mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
941 lines
29 KiB
941 lines
29 KiB
/* |
|
* Monkey's Audio lossless audio decoder |
|
* Copyright (c) 2007 Benjamin Zores <ben@geexbox.org> |
|
* based upon libdemac from Dave Chapman. |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
#define ALT_BITSTREAM_READER_LE |
|
#include "avcodec.h" |
|
#include "dsputil.h" |
|
#include "get_bits.h" |
|
#include "bytestream.h" |
|
#include "libavutil/audioconvert.h" |
|
#include "libavutil/avassert.h" |
|
|
|
/** |
|
* @file |
|
* Monkey's Audio lossless audio decoder |
|
*/ |
|
|
|
#define BLOCKS_PER_LOOP 4608 |
|
#define MAX_CHANNELS 2 |
|
#define MAX_BYTESPERSAMPLE 3 |
|
|
|
#define APE_FRAMECODE_MONO_SILENCE 1 |
|
#define APE_FRAMECODE_STEREO_SILENCE 3 |
|
#define APE_FRAMECODE_PSEUDO_STEREO 4 |
|
|
|
#define HISTORY_SIZE 512 |
|
#define PREDICTOR_ORDER 8 |
|
/** Total size of all predictor histories */ |
|
#define PREDICTOR_SIZE 50 |
|
|
|
#define YDELAYA (18 + PREDICTOR_ORDER*4) |
|
#define YDELAYB (18 + PREDICTOR_ORDER*3) |
|
#define XDELAYA (18 + PREDICTOR_ORDER*2) |
|
#define XDELAYB (18 + PREDICTOR_ORDER) |
|
|
|
#define YADAPTCOEFFSA 18 |
|
#define XADAPTCOEFFSA 14 |
|
#define YADAPTCOEFFSB 10 |
|
#define XADAPTCOEFFSB 5 |
|
|
|
/** |
|
* Possible compression levels |
|
* @{ |
|
*/ |
|
enum APECompressionLevel { |
|
COMPRESSION_LEVEL_FAST = 1000, |
|
COMPRESSION_LEVEL_NORMAL = 2000, |
|
COMPRESSION_LEVEL_HIGH = 3000, |
|
COMPRESSION_LEVEL_EXTRA_HIGH = 4000, |
|
COMPRESSION_LEVEL_INSANE = 5000 |
|
}; |
|
/** @} */ |
|
|
|
#define APE_FILTER_LEVELS 3 |
|
|
|
/** Filter orders depending on compression level */ |
|
static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = { |
|
{ 0, 0, 0 }, |
|
{ 16, 0, 0 }, |
|
{ 64, 0, 0 }, |
|
{ 32, 256, 0 }, |
|
{ 16, 256, 1280 } |
|
}; |
|
|
|
/** Filter fraction bits depending on compression level */ |
|
static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = { |
|
{ 0, 0, 0 }, |
|
{ 11, 0, 0 }, |
|
{ 11, 0, 0 }, |
|
{ 10, 13, 0 }, |
|
{ 11, 13, 15 } |
|
}; |
|
|
|
|
|
/** Filters applied to the decoded data */ |
|
typedef struct APEFilter { |
|
int16_t *coeffs; ///< actual coefficients used in filtering |
|
int16_t *adaptcoeffs; ///< adaptive filter coefficients used for correcting of actual filter coefficients |
|
int16_t *historybuffer; ///< filter memory |
|
int16_t *delay; ///< filtered values |
|
|
|
int avg; |
|
} APEFilter; |
|
|
|
typedef struct APERice { |
|
uint32_t k; |
|
uint32_t ksum; |
|
} APERice; |
|
|
|
typedef struct APERangecoder { |
|
uint32_t low; ///< low end of interval |
|
uint32_t range; ///< length of interval |
|
uint32_t help; ///< bytes_to_follow resp. intermediate value |
|
unsigned int buffer; ///< buffer for input/output |
|
} APERangecoder; |
|
|
|
/** Filter histories */ |
|
typedef struct APEPredictor { |
|
int32_t *buf; |
|
|
|
int32_t lastA[2]; |
|
|
|
int32_t filterA[2]; |
|
int32_t filterB[2]; |
|
|
|
int32_t coeffsA[2][4]; ///< adaption coefficients |
|
int32_t coeffsB[2][5]; ///< adaption coefficients |
|
int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE]; |
|
} APEPredictor; |
|
|
|
/** Decoder context */ |
|
typedef struct APEContext { |
|
AVCodecContext *avctx; |
|
DSPContext dsp; |
|
int channels; |
|
int samples; ///< samples left to decode in current frame |
|
|
|
