,
int xBase, int yBase, int cb_xBase, int cb_yBase,
int log2_cb_size, int log2_trafo_size,
int trafo_depth, int blk_idx)
{
HEVCLocalContext *lc = s->HEVClc;
uint8_t split_transform_flag;
int ret;
if (trafo_depth > 0 && log2_trafo_size == 2) {
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase);
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase);
} else {
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0;
}
if (lc->cu.intra_split_flag) {
if (trafo_depth == 1)
lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
} else {
lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
}
lc->tt.cbf_luma = 1;
lc->tt.inter_split_flag = s->sps->max_transform_hierarchy_depth_inter == 0 &&
lc->cu.pred_mode == MODE_INTER &&
lc->cu.part_mode != PART_2Nx2N &&
trafo_depth == 0;
if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
log2_trafo_size > s->sps->log2_min_tb_size &&
trafo_depth < lc->cu.max_trafo_depth &&
!(lc->cu.intra_split_flag && trafo_depth == 0)) {
split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
} else {
split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
(lc->cu.intra_split_flag && trafo_depth == 0) ||
lc->tt.inter_split_flag;
}
if (log2_trafo_size > 2) {
if (trafo_depth == 0 ||
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) {
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
}
if (trafo_depth == 0 ||
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) {
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
}
}
if (split_transform_flag) {
int x1 = x0 + ((1 << log2_trafo_size) >> 1);
int y1 = y0 + ((1 << log2_trafo_size) >> 1);
ret = hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size - 1,
trafo_depth + 1, 0);
if (ret < 0)
return ret;
ret = hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size - 1,
trafo_depth + 1, 1);
if (ret < 0)
return ret;
ret = hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size - 1,
trafo_depth + 1, 2);
if (ret < 0)
return ret;
ret = hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size - 1,
trafo_depth + 1, 3);
if (ret < 0)
return ret;
} else {
int min_tu_size = 1 << s->sps->log2_min_tb_size;
int log2_min_tu_size = s->sps->log2_min_tb_size;
int min_tu_width = s->sps->min_tb_width;
if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
}
ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
log2_cb_size, log2_trafo_size, trafo_depth,
blk_idx);
if (ret < 0)
return ret;
// TODO: store cbf_luma somewhere else
if (lc->tt.cbf_luma) {
int i, j;
for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
int x_tu = (x0 + j) >> log2_min_tu_size;
int y_tu = (y0 + i) >> log2_min_tu_size;
s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
}
}
if (!s->sh.disable_deblocking_filter_flag) {
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
if (s->pps->transquant_bypass_enable_flag &&
lc->cu.cu_transquant_bypass_flag)
set_deblocking_bypass(s, x0, y0, log2_trafo_size);
}
}
return 0;
}
static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
//TODO: non-4:2:0 support
GetBitContext gb;
int cb_size = 1 << log2_cb_size;
int stride0 = s->frame->linesize[0];
uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
int stride1 = s->frame->linesize[1];
uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
int stride2 = s->frame->linesize[2];
uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
int length = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
const uint8_t *pcm = skip_bytes(&s->HEVClc->cc, (length + 7) >> 3);
int ret;
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
ret = init_get_bits(&gb, pcm, length);
if (ret < 0)
return ret;
s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->sps->pcm.bit_depth);
s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
return 0;
}
/**
* 8.5.3.2.2.1 Luma sample unidirectional interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param luma_weight weighting factor applied to the luma prediction
* @param luma_offset additive offset applied to the luma prediction value
*/
static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
AVFrame *ref, const Mv *mv, int x_off, int y_off,
int block_w, int block_h, int luma_weight, int luma_offset)
{
HEVCLocalContext *lc = s->HEVClc;
uint8_t *src = ref->data[0];
ptrdiff_t srcstride = ref->linesize[0];
int pic_width = s->sps->width;
int pic_height = s->sps->height;
int mx = mv->x & 3;
int my = mv->y & 3;
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
int idx = ff_hevc_pel_weight[block_w];
x_off += mv->x >> 2;
y_off += mv->y >> 2;
src += y_off * srcstride + (x_off << s->sps->pixel_shift);
if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
edge_emu_stride, srcstride,
block_w + QPEL_EXTRA,
block_h + QPEL_EXTRA,
x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
pic_width, pic_height);
src = lc->edge_emu_buffer + buf_offset;
srcstride = edge_emu_stride;
}
if (!weight_flag)
s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
block_h, mx, my, block_w);
else
s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
block_h, s->sh.luma_log2_weight_denom,
luma_weight, luma_offset, mx, my, block_w);
}
/**
* 8.5.3.2.2.1 Luma sample bidirectional interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref0 reference picture0 buffer at origin (0, 0)
* @param mv0 motion vector0 (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param ref1 reference picture1 buffer at origin (0, 0)
* @param mv1 motion vector1 (relative to block position) to get pixel data from
* @param current_mv current motion vector structure
*/
static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
{
HEVCLocalContext *lc = s->HEVClc;
DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
ptrdiff_t src0stride = ref0->linesize[0];
ptrdiff_t src1stride = ref1->linesize[0];
int pic_width = s->sps->width;
int pic_height = s->sps->height;
int mx0 = mv0->x & 3;
int my0 = mv0->y & 3;
int mx1 = mv1->x & 3;
int my1 = mv1->y & 3;
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
int x_off0 = x_off + (mv0->x >> 2);
int y_off0 = y_off + (mv0->y >> 2);
int x_off1 = x_off + (mv1->x >> 2);
int y_off1 = y_off + (mv1->y >> 2);
int idx = ff_hevc_pel_weight[block_w];
uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
edge_emu_stride, src0stride,
block_w + QPEL_EXTRA,
block_h + QPEL_EXTRA,
x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
pic_width, pic_height);
src0 = lc->edge_emu_buffer + buf_offset;
src0stride = edge_emu_stride;
}
if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->sps->pixel_shift);
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
edge_emu_stride, src1stride,
block_w + QPEL_EXTRA,
block_h + QPEL_EXTRA,
x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
pic_width, pic_height);
src1 = lc->edge_emu_buffer2 + buf_offset;
src1stride = edge_emu_stride;
}
