mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
768 lines
20 KiB
768 lines
20 KiB
@chapter Audio Filters |
|
@c man begin AUDIO FILTERS |
|
|
|
When you configure your FFmpeg build, you can disable any of the |
|
existing filters using --disable-filters. |
|
The configure output will show the audio filters included in your |
|
build. |
|
|
|
Below is a description of the currently available audio filters. |
|
|
|
@section anull |
|
|
|
Pass the audio source unchanged to the output. |
|
|
|
@c man end AUDIO FILTERS |
|
|
|
@chapter Audio Sources |
|
@c man begin AUDIO SOURCES |
|
|
|
Below is a description of the currently available audio sources. |
|
|
|
@section anullsrc |
|
|
|
Null audio source, never return audio frames. It is mainly useful as a |
|
template and to be employed in analysis / debugging tools. |
|
|
|
It accepts as optional parameter a string of the form |
|
@var{sample_rate}:@var{channel_layout}. |
|
|
|
@var{sample_rate} specify the sample rate, and defaults to 44100. |
|
|
|
@var{channel_layout} specify the channel layout, and can be either an |
|
integer or a string representing a channel layout. The default value |
|
of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO. |
|
|
|
Check the channel_layout_map definition in |
|
@file{libavcodec/audioconvert.c} for the mapping between strings and |
|
channel layout values. |
|
|
|
Follow some examples: |
|
@example |
|
# set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO. |
|
anullsrc=48000:4 |
|
|
|
# same as |
|
anullsrc=48000:mono |
|
@end example |
|
|
|
@c man end AUDIO SOURCES |
|
|
|
@chapter Audio Sinks |
|
@c man begin AUDIO SINKS |
|
|
|
Below is a description of the currently available audio sinks. |
|
|
|
@section anullsink |
|
|
|
Null audio sink, do absolutely nothing with the input audio. It is |
|
mainly useful as a template and to be employed in analysis / debugging |
|
tools. |
|
|
|
@c man end AUDIO SINKS |
|
|
|
@chapter Video Filters |
|
@c man begin VIDEO FILTERS |
|
|
|
When you configure your FFmpeg build, you can disable any of the |
|
existing filters using --disable-filters. |
|
The configure output will show the video filters included in your |
|
build. |
|
|
|
Below is a description of the currently available video filters. |
|
|
|
@section blackframe |
|
|
|
Detect frames that are (almost) completely black. Can be useful to |
|
detect chapter transitions or commercials. Output lines consist of |
|
the frame number of the detected frame, the percentage of blackness, |
|
the position in the file if known or -1 and the timestamp in seconds. |
|
|
|
In order to display the output lines, you need to set the loglevel at |
|
least to the AV_LOG_INFO value. |
|
|
|
The filter accepts the syntax: |
|
@example |
|
blackframe[=@var{amount}:[@var{threshold}]] |
|
@end example |
|
|
|
@var{amount} is the percentage of the pixels that have to be below the |
|
threshold, and defaults to 98. |
|
|
|
@var{threshold} is the threshold below which a pixel value is |
|
considered black, and defaults to 32. |
|
|
|
@section crop |
|
|
|
Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}. |
|
|
|
The parameters are expressions containing the following constants: |
|
|
|
@table @option |
|
@item E, PI, PHI |
|
the corresponding mathematical approximated values for e |
|
(euler number), pi (greek PI), PHI (golden ratio) |
|
|
|
@item x, y |
|
the computed values for @var{x} and @var{y}. They are evaluated for |
|
each new frame. |
|
|
|
@item in_w, in_h |
|
the input width and heigth |
|
|
|
@item iw, ih |
|
same as @var{in_w} and @var{in_h} |
|
|
|
@item out_w, out_h |
|
the output (cropped) width and heigth |
|
|
|
@item ow, oh |
|
same as @var{out_w} and @var{out_h} |
|
|
|
@item n |
|
the number of input frame, starting from 0 |
|
|
|
@item pos |
|
the position in the file of the input frame, NAN if unknown |
|
|
|
@item t |
|