int fileversion; ///< codec version, very important in decoding process |
|
int compression_level; ///< compression levels |
|
int fset; ///< which filter set to use (calculated from compression level) |
|
int flags; ///< global decoder flags |
|
|
|
uint32_t CRC; ///< frame CRC |
|
int frameflags; ///< frame flags |
|
int currentframeblocks; ///< samples (per channel) in current frame |
|
int blocksdecoded; ///< count of decoded samples in current frame |
|
APEPredictor predictor; ///< predictor used for final reconstruction |
|
|
|
int32_t decoded0[BLOCKS_PER_LOOP]; ///< decoded data for the first channel |
|
int32_t decoded1[BLOCKS_PER_LOOP]; ///< decoded data for the second channel |
|
|
|
int16_t* filterbuf[APE_FILTER_LEVELS]; ///< filter memory |
|
|
|
APERangecoder rc; ///< rangecoder used to decode actual values |
|
APERice riceX; ///< rice code parameters for the second channel |
|
APERice riceY; ///< rice code parameters for the first channel |
|
APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction |
|
|
|
uint8_t *data; ///< current frame data |
|
uint8_t *data_end; ///< frame data end |
|
const uint8_t *ptr; ///< current position in frame data |
|
const uint8_t *last_ptr; ///< position where last 4608-sample block ended |
|
|
|
int error; |
|
} APEContext; |
|
|
|
// TODO: dsputilize |
|
|
|
static av_cold int ape_decode_close(AVCodecContext *avctx) |
|
{ |
|
APEContext *s = avctx->priv_data; |
|
int i; |
|
|
|
for (i = 0; i < APE_FILTER_LEVELS; i++) |
|
av_freep(&s->filterbuf[i]); |
|
|
|
av_freep(&s->data); |
|
return 0; |
|
} |
|
|
|
static av_cold int ape_decode_init(AVCodecContext *avctx) |
|
{ |
|
APEContext *s = avctx->priv_data; |
|
int i; |
|
|
|
if (avctx->extradata_size != 6) { |
|
av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (avctx->bits_per_coded_sample != 16) { |
|
av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
if (avctx->channels > 2) { |
|
av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
s->avctx = avctx; |
|
s->channels = avctx->channels; |
|
s->fileversion = AV_RL16(avctx->extradata); |
|
s->compression_level = AV_RL16(avctx->extradata + 2); |
|
s->flags = AV_RL16(avctx->extradata + 4); |
|
|
|
av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", |
|
s->compression_level, s->flags); |
|
if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) { |
|
av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", |
|
s->compression_level); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->fset = s->compression_level / 1000 - 1; |
|
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
|
if (!ape_filter_orders[s->fset][i]) |
|
break; |
|
FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i], |
|
(ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4, |
|
filter_alloc_fail); |
|
} |
|
|
|
dsputil_init(&s->dsp, avctx); |
|
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
|
avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO; |
|
return 0; |
|
filter_alloc_fail: |
|
ape_decode_close(avctx); |
|
return AVERROR(ENOMEM); |
|
} |
|
|
|
/** |
|
* @name APE range decoding functions |
|
* @{ |
|
*/ |
|
|
|
#define CODE_BITS 32 |
|
#define TOP_VALUE ((unsigned int)1 << (CODE_BITS-1)) |
|
#define SHIFT_BITS (CODE_BITS - 9) |
|
#define EXTRA_BITS ((CODE_BITS-2) % 8 + 1) |
|
#define BOTTOM_VALUE (TOP_VALUE >> 8) |
|
|
|
/** Start the decoder */ |
|
static inline void range_start_decoding(APEContext *ctx) |