s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](tmp, MAX_PB_SIZE, src0, src0stride,
block_h, mx0, my0, block_w);
if (!weight_flag)
s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE,
block_h, mx1, my1, block_w);
else
s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, tmp, MAX_PB_SIZE,
block_h, s->sh.luma_log2_weight_denom,
s->sh.luma_weight_l0[current_mv->ref_idx[0]],
s->sh.luma_weight_l1[current_mv->ref_idx[1]],
s->sh.luma_offset_l0[current_mv->ref_idx[0]],
s->sh.luma_offset_l1[current_mv->ref_idx[1]],
mx1, my1, block_w);
}
/**
* 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
*
* @param s HEVC decoding context
* @param dst1 target buffer for block data at block position (U plane)
* @param dst2 target buffer for block data at block position (V plane)
* @param dststride stride of the dst1 and dst2 buffers
* @param ref reference picture buffer at origin (0, 0)
* @param mv motion vector (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param chroma_weight weighting factor applied to the chroma prediction
* @param chroma_offset additive offset applied to the chroma prediction value
*/
static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
{
HEVCLocalContext *lc = s->HEVClc;
int pic_width = s->sps->width >> s->sps->hshift[1];
int pic_height = s->sps->height >> s->sps->vshift[1];
const Mv *mv = &current_mv->mv[reflist];
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
int idx = ff_hevc_pel_weight[block_w];
int hshift = s->sps->hshift[1];
int vshift = s->sps->vshift[1];
intptr_t mx = mv->x & ((1 << (2 + hshift)) - 1);
intptr_t my = mv->y & ((1 << (2 + vshift)) - 1);
intptr_t _mx = mx << (1 - hshift);
intptr_t _my = my << (1 - vshift);
x_off += mv->x >> (2 + hshift);
y_off += mv->y >> (2 + vshift);
src0 += y_off * srcstride + (x_off << s->sps->pixel_shift);
if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->sps->pixel_shift));
int buf_offset0 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << s->sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
edge_emu_stride, srcstride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off - EPEL_EXTRA_BEFORE,
y_off - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src0 = lc->edge_emu_buffer + buf_offset0;
srcstride = edge_emu_stride;
}
if (!weight_flag)
s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
block_h, _mx, _my, block_w);
else
s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
block_h, s->sh.chroma_log2_weight_denom,
chroma_weight, chroma_offset, _mx, _my, block_w);
}
/**
* 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
*
* @param s HEVC decoding context
* @param dst target buffer for block data at block position
* @param dststride stride of the dst buffer
* @param ref0 reference picture0 buffer at origin (0, 0)
* @param mv0 motion vector0 (relative to block position) to get pixel data from
* @param x_off horizontal position of block from origin (0, 0)
* @param y_off vertical position of block from origin (0, 0)
* @param block_w width of block
* @param block_h height of block
* @param ref1 reference picture1 buffer at origin (0, 0)
* @param mv1 motion vector1 (relative to block position) to get pixel data from
* @param current_mv current motion vector structure
* @param cidx chroma component(cb, cr)
*/
static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
{
DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
int tmpstride = MAX_PB_SIZE;
HEVCLocalContext *lc = s->HEVClc;
uint8_t *src1 = ref0->data[cidx+1];
uint8_t *src2 = ref1->data[cidx+1];
ptrdiff_t src1stride = ref0->linesize[cidx+1];
ptrdiff_t src2stride = ref1->linesize[cidx+1];
int weight_flag = (s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
(s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag);
int pic_width = s->sps->width >> s->sps->hshift[1];
int pic_height = s->sps->height >> s->sps->vshift[1];
Mv *mv0 = &current_mv->mv[0];
Mv *mv1 = &current_mv->mv[1];
int hshift = s->sps->hshift[1];
int vshift = s->sps->vshift[1];
intptr_t mx0 = mv0->x & ((1 << (2 + hshift)) - 1);
intptr_t my0 = mv0->y & ((1 << (2 + vshift)) - 1);
intptr_t mx1 = mv1->x & ((1 << (2 + hshift)) - 1);
intptr_t my1 = mv1->y & ((1 << (2 + vshift)) - 1);
intptr_t _mx0 = mx0 << (1 - hshift);
intptr_t _my0 = my0 << (1 - vshift);
intptr_t _mx1 = mx1 << (1 - hshift);
intptr_t _my1 = my1 << (1 - vshift);
int x_off0 = x_off + (mv0->x >> (2 + hshift));
int y_off0 = y_off + (mv0->y >> (2 + vshift));
int x_off1 = x_off + (mv1->x >> (2 + hshift));
int y_off1 = y_off + (mv1->y >> (2 + vshift));
int idx = ff_hevc_pel_weight[block_w];
src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->sps->pixel_shift);
src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->sps->pixel_shift);
if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
int buf_offset1 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << s->sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
edge_emu_stride, src1stride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off0 - EPEL_EXTRA_BEFORE,
y_off0 - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src1 = lc->edge_emu_buffer + buf_offset1;
src1stride = edge_emu_stride;
}
if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
int buf_offset1 = EPEL_EXTRA_BEFORE *
(edge_emu_stride + (1 << s->sps->pixel_shift));
s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
edge_emu_stride, src2stride,
block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
x_off1 - EPEL_EXTRA_BEFORE,
y_off1 - EPEL_EXTRA_BEFORE,
pic_width, pic_height);
src2 = lc->edge_emu_buffer2 + buf_offset1;
src2stride = edge_emu_stride;
}
s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](tmp, tmpstride, src1, src1stride,
block_h, _mx0, _my0, block_w);
if (!weight_flag)
s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
src2, src2stride, tmp, tmpstride,
block_h, _mx1, _my1, block_w);
else
s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
src2, src2stride, tmp, tmpstride,
block_h,
s->sh.chroma_log2_weight_denom,
s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
_mx1, _my1, block_w);
}
static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
const Mv *mv, int y0, int height)
{
int y = (mv->y >> 2) + y0 + height + 9;
if (s->threads_type == FF_THREAD_FRAME )
ff_thread_await_progress(&ref->tf, y, 0);
}
static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
int nPbW, int nPbH,
int log2_cb_size, int partIdx)
{
#define POS(c_idx, x, y) \
&s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
(((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
HEVCLocalContext *lc = s->HEVClc;
int merge_idx = 0;
struct MvField current_mv = {{{ 0 }}};
int min_pu_width = s->sps->min_pu_width;
MvField *tab_mvf = s->ref->tab_mvf;
RefPicList *refPicList = s->ref->refPicList;
HEVCFrame *ref0, *ref1;
uint8_t *dst0 = POS(0, x0, y0);
uint8_t *dst1 = POS(1, x0, y0);