timestamp expressed in seconds, NAN if the input timestamp is unknown |
|
|
|
@end table |
|
|
|
The @var{out_w} and @var{out_h} parameters specify the expressions for |
|
the width and height of the output (cropped) video. They are |
|
evaluated just at the configuration of the filter. |
|
|
|
The default value of @var{out_w} is "in_w", and the default value of |
|
@var{out_h} is "in_h". |
|
|
|
The expression for @var{out_w} may depend on the value of @var{out_h}, |
|
and the expression for @var{out_h} may depend on @var{out_w}, but they |
|
cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are |
|
evaluated after @var{out_w} and @var{out_h}. |
|
|
|
The @var{x} and @var{y} parameters specify the expressions for the |
|
position of the top-left corner of the output (non-cropped) area. They |
|
are evaluated for each frame. If the evaluated value is not valid, it |
|
is approximated to the nearest valid value. |
|
|
|
The default value of @var{x} is "(in_w-out_w)/2", and the default |
|
value for @var{y} is "(in_h-out_h)/2", which set the cropped area at |
|
the center of the input image. |
|
|
|
The expression for @var{x} may depend on @var{y}, and the expression |
|
for @var{y} may depend on @var{x}. |
|
|
|
Follow some examples: |
|
@example |
|
# crop the central input area with size 100x100 |
|
crop=100:100 |
|
|
|
# crop the central input area with size 2/3 of the input video |
|
"crop=2/3*in_w:2/3*in_h" |
|
|
|
# crop the input video central square |
|
crop=in_h |
|
|
|
# delimit the rectangle with the top-left corner placed at position |
|
# 100:100 and the right-bottom corner corresponding to the right-bottom |
|
# corner of the input image. |
|
crop=in_w-100:in_h-100:100:100 |
|
|
|
# crop 10 pixels from the lefth and right borders, and 20 pixels from |
|
# the top and bottom borders |
|
"crop=in_w-2*10:in_h-2*20" |
|
|
|
# keep only the bottom right quarter of the input image |
|
"crop=in_w/2:in_h/2:in_w/2:in_h/2" |
|
|
|
# crop height for getting Greek harmony |
|
"crop=in_w:1/PHI*in_w" |
|
|
|
# trembling effect |
|
"crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)" |
|
|
|
# erratic camera effect depending on timestamp and position |
|
"crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)" |
|
|
|
# set x depending on the value of y |
|
"crop=in_w/2:in_h/2:y:10+10*sin(n/10)" |
|
@end example |
|
|
|
@section cropdetect |
|
|
|
Auto-detect crop size. |
|
|
|
Calculate necessary cropping parameters and prints the recommended |
|
parameters through the logging system. The detected dimensions |
|
correspond to the non-black area of the input video. |
|
|
|
It accepts the syntax: |
|
@example |
|
cropdetect[=@var{limit}:@var{round}[:@var{reset}]] |
|
@end example |
|
|
|
@table @option |
|
|
|
@item limit |
|
Threshold, which can be optionally specified from nothing (0) to |
|
everything (255), defaults to 24. |
|
|
|
@item round |
|
Value which the width/height should be divisible by, defaults to |
|
16. The offset is automatically adjusted to center the video. Use 2 to |
|
get only even dimensions (needed for 4:2:2 video). 16 is best when |
|
encoding to most video codecs. |
|
|
|
@item reset |
|
Counter that determines after how many frames cropdetect will reset |
|
the previously detected largest video area and start over to detect |
|
the current optimal crop area. Defaults to 0. |
|
|
|
This can be useful when channel logos distort the video area. 0 |
|
indicates never reset and return the largest area encountered during |
|
playback. |
|
@end table |
|
|
|
@section drawbox |
|
|
|
Draw a colored box on the input image. |
|
|
|
It accepts the syntax: |
|
@example |
|
drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color} |
|
@end example |
|
|
|
@table @option |
|
|
|
@item x, y |
|
Specify the top left corner coordinates of the box. Default to 0. |
|
|
|
@item width, height |
|
Specify the width and height of the box, if 0 they are interpreted as |
|