|
{ |
|
ctx->rc.buffer = bytestream_get_byte(&ctx->ptr); |
|
ctx->rc.low = ctx->rc.buffer >> (8 - EXTRA_BITS); |
|
ctx->rc.range = (uint32_t) 1 << EXTRA_BITS; |
|
} |
|
|
|
/** Perform normalization */ |
|
static inline void range_dec_normalize(APEContext *ctx) |
|
{ |
|
while (ctx->rc.range <= BOTTOM_VALUE) { |
|
ctx->rc.buffer <<= 8; |
|
if(ctx->ptr < ctx->data_end) { |
|
ctx->rc.buffer += *ctx->ptr; |
|
ctx->ptr++; |
|
} else { |
|
ctx->error = 1; |
|
} |
|
ctx->rc.low = (ctx->rc.low << 8) | ((ctx->rc.buffer >> 1) & 0xFF); |
|
ctx->rc.range <<= 8; |
|
} |
|
} |
|
|
|
/** |
|
* Calculate culmulative frequency for next symbol. Does NO update! |
|
* @param ctx decoder context |
|
* @param tot_f is the total frequency or (code_value)1<<shift |
|
* @return the culmulative frequency |
|
*/ |
|
static inline int range_decode_culfreq(APEContext *ctx, int tot_f) |
|
{ |
|
range_dec_normalize(ctx); |
|
ctx->rc.help = ctx->rc.range / tot_f; |
|
return ctx->rc.low / ctx->rc.help; |
|
} |
|
|
|
/** |
|
* Decode value with given size in bits |
|
* @param ctx decoder context |
|
* @param shift number of bits to decode |
|
*/ |
|
static inline int range_decode_culshift(APEContext *ctx, int shift) |
|
{ |
|
range_dec_normalize(ctx); |
|
ctx->rc.help = ctx->rc.range >> shift; |
|
return ctx->rc.low / ctx->rc.help; |
|
} |
|
|
|
|
|
/** |
|
* Update decoding state |
|
* @param ctx decoder context |
|
* @param sy_f the interval length (frequency of the symbol) |
|
* @param lt_f the lower end (frequency sum of < symbols) |
|
*/ |
|
static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f) |
|
{ |
|
ctx->rc.low -= ctx->rc.help * lt_f; |
|
ctx->rc.range = ctx->rc.help * sy_f; |
|
} |
|
|
|
/** Decode n bits (n <= 16) without modelling */ |
|
static inline int range_decode_bits(APEContext *ctx, int n) |
|
{ |
|
int sym = range_decode_culshift(ctx, n); |
|
range_decode_update(ctx, 1, sym); |
|
return sym; |
|
} |
|
|
|
|
|
#define MODEL_ELEMENTS 64 |
|
|
|
/** |
|
* Fixed probabilities for symbols in Monkey Audio version 3.97 |
|
*/ |
|
static const uint16_t counts_3970[22] = { |
|
0, 14824, 28224, 39348, 47855, 53994, 58171, 60926, |
|
62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419, |
|
65450, 65469, 65480, 65487, 65491, 65493, |
|
}; |
|
|
|
/** |
|
* Probability ranges for symbols in Monkey Audio version 3.97 |
|
*/ |
|
static const uint16_t counts_diff_3970[21] = { |
|
14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756, |
|
1104, 677, 415, 248, 150, 89, 54, 31, |
|
19, 11, 7, 4, 2, |
|
}; |
|
|
|
/** |
|
* Fixed probabilities for symbols in Monkey Audio version 3.98 |
|
*/ |
|
static const uint16_t counts_3980[22] = { |
|
0, 19578, 36160, 48417, 56323, 60899, 63265, 64435, |
|
64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482, |
|
65485, 65488, 65490, 65491, 65492, 65493, |
|
}; |
|
|
|
/** |
|
* Probability ranges for symbols in Monkey Audio version 3.98 |
|
*/ |
|
static const uint16_t counts_diff_3980[21] = { |
|
19578, 16582, 12257, 7906, 4576, 2366, 1170, 536, |
|
261, 119, 65, 31, 19, 10, 6, 3, |
|
3, 2, 1, 1, 1, |
|
}; |
|
|
|
/** |
|
* Decode symbol |
|
* @param ctx decoder context |
|
* @param counts probability range start position |
|
* @param counts_diff probability range widths |
|
*/ |
|
static inline int range_get_symbol(APEContext *ctx, |
|