uint8_t *dst2 = POS(2, x0, y0);
int log2_min_cb_size = s->sps->log2_min_cb_size;
int min_cb_width = s->sps->min_cb_width;
int x_cb = x0 >> log2_min_cb_size;
int y_cb = y0 >> log2_min_cb_size;
int ref_idx[2];
int mvp_flag[2];
int x_pu, y_pu;
int i, j;
if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
if (s->sh.max_num_merge_cand > 1)
merge_idx = ff_hevc_merge_idx_decode(s);
else
merge_idx = 0;
ff_hevc_luma_mv_merge_mode(s, x0, y0,
1 << log2_cb_size,
1 << log2_cb_size,
log2_cb_size, partIdx,
merge_idx, &current_mv);
x_pu = x0 >> s->sps->log2_min_pu_size;
y_pu = y0 >> s->sps->log2_min_pu_size;
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
} else { /* MODE_INTER */
lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
if (lc->pu.merge_flag) {
if (s->sh.max_num_merge_cand > 1)
merge_idx = ff_hevc_merge_idx_decode(s);
else
merge_idx = 0;
ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv);
x_pu = x0 >> s->sps->log2_min_pu_size;
y_pu = y0 >> s->sps->log2_min_pu_size;
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
} else {
enum InterPredIdc inter_pred_idc = PRED_L0;
ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
current_mv.pred_flag = 0;
if (s->sh.slice_type == B_SLICE)
inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
if (inter_pred_idc != PRED_L1) {
if (s->sh.nb_refs[L0]) {
ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
current_mv.ref_idx[0] = ref_idx[0];
}
current_mv.pred_flag = PF_L0;
ff_hevc_hls_mvd_coding(s, x0, y0, 0);
mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv,
mvp_flag[0], 0);
current_mv.mv[0].x += lc->pu.mvd.x;
current_mv.mv[0].y += lc->pu.mvd.y;
}
if (inter_pred_idc != PRED_L0) {
if (s->sh.nb_refs[L1]) {
ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
current_mv.ref_idx[1] = ref_idx[1];
}
if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
lc->pu.mvd.x = 0;
lc->pu.mvd.y = 0;
} else {
ff_hevc_hls_mvd_coding(s, x0, y0, 1);
}
current_mv.pred_flag += PF_L1;
mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
partIdx, merge_idx, &current_mv,
mvp_flag[1], 1);
current_mv.mv[1].x += lc->pu.mvd.x;
current_mv.mv[1].y += lc->pu.mvd.y;
}
x_pu = x0 >> s->sps->log2_min_pu_size;
y_pu = y0 >> s->sps->log2_min_pu_size;
for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
}
}
if (current_mv.pred_flag & PF_L0) {
ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
if (!ref0)
return;
hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
}
if (current_mv.pred_flag & PF_L1) {
ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
if (!ref1)
return;
hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
}
if (current_mv.pred_flag == PF_L0) {
int x0_c = x0 >> s->sps->hshift[1];
int y0_c = y0 >> s->sps->vshift[1];
int nPbW_c = nPbW >> s->sps->hshift[1];
int nPbH_c = nPbH >> s->sps->vshift[1];
luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
&current_mv.mv[0], x0, y0, nPbW, nPbH,
s->sh.luma_weight_l0[current_mv.ref_idx[0]],
s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
} else if (current_mv.pred_flag == PF_L1) {
int x0_c = x0 >> s->sps->hshift[1];
int y0_c = y0 >> s->sps->vshift[1];
int nPbW_c = nPbW >> s->sps->hshift[1];
int nPbH_c = nPbH >> s->sps->vshift[1];
luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
&current_mv.mv[1], x0, y0, nPbW, nPbH,
s->sh.luma_weight_l1[current_mv.ref_idx[1]],
s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
} else if (current_mv.pred_flag == PF_BI) {
int x0_c = x0 >> s->sps->hshift[1];
int y0_c = y0 >> s->sps->vshift[1];
int nPbW_c = nPbW >> s->sps->hshift[1];
int nPbH_c = nPbH >> s->sps->vshift[1];
luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
&current_mv.mv[0], x0, y0, nPbW, nPbH,
ref1->frame, &current_mv.mv[1], &current_mv);
chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
}
}
/**
* 8.4.1
*/
static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
int prev_intra_luma_pred_flag)
{
HEVCLocalContext *lc = s->HEVClc;
int x_pu = x0 >> s->sps->log2_min_pu_size;
int y_pu = y0 >> s->sps->log2_min_pu_size;
int min_pu_width = s->sps->min_pu_width;
int size_in_pus = pu_size >> s->sps->log2_min_pu_size;
int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
int cand_up = (lc->ctb_up_flag || y0b) ?
s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
int cand_left = (lc->ctb_left_flag || x0b) ?
s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
MvField *tab_mvf = s->ref->tab_mvf;
int intra_pred_mode;
int candidate[3];
int i, j;
// intra_pred_mode prediction does not cross vertical CTB boundaries
if ((y0 - 1) < y_ctb)
cand_up = INTRA_DC;
if (cand_left == cand_up) {
if (cand_left < 2) {
candidate[0] = INTRA_PLANAR;
candidate[1] = INTRA_DC;
candidate[2] = INTRA_ANGULAR_26;
} else {
candidate[0] = cand_left;
candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
}
} else {
candidate[0] = cand_left;
candidate[1] = cand_up;
if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
candidate[2] = INTRA_PLANAR;
} else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
candidate[2] = INTRA_DC;
} else {
candidate[2] = INTRA_ANGULAR_26;
}
}
if (prev_intra_luma_pred_flag) {
intra_pred_mode = candidate[lc->pu.mpm_idx];
} else {
if (candidate[0] > candidate[1])
FFSWAP(uint8_t, candidate[0], candidate[1]);
if (candidate[0] > candidate[2])
FFSWAP(uint8_t, candidate[0], candidate[2]);
if (candidate[1] > candidate[2])
FFSWAP(uint8_t, candidate[1], candidate[2]);
intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
for (i = 0; i < 3; i++)
if (intra_pred_mode >= candidate[i])
intra_pred_mode++;
}
/* write the intra prediction units into the mv array */
if (!size_in_pus)
size_in_pus = 1;
for (i = 0; i < size_in_pus; i++) {
memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
intra_pred_mode, size_in_pus);
for (j = 0; j < size_in_pus; j++) {
tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
}
}
return intra_pred_mode;
}
static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
int log2_cb_size, int ct_depth)
{
int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
int x_cb = x0 >> s->sps->log2_min_cb_size;
int y_cb = y0 >> s->sps->log2_min_cb_size;
int y;
for (y = 0; y < length; y++)
memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
ct_depth, length);
}
static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
int log2_cb_size)
{
HEVCLocalContext *lc = s->HEVClc;
static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
uint8_t prev_intra_luma_pred_flag[4];
int split = lc->cu.part_mode == PART_NxN;
int pb_size = (1 << log2_cb_size) >> split;
int side = split + 1;
int chroma_mode;
int i, j;
for (i = 0; i < side; i++)
for (j = 0; j < side; j++)
prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
for (i = 0; i < side; i++) {
for (j = 0; j < side; j++) {
if (prev_intra_luma_pred_flag[2 * i + j])
lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
else
lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
lc->pu.intra_pred_mode[2 * i + j] =
luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
prev_intra_luma_pred_flag[2 * i + j]);
}
}
chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
if (chroma_mode != 4) {
if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
lc->pu.intra_pred_mode_c = 34;
else
lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
} else {
lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
}
}
static void intra_prediction_unit_default_value(HEVCContext *s,
int x0, int y0,
int log2_cb_size)
{
HEVCLocalContext *lc = s->HEVClc;
int pb_size = 1 << log2_cb_size;
int size_in_pus = pb_size >> s->sps->log2_min_pu_size;
int min_pu_width = s->sps->min_pu_width;
MvField *tab_mvf = s->ref->tab_mvf;
int x_pu = x0 >> s->sps->log2_min_pu_size;
int y_pu = y0 >> s->sps->log2_min_pu_size;
int j, k;
if (size_in_pus == 0)
size_in_pus = 1;
for (j = 0; j < size_in_pus; j++)
memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
if (lc->cu.pred_mode == MODE_INTRA)
for (j = 0; j < size_in_pus; j++)
for (k = 0; k < size_in_pus; k++)
tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
}
static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
{
int cb_size = 1 << log2_cb_size;
HEVCLocalContext *lc = s->HEVClc;
int log2_min_cb_size = s->sps->log2_min_cb_size;
int length = cb_size >> log2_min_cb_size;
int min_cb_width = s->sps->min_cb_width;
int x_cb = x0 >> log2_min_cb_size;
int y_cb = y0 >> log2_min_cb_size;
int x, y, ret;
int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
lc->cu.x = x0;
lc->cu.y = y0;
lc->cu.rqt_root_cbf = 1;
lc->cu.pred_mode = MODE_INTRA;
lc->cu.part_mode = PART_2Nx2N;
lc->cu.intra_split_flag = 0;
lc->cu.pcm_flag = 0;
SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
for (x = 0; x < 4; x++)
lc->pu.intra_pred_mode[x] = 1;
if (s->pps->transquant_bypass_enable_flag) {
lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
if (lc->cu.cu_transquant_bypass_flag)
set_deblocking_bypass(s, x0, y0, log2_cb_size);
} else
lc->cu.cu_transquant_bypass_flag = 0;
if (s->sh.slice_type != I_SLICE) {
uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&s->skip_flag[x], skip_flag, length);
x += min_cb_width;
}
lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
}
if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
} else {
if (s->sh.slice_type != I_SLICE)
lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
if (lc->cu.pred_mode != MODE_INTRA ||
log2_cb_size == s->sps->log2_min_cb_size) {
lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
lc->cu.pred_mode == MODE_INTRA;
}
if (lc->cu.pred_mode == MODE_INTRA) {
if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s);
}
if (lc->cu.pcm_flag) {
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
if (s->sps->pcm.loop_filter_disable_flag)
set_deblocking_bypass(s, x0, y0, log2_cb_size);
if (ret < 0)
return ret;
} else {
intra_prediction_unit(s, x0, y0, log2_cb_size);
}
} else {
intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
switch (lc->cu.part_mode) {
case PART_2Nx2N:
hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
break;
case PART_2NxN:
hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
break;
case PART_Nx2N:
hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
break;
case PART_2NxnU:
hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
break;
case PART_2NxnD:
hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
break;
case PART_nLx2N:
hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
break;
case PART_nRx2N:
hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1);
break;
case PART_NxN:
hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
break;
}
}
if (!lc->cu.pcm_flag) {
if (lc->cu.pred_mode != MODE_INTRA &&
!(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
}
if (lc->cu.rqt_root_cbf) {
lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
s->sps->max_transform_hierarchy_depth_inter;
ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
log2_cb_size,
log2_cb_size, 0, 0);
if (ret < 0)
return ret;
} else {
if (!s->sh.disable_deblocking_filter_flag)
ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
}
}
}
if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
x = y_cb * min_cb_width + x_cb;
for (y = 0; y < length; y++) {
memset(&s->qp_y_tab[x], lc->qp_y, length);
x += min_cb_width;
}
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
lc->qPy_pred = lc->qp_y;
}
set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
return 0;
}
static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
int log2_cb_size, int cb_depth)
{
HEVCLocalContext *lc = s->HEVClc;
const int cb_size = 1 << log2_cb_size;
int ret;
int qp_block_mask = (1<<(s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth)) - 1;
lc->ct.depth = cb_depth;
if (x0 + cb_size <= s->sps->width &&
y0 + cb_size <= s->sps->height &&
log2_cb_size > s->sps->log2_min_cb_size) {
SAMPLE(s->split_cu_flag, x0, y0) =
ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
} else {
SAMPLE(s->split_cu_flag, x0, y0) =
(log2_cb_size > s->sps->log2_min_cb_size);
}
if (s->pps->cu_qp_delta_enabled_flag &&
log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
lc->tu.is_cu_qp_delta_coded = 0;
lc->tu.cu_qp_delta = 0;
}
if (SAMPLE(s->split_cu_flag, x0, y0)) {
const int cb_size_split = cb_size >> 1;
const int x1 = x0 + cb_size_split;
const int y1 = y0 + cb_size_split;
int more_data = 0;
more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
if (more_data && x1 < s->sps->width) {
more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
}
if (more_data && y1 < s->sps->height) {
more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
}
if (more_data && x1 < s->sps->width &&
y1 < s->sps->height) {
more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
if (more_data < 0)
return more_data;
}
if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
lc->qPy_pred = lc->qp_y;
if (more_data)
return ((x1 + cb_size_split) < s->sps->width ||
(y1 + cb_size_split) < s->sps->height);
else
return 0;
} else {
ret = hls_coding_unit(s, x0, y0, log2_cb_size);
if (ret < 0)
return ret;
if ((!((x0 + cb_size) %
(1 << (s->sps->log2_ctb_size))) ||
(x0 + cb_size >= s->sps->width)) &&
(!((y0 + cb_size) %
(1 << (s->sps->log2_ctb_size))) ||
(y0 + cb_size >= s->sps->height))) {
int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
return !end_of_slice_flag;
} else {
return 1;
}
}
return 0;
}
static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
int ctb_addr_ts)
{
HEVCLocalContext *lc = s->HEVClc;
int ctb_size = 1 << s->sps->log2_ctb_size;
int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
int tile_left_boundary, tile_up_boundary;
int slice_left_boundary, slice_up_boundary;
s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