the input width and height. Default to 0. |
|
|
|
@item color |
|
Specify the color of the box to write, it can be the name of a color |
|
(case insensitive match) or a 0xRRGGBB[AA] sequence. |
|
@end table |
|
|
|
Follow some examples: |
|
@example |
|
# draw a black box around the edge of the input image |
|
drawbox |
|
|
|
# draw a box with color red and an opacity of 50% |
|
drawbox=10:20:200:60:red@@0.5" |
|
@end example |
|
|
|
@section fifo |
|
|
|
Buffer input images and send them when they are requested. |
|
|
|
This filter is mainly useful when auto-inserted by the libavfilter |
|
framework. |
|
|
|
The filter does not take parameters. |
|
|
|
@section format |
|
|
|
Convert the input video to one of the specified pixel formats. |
|
Libavfilter will try to pick one that is supported for the input to |
|
the next filter. |
|
|
|
The filter accepts a list of pixel format names, separated by ":", |
|
for example "yuv420p:monow:rgb24". |
|
|
|
The following command: |
|
|
|
@example |
|
./ffmpeg -i in.avi -vf "format=yuv420p" out.avi |
|
@end example |
|
|
|
will convert the input video to the format "yuv420p". |
|
|
|
@section frei0r |
|
|
|
Apply a frei0r effect to the input video. |
|
|
|
To enable compilation of this filter you need to install the frei0r |
|
header and configure FFmpeg with --enable-frei0r. |
|
|
|
The filter supports the syntax: |
|
@example |
|
@var{filter_name}:@var{param1}:@var{param2}:...:@var{paramN} |
|
@end example |
|
|
|
@var{filter_name} is the name to the frei0r effect to load. If the |
|
environment variable @env{FREI0R_PATH} is defined, the frei0r effect |
|
is searched in each one of the directories specified by the colon |
|
separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r |
|
paths, which are in this order: @file{HOME/.frei0r-1/lib/}, |
|
@file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}. |
|
|
|
@var{param1}, @var{param2}, ... , @var{paramN} specify the parameters |
|
for the frei0r effect. |
|
|
|
A frei0r effect parameter can be a boolean (whose values are specified |
|
with "y" and "n"), a double, a color (specified by the syntax |
|
@var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float |
|
numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color |
|
description), a position (specified by the syntax @var{X}/@var{Y}, |
|
@var{X} and @var{Y} being float numbers) and a string. |
|
|
|
The number and kind of parameters depend on the loaded effect. If an |
|
effect parameter is not specified the default value is set. |
|
|
|
Some examples follow: |
|
@example |
|
# apply the distort0r effect, set the first two double parameters |
|
frei0r=distort0r:0.5:0.01 |
|
|
|
# apply the colordistance effect, takes a color as first parameter |
|
frei0r=colordistance:0.2/0.3/0.4 |
|
frei0r=colordistance:violet |
|
frei0r=colordistance:0x112233 |
|
|
|
# apply the perspective effect, specify the top left and top right |
|
# image positions |
|
frei0r=perspective:0.2/0.2:0.8/0.2 |
|
@end example |
|
|
|
For more information see: |
|
@url{http://piksel.org/frei0r} |
|
|
|
@section hflip |
|
|
|
Flip the input video horizontally. |
|
|
|
For example to horizontally flip the video in input with |
|
@file{ffmpeg}: |
|
@example |
|
ffmpeg -i in.avi -vf "hflip" out.avi |
|
@end example |
|
|
|
@section noformat |
|
|
|
Force libavfilter not to use any of the specified pixel formats for the |
|
input to the next filter. |
|
|
|
The filter accepts a list of pixel format names, separated by ":", |
|
for example "yuv420p:monow:rgb24". |
|
|
|
The following command: |
|
|
|
@example |
|
./ffmpeg -i in.avi -vf "noformat=yuv420p, vflip" out.avi |
|
@end example |
|
|
|
will make libavfilter use a format different from "yuv420p" for the |
|
input to the vflip filter. |
|
|
|
@section null |
|
|
|
Pass the video source unchanged to the output. |
|
|
|
@section ocv_smooth |
|
|
|
Apply smooth transform using libopencv. |