const uint16_t counts[], |
|
const uint16_t counts_diff[]) |
|
{ |
|
int symbol, cf; |
|
|
|
cf = range_decode_culshift(ctx, 16); |
|
|
|
if(cf > 65492){ |
|
symbol= cf - 65535 + 63; |
|
range_decode_update(ctx, 1, cf); |
|
if(cf > 65535) |
|
ctx->error=1; |
|
return symbol; |
|
} |
|
/* figure out the symbol inefficiently; a binary search would be much better */ |
|
for (symbol = 0; counts[symbol + 1] <= cf; symbol++); |
|
|
|
range_decode_update(ctx, counts_diff[symbol], counts[symbol]); |
|
|
|
return symbol; |
|
} |
|
/** @} */ // group rangecoder |
|
|
|
static inline void update_rice(APERice *rice, int x) |
|
{ |
|
int lim = rice->k ? (1 << (rice->k + 4)) : 0; |
|
rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5); |
|
|
|
if (rice->ksum < lim) |
|
rice->k--; |
|
else if (rice->ksum >= (1 << (rice->k + 5))) |
|
rice->k++; |
|
} |
|
|
|
static inline int ape_decode_value(APEContext *ctx, APERice *rice) |
|
{ |
|
int x, overflow; |
|
|
|
if (ctx->fileversion < 3990) { |
|
int tmpk; |
|
|
|
overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970); |
|
|
|
if (overflow == (MODEL_ELEMENTS - 1)) { |
|
tmpk = range_decode_bits(ctx, 5); |
|
overflow = 0; |
|
} else |
|
tmpk = (rice->k < 1) ? 0 : rice->k - 1; |
|
|
|
if (tmpk <= 16) |
|
x = range_decode_bits(ctx, tmpk); |
|
else { |
|
x = range_decode_bits(ctx, 16); |
|
x |= (range_decode_bits(ctx, tmpk - 16) << 16); |
|
} |
|
x += overflow << tmpk; |
|
} else { |
|
int base, pivot; |
|
|
|
pivot = rice->ksum >> 5; |
|
if (pivot == 0) |
|
pivot = 1; |
|
|
|
overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980); |
|
|
|
if (overflow == (MODEL_ELEMENTS - 1)) { |
|
overflow = range_decode_bits(ctx, 16) << 16; |
|
overflow |= range_decode_bits(ctx, 16); |
|
} |
|
|
|
if (pivot < 0x10000) { |
|
base = range_decode_culfreq(ctx, pivot); |
|
range_decode_update(ctx, 1, base); |
|
} else { |
|
int base_hi = pivot, base_lo; |
|
int bbits = 0; |
|
|
|
while (base_hi & ~0xFFFF) { |
|
base_hi >>= 1; |
|
bbits++; |
|
} |
|
base_hi = range_decode_culfreq(ctx, base_hi + 1); |
|
range_decode_update(ctx, 1, base_hi); |
|
base_lo = range_decode_culfreq(ctx, 1 << bbits); |
|
range_decode_update(ctx, 1, base_lo); |
|
|
|
base = (base_hi << bbits) + base_lo; |
|
} |
|
|
|
x = base + overflow * pivot; |
|
} |
|
|
|
update_rice(rice, x); |
|
|
|
/* Convert to signed */ |
|
if (x & 1) |
|
return (x >> 1) + 1; |
|
else |
|
return -(x >> 1); |
|
} |
|
|
|
static void entropy_decode(APEContext *ctx, int blockstodecode, int stereo) |
|
{ |
|
int32_t *decoded0 = ctx->decoded0; |
|
int32_t *decoded1 = ctx->decoded1; |
|
|
|
ctx->blocksdecoded = blockstodecode; |
|
|
|
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
|
/* We are pure silence, just memset the output buffer. */ |
|
memset(decoded0, 0, blockstodecode * sizeof(int32_t)); |
|
memset(decoded1, 0, blockstodecode * sizeof(int32_t)); |
|
} else { |
|
while (blockstodecode--) { |
|
*decoded0++ = ape_decode_value(ctx, &ctx->riceY); |
|
if (stereo) |
|
*decoded1++ = ape_decode_value(ctx, &ctx->riceX); |
|
} |
|
} |
|
|
|
if (ctx->blocksdecoded == ctx->currentframeblocks) |
|
range_dec_normalize(ctx); /* normalize to use up all bytes */ |
|
} |
|
|
|
static int init_entropy_decoder(APEContext *ctx) |
|
{ |
|
/* Read the CRC */ |
|
if (ctx->data_end - ctx->ptr < 6) |
|
return AVERROR_INVALIDDATA; |
|
ctx->CRC = bytestream_get_be32(&ctx->ptr); |