if (s->pps->entropy_coding_sync_enabled_flag) {
if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
lc->first_qp_group = 1;
lc->end_of_tiles_x = s->sps->width;
} else if (s->pps->tiles_enabled_flag) {
if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
lc->first_qp_group = 1;
}
} else {
lc->end_of_tiles_x = s->sps->width;
}
lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
if (s->pps->tiles_enabled_flag) {
tile_left_boundary = x_ctb > 0 &&
s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
slice_left_boundary = x_ctb > 0 &&
s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1];
tile_up_boundary = y_ctb > 0 &&
s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
slice_up_boundary = y_ctb > 0 &&
s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width];
} else {
tile_left_boundary =
tile_up_boundary = 0;
slice_left_boundary = ctb_addr_in_slice <= 0;
slice_up_boundary = ctb_addr_in_slice < s->sps->ctb_width;
}
lc->slice_or_tiles_left_boundary = slice_left_boundary + (tile_left_boundary << 1);
lc->slice_or_tiles_up_boundary = slice_up_boundary + (tile_up_boundary << 1);
lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !tile_left_boundary);
lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !tile_up_boundary);
lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
}
static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
{
HEVCContext *s = avctxt->priv_data;
int ctb_size = 1 << s->sps->log2_ctb_size;
int more_data = 1;
int x_ctb = 0;
int y_ctb = 0;
int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
return AVERROR_INVALIDDATA;
}
if (s->sh.dependent_slice_segment_flag) {
int prev_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
return AVERROR_INVALIDDATA;
}
}
while (more_data && ctb_addr_ts < s->sps->ctb_size) {
int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
ff_hevc_cabac_init(s, ctb_addr_ts);
hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
if (more_data < 0) {
s->tab_slice_address[ctb_addr_rs] = -1;
return more_data;
}
ctb_addr_ts++;
ff_hevc_save_states(s, ctb_addr_ts);
ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
}
if (x_ctb + ctb_size >= s->sps->width &&
y_ctb + ctb_size >= s->sps->height)
ff_hevc_hls_filter(s, x_ctb, y_ctb);
return ctb_addr_ts;
}
static int hls_slice_data(HEVCContext *s)
{
int arg[2];
int ret[2];
arg[0] = 0;
arg[1] = 1;
s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
return ret[0];
}
static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
{
HEVCContext *s1 = avctxt->priv_data, *s;
HEVCLocalContext *lc;
int ctb_size = 1<< s1->sps->log2_ctb_size;
int more_data = 1;
int *ctb_row_p = input_ctb_row;
int ctb_row = ctb_row_p[job];
int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size);
int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
int thread = ctb_row % s1->threads_number;
int ret;
s = s1->sList[self_id];
lc = s->HEVClc;
if(ctb_row) {
ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
if (ret < 0)
return ret;
ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
}
while(more_data && ctb_addr_ts < s->sps->ctb_size) {
int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size;
int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size;
hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
if (avpriv_atomic_int_get(&s1->wpp_err)){
ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
return 0;
}
ff_hevc_cabac_init(s, ctb_addr_ts);
hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
if (more_data < 0) {
s->tab_slice_address[ctb_addr_rs] = -1;
return more_data;
}
ctb_addr_ts++;
ff_hevc_save_states(s, ctb_addr_ts);
ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) {
avpriv_atomic_int_set(&s1->wpp_err, 1);
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
return 0;
}
if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) {
ff_hevc_hls_filter(s, x_ctb, y_ctb);
ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
return ctb_addr_ts;
}
ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
x_ctb+=ctb_size;
if(x_ctb >= s->sps->width) {
break;
}
}
ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
return 0;
}
static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
{
HEVCLocalContext *lc = s->HEVClc;
int *ret = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
int *arg = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
int offset;
int startheader, cmpt = 0;
int i, j, res = 0;
if (!s->sList[1]) {
ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
for (i = 1; i < s->threads_number; i++) {
s->sList[i] = av_malloc(sizeof(HEVCContext));
memcpy(s->sList[i], s, sizeof(HEVCContext));
s->HEVClcList[i] = av_malloc(sizeof(HEVCLocalContext));
s->sList[i]->HEVClc = s->HEVClcList[i];
}
}
offset = (lc->gb.index >> 3);
for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) {
if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
startheader--;
cmpt++;
}
}
for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
offset += (s->sh.entry_point_offset[i - 1] - cmpt);
for (j = 0, cmpt = 0, startheader = offset
+ s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) {
if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
startheader--;
cmpt++;
}
}
s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
s->sh.offset[i - 1] = offset;
}
if (s->sh.num_entry_point_offsets != 0) {
offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
}
s->data = nal;
for (i = 1; i < s->threads_number; i++) {
s->sList[i]->HEVClc->first_qp_group = 1;
s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
memcpy(s->sList[i], s, sizeof(HEVCContext));
s->sList[i]->HEVClc = s->HEVClcList[i];
}
avpriv_atomic_int_set(&s->wpp_err, 0);
ff_reset_entries(s->avctx);
for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
arg[i] = i;
ret[i] = 0;
}
if (s->pps->entropy_coding_sync_enabled_flag)
s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
res += ret[i];
av_free(ret);
av_free(arg);
return res;
}
/**
* @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
* 0 if the unit should be skipped, 1 otherwise
*/
static int hls_nal_unit(HEVCContext *s)
{
GetBitContext *gb = &s->HEVClc->gb;
int nuh_layer_id;
if (get_bits1(gb) != 0)
return AVERROR_INVALIDDATA;
s->nal_unit_type = get_bits(gb, 6);
nuh_layer_id = get_bits(gb, 6);
s->temporal_id = get_bits(gb, 3) - 1;
if (s->temporal_id < 0)
return AVERROR_INVALIDDATA;
av_log(s->avctx, AV_LOG_DEBUG,
"nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
s->nal_unit_type, nuh_layer_id, s->temporal_id);
return nuh_layer_id == 0;
}
static void restore_tqb_pixels(HEVCContext *s)
{
int min_pu_size = 1 << s->sps->log2_min_pu_size;
int x, y, c_idx;
for (c_idx = 0; c_idx < 3; c_idx++) {
ptrdiff_t stride = s->frame->linesize[c_idx];
int hshift = s->sps->hshift[c_idx];
int vshift = s->sps->vshift[c_idx];
for (y = 0; y < s->sps->min_pu_height; y++) {