|
|
|
To enable this filter install libopencv library and headers and |
|
configure FFmpeg with --enable-libopencv. |
|
|
|
The filter accepts the following parameters: |
|
@var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}. |
|
|
|
@var{type} is the type of smooth filter to apply, and can be one of |
|
the following values: "blur", "blur_no_scale", "median", "gaussian", |
|
"bilateral". The default value is "gaussian". |
|
|
|
@var{param1}, @var{param2}, @var{param3}, and @var{param4} are |
|
parameters whose meanings depend on smooth type. @var{param1} and |
|
@var{param2} accept integer positive values or 0, @var{param3} and |
|
@var{param4} accept float values. |
|
|
|
The default value for @var{param1} is 3, the default value for the |
|
other parameters is 0. |
|
|
|
These parameters correspond to the parameters assigned to the |
|
libopencv function @code{cvSmooth}. Refer to the official libopencv |
|
documentation for the exact meaning of the parameters: |
|
@url{http://opencv.willowgarage.com/documentation/c/image_filtering.html} |
|
|
|
@section pad |
|
|
|
Add paddings to the input image, and places the original input at the |
|
given coordinates @var{x}, @var{y}. |
|
|
|
It accepts the following parameters: |
|
@var{width}:@var{height}:@var{x}:@var{y}:@var{color}. |
|
|
|
Follows the description of the accepted parameters. |
|
|
|
@table @option |
|
@item width, height |
|
|
|
Specify the size of the output image with the paddings added. If the |
|
value for @var{width} or @var{height} is 0, the corresponding input size |
|
is used for the output. |
|
|
|
The default value of @var{width} and @var{height} is 0. |
|
|
|
@item x, y |
|
|
|
Specify the offsets where to place the input image in the padded area |
|
with respect to the top/left border of the output image. |
|
|
|
The default value of @var{x} and @var{y} is 0. |
|
|
|
@item color |
|
|
|
Specify the color of the padded area, it can be the name of a color |
|
(case insensitive match) or a 0xRRGGBB[AA] sequence. |
|
|
|
The default value of @var{color} is "black". |
|
|
|
@end table |
|
|
|
For example: |
|
|
|
@example |
|
# Add paddings with color "violet" to the input video. Output video |
|
# size is 640x480, the top-left corner of the input video is placed at |
|
# row 0, column 40. |
|
pad=640:480:0:40:violet |
|
@end example |
|
|
|
@section pixdesctest |
|
|
|
Pixel format descriptor test filter, mainly useful for internal |
|
testing. The output video should be equal to the input video. |
|
|
|
For example: |
|
@example |
|
format=monow, pixdesctest |
|
@end example |
|
|
|
can be used to test the monowhite pixel format descriptor definition. |
|
|
|
@section scale |
|
|
|
Scale the input video to @var{width}:@var{height} and/or convert the image format. |
|
|
|
For example the command: |
|
|
|
@example |
|
./ffmpeg -i in.avi -vf "scale=200:100" out.avi |
|
@end example |
|
|
|
will scale the input video to a size of 200x100. |
|
|
|
If the input image format is different from the format requested by |
|
the next filter, the scale filter will convert the input to the |
|
requested format. |
|
|
|
If the value for @var{width} or @var{height} is 0, the respective input |
|
size is used for the output. |
|
|
|
If the value for @var{width} or @var{height} is -1, the scale filter will |
|
use, for the respective output size, a value that maintains the aspect |
|
ratio of the input image. |
|
|
|
The default value of @var{width} and @var{height} is 0. |
|
|
|
@section settb |
|
|
|
Set the timebase to use for the output frames timestamps. |
|
It is mainly useful for testing timebase configuration. |
|
|
|
It accepts in input an arithmetic expression representing a rational. |
|
The expression can contain the constants "PI", "E", "PHI", "AVTB" (the |
|
default timebase), and "intb" (the input timebase). |
|
|
|
The default value for the input is "intb". |
|
|
|
Follow some examples. |