|
|
|
/* Read the frame flags if they exist */ |
|
ctx->frameflags = 0; |
|
if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) { |
|
ctx->CRC &= ~0x80000000; |
|
|
|
if (ctx->data_end - ctx->ptr < 6) |
|
return AVERROR_INVALIDDATA; |
|
ctx->frameflags = bytestream_get_be32(&ctx->ptr); |
|
} |
|
|
|
/* Keep a count of the blocks decoded in this frame */ |
|
ctx->blocksdecoded = 0; |
|
|
|
/* Initialize the rice structs */ |
|
ctx->riceX.k = 10; |
|
ctx->riceX.ksum = (1 << ctx->riceX.k) * 16; |
|
ctx->riceY.k = 10; |
|
ctx->riceY.ksum = (1 << ctx->riceY.k) * 16; |
|
|
|
/* The first 8 bits of input are ignored. */ |
|
ctx->ptr++; |
|
|
|
range_start_decoding(ctx); |
|
|
|
return 0; |
|
} |
|
|
|
static const int32_t initial_coeffs[4] = { |
|
360, 317, -109, 98 |
|
}; |
|
|
|
static void init_predictor_decoder(APEContext *ctx) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
|
|
/* Zero the history buffers */ |
|
memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t)); |
|
p->buf = p->historybuffer; |
|
|
|
/* Initialize and zero the coefficients */ |
|
memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs)); |
|
memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs)); |
|
memset(p->coeffsB, 0, sizeof(p->coeffsB)); |
|
|
|
p->filterA[0] = p->filterA[1] = 0; |
|
p->filterB[0] = p->filterB[1] = 0; |
|
p->lastA[0] = p->lastA[1] = 0; |
|
} |
|
|
|
/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */ |
|
static inline int APESIGN(int32_t x) { |
|
return (x < 0) - (x > 0); |
|
} |
|
|
|
static av_always_inline int predictor_update_filter(APEPredictor *p, |
|
const int decoded, const int filter, |
|
const int delayA, const int delayB, |
|
const int adaptA, const int adaptB) |
|
{ |
|
int32_t predictionA, predictionB, sign; |
|
|
|
p->buf[delayA] = p->lastA[filter]; |
|
p->buf[adaptA] = APESIGN(p->buf[delayA]); |
|
p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1]; |
|
p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]); |
|
|
|
predictionA = p->buf[delayA ] * p->coeffsA[filter][0] + |
|
p->buf[delayA - 1] * p->coeffsA[filter][1] + |
|
p->buf[delayA - 2] * p->coeffsA[filter][2] + |
|
p->buf[delayA - 3] * p->coeffsA[filter][3]; |
|
|
|
/* Apply a scaled first-order filter compression */ |
|
p->buf[delayB] = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5); |
|
p->buf[adaptB] = APESIGN(p->buf[delayB]); |
|
p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1]; |
|
p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]); |
|
p->filterB[filter] = p->filterA[filter ^ 1]; |
|
|
|
predictionB = p->buf[delayB ] * p->coeffsB[filter][0] + |
|
p->buf[delayB - 1] * p->coeffsB[filter][1] + |
|
p->buf[delayB - 2] * p->coeffsB[filter][2] + |
|
p->buf[delayB - 3] * p->coeffsB[filter][3] + |
|
p->buf[delayB - 4] * p->coeffsB[filter][4]; |
|
|
|
p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10); |
|
p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5); |
|
|
|
sign = APESIGN(decoded); |
|
p->coeffsA[filter][0] += p->buf[adaptA ] * sign; |
|
p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign; |
|
p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign; |
|
p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign; |
|
p->coeffsB[filter][0] += p->buf[adaptB ] * sign; |
|
p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign; |
|