for (x = 0; x < s->sps->min_pu_width; x++) {
if (s->is_pcm[y * s->sps->min_pu_width + x]) {
int n;
int len = min_pu_size >> hshift;
uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
for (n = 0; n < (min_pu_size >> vshift); n++) {
memcpy(dst, src, len);
src += stride;
dst += stride;
}
}
}
}
}
}
static int set_side_data(HEVCContext *s)
{
AVFrame *out = s->ref->frame;
if (s->sei_frame_packing_present &&
s->frame_packing_arrangement_type >= 3 &&
s->frame_packing_arrangement_type <= 5 &&
s->content_interpretation_type > 0 &&
s->content_interpretation_type < 3) {
AVStereo3D *stereo = av_stereo3d_create_side_data(out);
if (!stereo)
return AVERROR(ENOMEM);
switch (s->frame_packing_arrangement_type) {
case 3:
if (s->quincunx_subsampling)
stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
else
stereo->type = AV_STEREO3D_SIDEBYSIDE;
break;
case 4:
stereo->type = AV_STEREO3D_TOPBOTTOM;
break;
case 5:
stereo->type = AV_STEREO3D_FRAMESEQUENCE;
break;
}
if (s->content_interpretation_type == 2)
stereo->flags = AV_STEREO3D_FLAG_INVERT;
}
return 0;
}
static int hevc_frame_start(HEVCContext *s)
{
HEVCLocalContext *lc = s->HEVClc;
int pic_size_in_ctb = ((s->sps->width >> s->sps->log2_min_cb_size) + 1) *
((s->sps->height >> s->sps->log2_min_cb_size) + 1);
int ret;
AVFrame *cur_frame;
memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height);
memset(s->is_pcm, 0, s->sps->min_pu_width * s->sps->min_pu_height);
memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
s->is_decoded = 0;
s->first_nal_type = s->nal_unit_type;
if (s->pps->tiles_enabled_flag)
lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
s->poc);
if (ret < 0)
goto fail;
ret = ff_hevc_frame_rps(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
goto fail;
}
ret = set_side_data(s);
if (ret < 0)
goto fail;
cur_frame = s->sps->sao_enabled ? s->sao_frame : s->frame;
cur_frame->pict_type = 3 - s->sh.slice_type;
av_frame_unref(s->output_frame);
ret = ff_hevc_output_frame(s, s->output_frame, 0);
if (ret < 0)
goto fail;
ff_thread_finish_setup(s->avctx);
return 0;
fail:
if (s->ref && s->threads_type == FF_THREAD_FRAME)
ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
s->ref = NULL;
return ret;
}
static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
{
HEVCLocalContext *lc = s->HEVClc;
GetBitContext *gb = &lc->gb;
int ctb_addr_ts, ret;
ret = init_get_bits8(gb, nal, length);
if (ret < 0)
return ret;
ret = hls_nal_unit(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
s->nal_unit_type);
goto fail;
} else if (!ret)
return 0;
switch (s->nal_unit_type) {
case NAL_VPS:
ret = ff_hevc_decode_nal_vps(s);
if (ret < 0)
goto fail;
break;
case NAL_SPS:
ret = ff_hevc_decode_nal_sps(s);
if (ret < 0)
goto fail;
break;
case NAL_PPS:
ret = ff_hevc_decode_nal_pps(s);
if (ret < 0)
goto fail;
break;
case NAL_SEI_PREFIX:
case NAL_SEI_SUFFIX:
ret = ff_hevc_decode_nal_sei(s);
if (ret < 0)
goto fail;
break;
case NAL_TRAIL_R:
case NAL_TRAIL_N:
case NAL_TSA_N:
case NAL_TSA_R:
case NAL_STSA_N:
case NAL_STSA_R:
case NAL_BLA_W_LP:
case NAL_BLA_W_RADL:
case NAL_BLA_N_LP:
case NAL_IDR_W_RADL:
case NAL_IDR_N_LP:
case NAL_CRA_NUT:
case NAL_RADL_N:
case NAL_RADL_R:
case NAL_RASL_N:
case NAL_RASL_R:
ret = hls_slice_header(s);
if (ret < 0)
return ret;
if (s->max_ra == INT_MAX) {
if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
s->max_ra = s->poc;
} else {
if (IS_IDR(s))
s->max_ra = INT_MIN;
}
}
if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
s->poc <= s->max_ra) {
s->is_decoded = 0;
break;
} else {
if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
s->max_ra = INT_MIN;
}
if (s->sh.first_slice_in_pic_flag) {
ret = hevc_frame_start(s);
if (ret < 0)
return ret;
} else if (!s->ref) {
av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
goto fail;
}
if (s->nal_unit_type != s->first_nal_type) {
av_log(s->avctx, AV_LOG_ERROR,
"Non-matching NAL types of the VCL NALUs: %d %d\n",
s->first_nal_type, s->nal_unit_type);
return AVERROR_INVALIDDATA;
}
if (!s->sh.dependent_slice_segment_flag &&
s->sh.slice_type != I_SLICE) {
ret = ff_hevc_slice_rpl(s);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error constructing the reference lists for the current slice.\n");
goto fail;
}
}
if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
ctb_addr_ts = hls_slice_data_wpp(s, nal, length);
else
ctb_addr_ts = hls_slice_data(s);
if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
s->is_decoded = 1;
if ((s->pps->transquant_bypass_enable_flag ||
(s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
s->sps->sao_enabled)
restore_tqb_pixels(s);
}
if (ctb_addr_ts < 0) {
ret = ctb_addr_ts;
goto fail;
}
break;
case NAL_EOS_NUT:
case NAL_EOB_NUT:
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
break;
case NAL_AUD:
case NAL_FD_NUT:
break;
default:
av_log(s->avctx, AV_LOG_INFO,
"Skipping NAL unit %d\n", s->nal_unit_type);
}
return 0;
fail:
if (s->avctx->err_recognition & AV_EF_EXPLODE)
return ret;
return 0;
}
/* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
* between these functions would be nice. */
int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
HEVCNAL *nal)
{
int i, si, di;
uint8_t *dst;
s->skipped_bytes = 0;
#define STARTCODE_TEST \
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
if (src[i + 2] != 3) { \
/* startcode, so we must be past the end */ \
length = i; \
} \
break; \
}
#if HAVE_FAST_UNALIGNED
#define FIND_FIRST_ZERO \
if (i > 0 && !src[i]) \
i--; \
while (src[i]) \
i++
#if HAVE_FAST_64BIT
for (i = 0; i + 1 < length; i += 9) {
if (!((~AV_RN64A(src + i) &
(AV_RN64A(src + i) - 0x0100010001000101ULL)) &
0x8000800080008080ULL))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 7;
}
#else
for (i = 0; i + 1 < length; i += 5) {
if (!((~AV_RN32A(src + i) &
(AV_RN32A(src + i) - 0x01000101U)) &
0x80008080U))
continue;
FIND_FIRST_ZERO;
STARTCODE_TEST;
i -= 3;
}
#endif /* HAVE_FAST_64BIT */
#else
for (i = 0; i + 1 < length; i += 2) {
if (src[i])
continue;
if (i > 0 && src[i - 1] == 0)
i--;
STARTCODE_TEST;
}
#endif /* HAVE_FAST_UNALIGNED */
if (i >= length - 1) { // no escaped 0
nal->data = src;
nal->size = length;
return length;
}
av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
length + FF_INPUT_BUFFER_PADDING_SIZE);
if (!nal->rbsp_buffer)
return AVERROR(ENOMEM);
dst = nal->rbsp_buffer;
memcpy(dst, src, i);
si = di = i;
while (si + 2 < length) {
// remove escapes (very rare 1:2^22)
if (src[si + 2] > 3) {
dst[di++] = src[si++];
dst[di++] = src[si++];
} else if (src[si] == 0 && src[si + 1] == 0) {
if (src[si + 2] == 3) { // escape
dst[di++] = 0;
dst[di++] = 0;
si += 3;
s->skipped_bytes++;
if (s->skipped_bytes_pos_size < s->skipped_bytes) {
s->skipped_bytes_pos_size *= 2;
av_reallocp_array(&s->skipped_bytes_pos,
s->skipped_bytes_pos_size,
sizeof(*s->skipped_bytes_pos));
if (!s->skipped_bytes_pos)