|
|
|
@example |
|
# set the timebase to 1/25 |
|
settb=1/25 |
|
|
|
# set the timebase to 1/10 |
|
settb=0.1 |
|
|
|
#set the timebase to 1001/1000 |
|
settb=1+0.001 |
|
|
|
#set the timebase to 2*intb |
|
settb=2*intb |
|
|
|
#set the default timebase value |
|
settb=AVTB |
|
@end example |
|
|
|
@section slicify |
|
|
|
Pass the images of input video on to next video filter as multiple |
|
slices. |
|
|
|
@example |
|
./ffmpeg -i in.avi -vf "slicify=32" out.avi |
|
@end example |
|
|
|
The filter accepts the slice height as parameter. If the parameter is |
|
not specified it will use the default value of 16. |
|
|
|
Adding this in the beginning of filter chains should make filtering |
|
faster due to better use of the memory cache. |
|
|
|
@section transpose |
|
|
|
Transpose rows with columns in the input video and optionally flip it. |
|
|
|
It accepts a parameter representing an integer, which can assume the |
|
values: |
|
|
|
@table @samp |
|
@item 0 |
|
Rotate by 90 degrees counterclockwise and vertically flip (default), that is: |
|
@example |
|
L.R L.l |
|
. . -> . . |
|
l.r R.r |
|
@end example |
|
|
|
@item 1 |
|
Rotate by 90 degrees clockwise, that is: |
|
@example |
|
L.R l.L |
|
. . -> . . |
|
l.r r.R |
|
@end example |
|
|
|
@item 2 |
|
Rotate by 90 degrees counterclockwise, that is: |
|
@example |
|
L.R R.r |
|
. . -> . . |
|
l.r L.l |
|
@end example |
|
|
|
@item 3 |
|
Rotate by 90 degrees clockwise and vertically flip, that is: |
|
@example |
|
L.R r.R |
|
. . -> . . |
|
l.r l.L |
|
@end example |
|
@end table |
|
|
|
@section unsharp |
|
|
|
Sharpen or blur the input video. |
|
|
|
It accepts the following parameters: |
|
@var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount} |
|
|
|
Negative values for the amount will blur the input video, while positive |
|
values will sharpen. All parameters are optional and default to the |
|
equivalent of the string '5:5:1.0:0:0:0.0'. |
|
|
|
@table @option |
|
|
|
@item luma_msize_x |
|
Set the luma matrix horizontal size. It can be an integer between 3 |
|
and 13, default value is 5. |
|
|
|
@item luma_msize_y |
|
Set the luma matrix vertical size. It can be an integer between 3 |
|
and 13, default value is 5. |
|
|
|
@item luma_amount |
|
Set the luma effect strength. It can be a float number between -2.0 |
|
and 5.0, default value is 1.0. |
|
|
|
@item chroma_msize_x |
|
Set the chroma matrix horizontal size. It can be an integer between 3 |
|
and 13, default value is 0. |
|
|
|
@item chroma_msize_y |
|
Set the chroma matrix vertical size. It can be an integer between 3 |
|
and 13, default value is 0. |
|
|
|
@item luma_amount |
|
Set the chroma effect strength. It can be a float number between -2.0 |
|
and 5.0, default value is 0.0. |
|
|
|
@end table |
|
|
|
@example |
|
# Strong luma sharpen effect parameters |
|
unsharp=7:7:2.5 |
|
|
|
# Strong blur of both luma and chroma parameters |
|
unsharp=7:7:-2:7:7:-2 |
|
|
|
# Use the default values with @command{ffmpeg} |
|
./ffmpeg -i in.avi -vf "unsharp" out.mp4 |
|
@end example |
|
|
|
@section vflip |
|
|
|
Flip the input video vertically. |
|
|
|
@example |
|
./ffmpeg -i in.avi -vf "vflip" out.avi |
|
@end example |
|
|
|
@section yadif |
|
|
|
yadif is "yet another deinterlacing filter". |
|
|
|
It accepts the syntax: |
|
@example |
|
yadif=[@var{mode}[:@var{parity}]] |
|
@end example |
|
|
|
@table @option |
|
|
|
@item mode |
|
Specify the interlacing mode to adopt, accepts one of the following values. |
|
|
|
0: Output 1 frame for each frame. |
|
|
|
1: Output 1 frame for each field. |
|
|
|
2: Like 0 but skips spatial interlacing check. |
|
|
|
3: Like 1 but skips spatial interlacing check. |
|
|
|
Default value is 0. |
|
|
|
@item parity |
|
0 if is bottom field first, 1 if the interlaced video is top field |
|
first, -1 to enable automatic detection. |
|
|
|
@end table |
|
|
|
@c man end VIDEO FILTERS |
|
|
|
@chapter Video Sources |