p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign; |
|
p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign; |
|
p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign; |
|
|
|
return p->filterA[filter]; |
|
} |
|
|
|
static void predictor_decode_stereo(APEContext *ctx, int count) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
int32_t *decoded0 = ctx->decoded0; |
|
int32_t *decoded1 = ctx->decoded1; |
|
|
|
while (count--) { |
|
/* Predictor Y */ |
|
*decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, |
|
YADAPTCOEFFSA, YADAPTCOEFFSB); |
|
decoded0++; |
|
*decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, |
|
XADAPTCOEFFSA, XADAPTCOEFFSB); |
|
decoded1++; |
|
|
|
/* Combined */ |
|
p->buf++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t)); |
|
p->buf = p->historybuffer; |
|
} |
|
} |
|
} |
|
|
|
static void predictor_decode_mono(APEContext *ctx, int count) |
|
{ |
|
APEPredictor *p = &ctx->predictor; |
|
int32_t *decoded0 = ctx->decoded0; |
|
int32_t predictionA, currentA, A, sign; |
|
|
|
currentA = p->lastA[0]; |
|
|
|
while (count--) { |
|
A = *decoded0; |
|
|
|
p->buf[YDELAYA] = currentA; |
|
p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1]; |
|
|
|
predictionA = p->buf[YDELAYA ] * p->coeffsA[0][0] + |
|
p->buf[YDELAYA - 1] * p->coeffsA[0][1] + |
|
p->buf[YDELAYA - 2] * p->coeffsA[0][2] + |
|
p->buf[YDELAYA - 3] * p->coeffsA[0][3]; |
|
|
|
currentA = A + (predictionA >> 10); |
|
|
|
p->buf[YADAPTCOEFFSA] = APESIGN(p->buf[YDELAYA ]); |
|
p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]); |
|
|
|
sign = APESIGN(A); |
|
p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA ] * sign; |
|
p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign; |
|
p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign; |
|
p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign; |
|
|
|
p->buf++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (p->buf == p->historybuffer + HISTORY_SIZE) { |
|
memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t)); |
|
p->buf = p->historybuffer; |
|
} |
|
|
|
p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5); |
|
*(decoded0++) = p->filterA[0]; |
|
} |
|
|
|
p->lastA[0] = currentA; |
|
} |
|
|
|
static void do_init_filter(APEFilter *f, int16_t *buf, int order) |
|
{ |
|
f->coeffs = buf; |
|
f->historybuffer = buf + order; |
|
f->delay = f->historybuffer + order * 2; |
|
f->adaptcoeffs = f->historybuffer + order; |
|
|
|
memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t)); |
|
memset(f->coeffs, 0, order * sizeof(int16_t)); |
|
f->avg = 0; |
|
} |
|
|
|
static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order) |
|
{ |
|
do_init_filter(&f[0], buf, order); |
|
do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order); |
|
} |
|
|
|
static void do_apply_filter(APEContext *ctx, int version, APEFilter *f, |
|
int32_t *data, int count, int order, int fracbits) |
|
{ |
|
int res; |
|
int absres; |
|
|
|
while (count--) { |
|
/* round fixedpoint scalar product */ |
|
res = ctx->dsp.scalarproduct_and_madd_int16(f->coeffs, f->delay - order, |
|
f->adaptcoeffs - order, |
|
order, APESIGN(*data)); |
|
res = (res + (1 << (fracbits - 1))) >> fracbits; |
|
res += *data; |
|
*data++ = res; |
|
|
|
/* Update the output history */ |
|
*f->delay++ = av_clip_int16(res); |
|
|
|
if (version < 3980) { |
|
/* Version ??? to < 3.98 files (untested) */ |