return AVERROR(ENOMEM);
}
if (s->skipped_bytes_pos)
s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1;
continue;
} else // next start code
goto nsc;
}
dst[di++] = src[si++];
}
while (si < length)
dst[di++] = src[si++];
nsc:
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
nal->data = dst;
nal->size = di;
return si;
}
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
{
int i, consumed, ret = 0;
s->ref = NULL;
s->last_eos = s->eos;
s->eos = 0;
/* split the input packet into NAL units, so we know the upper bound on the
* number of slices in the frame */
s->nb_nals = 0;
while (length >= 4) {
HEVCNAL *nal;
int extract_length = 0;
if (s->is_nalff) {
int i;
for (i = 0; i < s->nal_length_size; i++)
extract_length = (extract_length << 8) | buf[i];
buf += s->nal_length_size;
length -= s->nal_length_size;
if (extract_length > length) {
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
ret = AVERROR_INVALIDDATA;
goto fail;
}
} else {
/* search start code */
while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
++buf;
--length;
if (length < 4) {
av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");
ret = AVERROR_INVALIDDATA;
goto fail;
}
}
buf += 3;
length -= 3;
}
if (!s->is_nalff)
extract_length = length;
if (s->nals_allocated < s->nb_nals + 1) {
int new_size = s->nals_allocated + 1;
HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
if (!tmp) {
ret = AVERROR(ENOMEM);
goto fail;
}
s->nals = tmp;
memset(s->nals + s->nals_allocated, 0,
(new_size - s->nals_allocated) * sizeof(*tmp));
av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));
av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));
av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));
s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size
s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));
s->nals_allocated = new_size;
}
s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];
s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];
nal = &s->nals[s->nb_nals];
consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);
s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;
s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;
s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;
if (consumed < 0) {
ret = consumed;
goto fail;
}
ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);
if (ret < 0)
goto fail;
hls_nal_unit(s);
if (s->nal_unit_type == NAL_EOB_NUT ||
s->nal_unit_type == NAL_EOS_NUT)
s->eos = 1;
buf += consumed;
length -= consumed;
}
/* parse the NAL units */
for (i = 0; i < s->nb_nals; i++) {
int ret;
s->skipped_bytes = s->skipped_bytes_nal[i];
s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];
ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
if (ret < 0) {
av_log(s->avctx, AV_LOG_WARNING,
"Error parsing NAL unit #%d.\n", i);
goto fail;
}
}
fail:
if (s->ref && s->threads_type == FF_THREAD_FRAME)
ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
return ret;
}
static void print_md5(void *log_ctx, int level, uint8_t md5[16])
{
int i;
for (i = 0; i < 16; i++)
av_log(log_ctx, level, "%02"PRIx8, md5[i]);
}
static int verify_md5(HEVCContext *s, AVFrame *frame)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
int pixel_shift;
int i, j;
if (!desc)
return AVERROR(EINVAL);
pixel_shift = desc->comp[0].depth_minus1 > 7;
av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
s->poc);
/* the checksums are LE, so we have to byteswap for >8bpp formats
* on BE arches */
#if HAVE_BIGENDIAN
if (pixel_shift && !s->checksum_buf) {
av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
FFMAX3(frame->linesize[0], frame->linesize[1],
frame->linesize[2]));
if (!s->checksum_buf)
return AVERROR(ENOMEM);
}
#endif
for (i = 0; frame->data[i]; i++) {
int width = s->avctx->coded_width;
int height = s->avctx->coded_height;
int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
uint8_t md5[16];
av_md5_init(s->md5_ctx);
for (j = 0; j < h; j++) {
const uint8_t *src = frame->data[i] + j * frame->linesize[i];
#if HAVE_BIGENDIAN
if (pixel_shift) {
s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
(const uint16_t *) src, w);
src = s->checksum_buf;
}
#endif
av_md5_update(s->md5_ctx, src, w << pixel_shift);
}
av_md5_final(s->md5_ctx, md5);
if (!memcmp(md5, s->md5[i], 16)) {
av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
print_md5(s->avctx, AV_LOG_DEBUG, md5);
av_log (s->avctx, AV_LOG_DEBUG, "; ");
} else {
av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
print_md5(s->avctx, AV_LOG_ERROR, md5);
av_log (s->avctx, AV_LOG_ERROR, " != ");
print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
av_log (s->avctx, AV_LOG_ERROR, "\n");
return AVERROR_INVALIDDATA;
}
}
av_log(s->avctx, AV_LOG_DEBUG, "\n");
return 0;
}
static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
AVPacket *avpkt)
{
int ret;
HEVCContext *s = avctx->priv_data;
if (!avpkt->size) {
ret = ff_hevc_output_frame(s, data, 1);
if (ret < 0)
return ret;
*got_output = ret;
return 0;
}
s->ref = NULL;
ret = decode_nal_units(s, avpkt->data, avpkt->size);
if (ret < 0)
return ret;
/* verify the SEI checksum */
if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
s->is_md5) {
ret = verify_md5(s, s->ref->frame);
if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
ff_hevc_unref_frame(s, s->ref, ~0);
return ret;
}
}
s->is_md5 = 0;
if (s->is_decoded) {
s->ref->frame->key_frame = IS_IRAP(s);
av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
s->is_decoded = 0;
}
if (s->output_frame->buf[0]) {
av_frame_move_ref(data, s->output_frame);
*got_output = 1;
}
return avpkt->size;
}
static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
{
int ret;
ret = ff_thread_ref_frame(&dst->tf, &src->tf);
if (ret < 0)
return ret;
dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
if (!dst->tab_mvf_buf)
goto fail;
dst->tab_mvf = src->tab_mvf;
dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
if (!dst->rpl_tab_buf)
goto fail;
dst->rpl_tab = src->rpl_tab;
dst->rpl_buf = av_buffer_ref(src->rpl_buf);
if (!dst->rpl_buf)
goto fail;
dst->poc = src->poc;
dst->ctb_count = src->ctb_count;
dst->window = src->window;
dst->flags = src->flags;
dst->sequence = src->sequence;
return 0;
fail:
ff_hevc_unref_frame(s, dst, ~0);
return AVERROR(ENOMEM);
}
static av_cold int hevc_decode_free(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
HEVCLocalContext *lc = s->HEVClc;
int i;
pic_arrays_free(s);
av_freep(&s->md5_ctx);
for(i=0; i < s->nals_allocated; i++) {
av_freep(&s->skipped_bytes_pos_nal[i]);
}
av_freep(&s->skipped_bytes_pos_size_nal);
av_freep(&s->skipped_bytes_nal);
av_freep(&s->skipped_bytes_pos_nal);
av_freep(&s->cabac_state);
av_frame_free(&s->tmp_frame);
av_frame_free(&s->output_frame);
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
ff_hevc_unref_frame(s, &s->DPB[i], ~0);
av_frame_free(&s->DPB[i].frame);