|
@c man begin VIDEO SOURCES |
|
|
|
Below is a description of the currently available video sources. |
|
|
|
@section buffer |
|
|
|
Buffer video frames, and make them available to the filter chain. |
|
|
|
This source is mainly intended for a programmatic use, in particular |
|
through the interface defined in @file{libavfilter/vsrc_buffer.h}. |
|
|
|
It accepts the following parameters: |
|
@var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den} |
|
|
|
All the parameters need to be explicitely defined. |
|
|
|
Follows the list of the accepted parameters. |
|
|
|
@table @option |
|
|
|
@item width, height |
|
Specify the width and height of the buffered video frames. |
|
|
|
@item pix_fmt_string |
|
A string representing the pixel format of the buffered video frames. |
|
It may be a number corresponding to a pixel format, or a pixel format |
|
name. |
|
|
|
@item timebase_num, timebase_den |
|
Specify numerator and denomitor of the timebase assumed by the |
|
timestamps of the buffered frames. |
|
@end table |
|
|
|
For example: |
|
@example |
|
buffer=320:240:yuv410p:1:24 |
|
@end example |
|
|
|
will instruct the source to accept video frames with size 320x240 and |
|
with format "yuv410p" and assuming 1/24 as the timestamps timebase. |
|
Since the pixel format with name "yuv410p" corresponds to the number 6 |
|
(check the enum PixelFormat definition in @file{libavutil/pixfmt.h}), |
|
this example corresponds to: |
|
@example |
|
buffer=320:240:6:1:24 |
|
@end example |
|
|
|
@section color |
|
|
|
Provide an uniformly colored input. |
|
|
|
It accepts the following parameters: |
|
@var{color}:@var{frame_size}:@var{frame_rate} |
|
|
|
Follows the description of the accepted parameters. |
|
|
|
@table @option |
|
|
|
@item color |
|
Specify the color of the source. It can be the name of a color (case |
|
insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an |
|
alpha specifier. The default value is "black". |
|
|
|
@item frame_size |
|
Specify the size of the sourced video, it may be a string of the form |
|
@var{width}x@var{heigth}, or the name of a size abbreviation. The |
|
default value is "320x240". |
|
|
|
@item frame_rate |
|
Specify the frame rate of the sourced video, as the number of frames |
|
generated per second. It has to be a string in the format |
|
@var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float |
|
number or a valid video frame rate abbreviation. The default value is |
|
"25". |
|
|
|
@end table |
|
|
|
For example the following graph description will generate a red source |
|
with an opacity of 0.2, with size "qcif" and a frame rate of 10 |
|
frames per second, which will be overlayed over the source connected |
|
to the pad with identifier "in". |
|
|
|
@example |
|
"color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]" |
|
@end example |
|
|
|
@section nullsrc |
|
|
|
Null video source, never return images. It is mainly useful as a |
|
template and to be employed in analysis / debugging tools. |
|
|
|
It accepts as optional parameter a string of the form |
|
@var{width}:@var{height}:@var{timebase}. |
|
|
|
@var{width} and @var{height} specify the size of the configured |
|
source. The default values of @var{width} and @var{height} are |
|
respectively 352 and 288 (corresponding to the CIF size format). |
|
|
|
@var{timebase} specifies an arithmetic expression representing a |
|
timebase. The expression can contain the constants "PI", "E", "PHI", |
|
"AVTB" (the default timebase), and defaults to the value "AVTB". |
|
|
|
@c man end VIDEO SOURCES |
|
|
|
@chapter Video Sinks |
|
@c man begin VIDEO SINKS |
|
|
|
Below is a description of the currently available video sinks. |
|
|
|
@section nullsink |
|
|
|
Null video sink, do absolutely nothing with the input video. It is |
|
mainly useful as a template and to be employed in analysis / debugging |
|
tools. |
|
|
|
@c man end VIDEO SINKS |
|
|
|
|