|
f->adaptcoeffs[0] = (res == 0) ? 0 : ((res >> 28) & 8) - 4; |
|
f->adaptcoeffs[-4] >>= 1; |
|
f->adaptcoeffs[-8] >>= 1; |
|
} else { |
|
/* Version 3.98 and later files */ |
|
|
|
/* Update the adaption coefficients */ |
|
absres = FFABS(res); |
|
if (absres) |
|
*f->adaptcoeffs = ((res & (1<<31)) - (1<<30)) >> |
|
(25 + (absres <= f->avg*3) + (absres <= f->avg*4/3)); |
|
else |
|
*f->adaptcoeffs = 0; |
|
|
|
f->avg += (absres - f->avg) / 16; |
|
|
|
f->adaptcoeffs[-1] >>= 1; |
|
f->adaptcoeffs[-2] >>= 1; |
|
f->adaptcoeffs[-8] >>= 1; |
|
} |
|
|
|
f->adaptcoeffs++; |
|
|
|
/* Have we filled the history buffer? */ |
|
if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) { |
|
memmove(f->historybuffer, f->delay - (order * 2), |
|
(order * 2) * sizeof(int16_t)); |
|
f->delay = f->historybuffer + order * 2; |
|
f->adaptcoeffs = f->historybuffer + order; |
|
} |
|
} |
|
} |
|
|
|
static void apply_filter(APEContext *ctx, APEFilter *f, |
|
int32_t *data0, int32_t *data1, |
|
int count, int order, int fracbits) |
|
{ |
|
do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits); |
|
if (data1) |
|
do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits); |
|
} |
|
|
|
static void ape_apply_filters(APEContext *ctx, int32_t *decoded0, |
|
int32_t *decoded1, int count) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
|
if (!ape_filter_orders[ctx->fset][i]) |
|
break; |
|
apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, |
|
ape_filter_orders[ctx->fset][i], |
|
ape_filter_fracbits[ctx->fset][i]); |
|
} |
|
} |
|
|
|
static int init_frame_decoder(APEContext *ctx) |
|
{ |
|
int i, ret; |
|
if ((ret = init_entropy_decoder(ctx)) < 0) |
|
return ret; |
|
init_predictor_decoder(ctx); |
|
|
|
for (i = 0; i < APE_FILTER_LEVELS; i++) { |
|
if (!ape_filter_orders[ctx->fset][i]) |
|
break; |
|
init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], |
|
ape_filter_orders[ctx->fset][i]); |
|
} |
|
return 0; |
|
} |
|
|
|
static void ape_unpack_mono(APEContext *ctx, int count) |
|
{ |
|
int32_t *decoded0 = ctx->decoded0; |
|
int32_t *decoded1 = ctx->decoded1; |
|
|
|
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
|
entropy_decode(ctx, count, 0); |
|
/* We are pure silence, so we're done. */ |
|
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n"); |
|
return; |
|
} |
|
|
|
entropy_decode(ctx, count, 0); |
|
ape_apply_filters(ctx, decoded0, NULL, count); |
|
|
|
/* Now apply the predictor decoding */ |
|
predictor_decode_mono(ctx, count); |
|
|
|
/* Pseudo-stereo - just copy left channel to right channel */ |
|
if (ctx->channels == 2) { |
|
memcpy(decoded1, decoded0, count * sizeof(*decoded1)); |
|
} |
|
} |
|
|
|
static void ape_unpack_stereo(APEContext *ctx, int count) |
|
{ |
|
int32_t left, right; |
|
int32_t *decoded0 = ctx->decoded0; |
|
int32_t *decoded1 = ctx->decoded1; |
|
|
|
if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) { |
|
/* We are pure silence, so we're done. */ |
|
av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n"); |
|
return; |
|
} |
|
|
|
entropy_decode(ctx, count, 1); |
|
ape_apply_filters(ctx, decoded0, decoded1, count); |
|
|
|
/* Now apply the predictor decoding */ |
|
predictor_decode_stereo(ctx, count); |
|
|
|
/* Decorrelate and scale to output depth */ |
|
while (count--) { |
|
left = *decoded1 - (*decoded0 / 2); |
|
right = left + *decoded0; |