}
for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
av_buffer_unref(&s->vps_list[i]);
for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
av_buffer_unref(&s->sps_list[i]);
for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
av_buffer_unref(&s->pps_list[i]);
av_freep(&s->sh.entry_point_offset);
av_freep(&s->sh.offset);
av_freep(&s->sh.size);
for (i = 1; i < s->threads_number; i++) {
lc = s->HEVClcList[i];
if (lc) {
av_freep(&s->HEVClcList[i]);
av_freep(&s->sList[i]);
}
}
if (s->HEVClc == s->HEVClcList[0])
s->HEVClc = NULL;
av_freep(&s->HEVClcList[0]);
for (i = 0; i < s->nals_allocated; i++)
av_freep(&s->nals[i].rbsp_buffer);
av_freep(&s->nals);
s->nals_allocated = 0;
return 0;
}
static av_cold int hevc_init_context(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int i;
s->avctx = avctx;
s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
if (!s->HEVClc)
goto fail;
s->HEVClcList[0] = s->HEVClc;
s->sList[0] = s;
s->cabac_state = av_malloc(HEVC_CONTEXTS);
if (!s->cabac_state)
goto fail;
s->tmp_frame = av_frame_alloc();
if (!s->tmp_frame)
goto fail;
s->output_frame = av_frame_alloc();
if (!s->output_frame)
goto fail;
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
s->DPB[i].frame = av_frame_alloc();
if (!s->DPB[i].frame)
goto fail;
s->DPB[i].tf.f = s->DPB[i].frame;
}
s->max_ra = INT_MAX;
s->md5_ctx = av_md5_alloc();
if (!s->md5_ctx)
goto fail;
ff_bswapdsp_init(&s->bdsp);
s->context_initialized = 1;
s->eos = 0;
return 0;
fail:
hevc_decode_free(avctx);
return AVERROR(ENOMEM);
}
static int hevc_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
HEVCContext *s = dst->priv_data;
HEVCContext *s0 = src->priv_data;
int i, ret;
if (!s->context_initialized) {
ret = hevc_init_context(dst);
if (ret < 0)
return ret;
}
for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
ff_hevc_unref_frame(s, &s->DPB[i], ~0);
if (s0->DPB[i].frame->buf[0]) {
ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
if (ret < 0)
return ret;
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
av_buffer_unref(&s->vps_list[i]);
if (s0->vps_list[i]) {
s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
if (!s->vps_list[i])
return AVERROR(ENOMEM);
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
av_buffer_unref(&s->sps_list[i]);
if (s0->sps_list[i]) {
s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
if (!s->sps_list[i])
return AVERROR(ENOMEM);
}
}
for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
av_buffer_unref(&s->pps_list[i]);
if (s0->pps_list[i]) {
s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
if (!s->pps_list[i])
return AVERROR(ENOMEM);
}
}
if (s->sps != s0->sps)
ret = set_sps(s, s0->sps);
s->seq_decode = s0->seq_decode;
s->seq_output = s0->seq_output;
s->pocTid0 = s0->pocTid0;
s->max_ra = s0->max_ra;
s->eos = s0->eos;
s->is_nalff = s0->is_nalff;
s->nal_length_size = s0->nal_length_size;
s->threads_number = s0->threads_number;
s->threads_type = s0->threads_type;
if (s0->eos) {
s->seq_decode = (s->seq_decode + 1) & 0xff;
s->max_ra = INT_MAX;
}
return 0;
}
static int hevc_decode_extradata(HEVCContext *s)
{
AVCodecContext *avctx = s->avctx;
GetByteContext gb;
int ret;
bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
if (avctx->extradata_size > 3 &&
(avctx->extradata[0] || avctx->extradata[1] ||
avctx->extradata[2] > 1)) {
/* It seems the extradata is encoded as hvcC format.
* Temporarily, we support configurationVersion==0 until 14496-15 3rd
* is finalized. When finalized, configurationVersion will be 1 and we
* can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
int i, j, num_arrays, nal_len_size;
s->is_nalff = 1;
bytestream2_skip(&gb, 21);
nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
num_arrays = bytestream2_get_byte(&gb);
/* nal units in the hvcC always have length coded with 2 bytes,
* so put a fake nal_length_size = 2 while parsing them */
s->nal_length_size = 2;
/* Decode nal units from hvcC. */
for (i = 0; i < num_arrays; i++) {
int type = bytestream2_get_byte(&gb) & 0x3f;
int cnt = bytestream2_get_be16(&gb);
for (j = 0; j < cnt; j++) {
// +2 for the nal size field
int nalsize = bytestream2_peek_be16(&gb) + 2;
if (bytestream2_get_bytes_left(&gb) < nalsize) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid NAL unit size in extradata.\n");
return AVERROR_INVALIDDATA;
}
ret = decode_nal_units(s, gb.buffer, nalsize);
if (ret < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding nal unit %d %d from hvcC failed\n",
type, i);
return ret;
}
bytestream2_skip(&gb, nalsize);
}
}
/* Now store right nal length size, that will be used to parse
* all other nals */
s->nal_length_size = nal_len_size;
} else {
s->is_nalff = 0;
ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
if (ret < 0)
return ret;
}
return 0;
}
static av_cold int hevc_decode_init(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int ret;
ff_init_cabac_states();
avctx->internal->allocate_progress = 1;
ret = hevc_init_context(avctx);
if (ret < 0)
return ret;
s->enable_parallel_tiles = 0;
s->picture_struct = 0;
if(avctx->active_thread_type & FF_THREAD_SLICE)
s->threads_number = avctx->thread_count;
else
s->threads_number = 1;
if (avctx->extradata_size > 0 && avctx->extradata) {
ret = hevc_decode_extradata(s);
if (ret < 0) {
hevc_decode_free(avctx);
return ret;
}
}
if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
s->threads_type = FF_THREAD_FRAME;
else
s->threads_type = FF_THREAD_SLICE;
return 0;
}
static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
int ret;
memset(s, 0, sizeof(*s));
ret = hevc_init_context(avctx);
if (ret < 0)
return ret;
return 0;
}
static void hevc_decode_flush(AVCodecContext *avctx)
{
HEVCContext *s = avctx->priv_data;
ff_hevc_flush_dpb(s);
s->max_ra = INT_MAX;
}
#define OFFSET(x) offsetof(HEVCContext, x)
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
static const AVProfile profiles[] = {
{ FF_PROFILE_HEVC_MAIN, "Main" },
{ FF_PROFILE_HEVC_MAIN_10, "Main 10" },
{ FF_PROFILE_HEVC_MAIN_STILL_PICTURE, "Main Still Picture" },
{ FF_PROFILE_UNKNOWN },
};
static const AVOption options[] = {
{ "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
{ "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
{ NULL },
};
static const AVClass hevc_decoder_class = {
.class_name = "HEVC decoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_hevc_decoder = {
.name = "hevc",
.long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_HEVC,
.priv_data_size = sizeof(HEVCContext),
.priv_class = &hevc_decoder_class,
.init = hevc_decode_init,
.close = hevc_decode_free,
.decode = hevc_decode_frame,
.flush = hevc_decode_flush,
.update_thread_context = hevc_update_thread_context,
.init_thread_copy = hevc_init_thread_copy,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
.profiles = NULL_IF_CONFIG_SMALL(profiles),
};