|
|
|
*(decoded0++) = left; |
|
*(decoded1++) = right; |
|
} |
|
} |
|
|
|
static int ape_decode_frame(AVCodecContext *avctx, |
|
void *data, int *data_size, |
|
AVPacket *avpkt) |
|
{ |
|
const uint8_t *buf = avpkt->data; |
|
int buf_size = avpkt->size; |
|
APEContext *s = avctx->priv_data; |
|
int16_t *samples = data; |
|
uint32_t nblocks; |
|
int i; |
|
int blockstodecode; |
|
int bytes_used; |
|
|
|
/* should not happen but who knows */ |
|
if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) { |
|
av_log (avctx, AV_LOG_ERROR, "Output buffer is too small.\n"); |
|
return AVERROR(EINVAL); |
|
} |
|
|
|
/* this should never be negative, but bad things will happen if it is, so |
|
check it just to make sure. */ |
|
av_assert0(s->samples >= 0); |
|
|
|
if(!s->samples){ |
|
uint32_t offset; |
|
void *tmp_data; |
|
|
|
if (buf_size < 8) { |
|
av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
tmp_data = av_realloc(s->data, FFALIGN(buf_size, 4)); |
|
if (!tmp_data) |
|
return AVERROR(ENOMEM); |
|
s->data = tmp_data; |
|
s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2); |
|
s->ptr = s->last_ptr = s->data; |
|
s->data_end = s->data + buf_size; |
|
|
|
nblocks = bytestream_get_be32(&s->ptr); |
|
offset = bytestream_get_be32(&s->ptr); |
|
if (offset > 3) { |
|
av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n"); |
|
s->data = NULL; |
|
return AVERROR_INVALIDDATA; |
|
} |
|
if (s->data_end - s->ptr < offset) { |
|
av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->ptr += offset; |
|
|
|
if (!nblocks || nblocks > INT_MAX) { |
|
av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %u.\n", nblocks); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
s->currentframeblocks = s->samples = nblocks; |
|
|
|
memset(s->decoded0, 0, sizeof(s->decoded0)); |
|
memset(s->decoded1, 0, sizeof(s->decoded1)); |
|
|
|
/* Initialize the frame decoder */ |
|
if (init_frame_decoder(s) < 0) { |
|
av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
} |
|
|
|
if (!s->data) { |
|
*data_size = 0; |
|
return buf_size; |
|
} |
|
|
|
nblocks = s->samples; |
|
blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks); |
|
|
|
s->error=0; |
|
|
|
if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO)) |
|
ape_unpack_mono(s, blockstodecode); |
|
else |
|
ape_unpack_stereo(s, blockstodecode); |
|
emms_c(); |
|
|
|
if (s->error) { |
|
s->samples=0; |
|
av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n"); |
|
return AVERROR_INVALIDDATA; |
|
} |
|
|
|
for (i = 0; i < blockstodecode; i++) { |
|
*samples++ = s->decoded0[i]; |
|
if(s->channels == 2) |
|
*samples++ = s->decoded1[i]; |
|
} |
|
|
|
s->samples -= blockstodecode; |
|
|
|
*data_size = blockstodecode * 2 * s->channels; |
|
bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size; |
|
s->last_ptr = s->ptr; |
|
return bytes_used; |
|
} |
|
|
|
static void ape_flush(AVCodecContext *avctx) |
|
{ |
|
APEContext *s = avctx->priv_data; |
|
s->samples= 0; |
|
} |
|
|
|
AVCodec ff_ape_decoder = { |
|
.name = "ape", |
|
.type = AVMEDIA_TYPE_AUDIO, |
|
.id = CODEC_ID_APE, |
|
.priv_data_size = sizeof(APEContext), |
|
.init = ape_decode_init, |
|
.close = ape_decode_close, |
|
.decode = ape_decode_frame, |
|
.capabilities = CODEC_CAP_SUBFRAMES, |
|
.flush = ape_flush, |
|
.long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"), |
|
};
|
|
|