mirror of https://github.com/FFmpeg/FFmpeg.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
14 KiB
440 lines
14 KiB
/* |
|
* Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com> |
|
* |
|
* Triangular with Noise Shaping is based on opusfile. |
|
* Copyright (c) 1994-2012 by the Xiph.Org Foundation and contributors |
|
* |
|
* This file is part of Libav. |
|
* |
|
* Libav is free software; you can redistribute it and/or |
|
* modify it under the terms of the GNU Lesser General Public |
|
* License as published by the Free Software Foundation; either |
|
* version 2.1 of the License, or (at your option) any later version. |
|
* |
|
* Libav is distributed in the hope that it will be useful, |
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* Lesser General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU Lesser General Public |
|
* License along with Libav; if not, write to the Free Software |
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
*/ |
|
|
|
/** |
|
* @file |
|
* Dithered Audio Sample Quantization |
|
* |
|
* Converts from dbl, flt, or s32 to s16 using dithering. |
|
*/ |
|
|
|
#include <math.h> |
|
#include <stdint.h> |
|
|
|
#include "libavutil/attributes.h" |
|
#include "libavutil/common.h" |
|
#include "libavutil/lfg.h" |
|
#include "libavutil/mem.h" |
|
#include "libavutil/samplefmt.h" |
|
#include "audio_convert.h" |
|
#include "dither.h" |
|
#include "internal.h" |
|
|
|
typedef struct DitherState { |
|
int mute; |
|
unsigned int seed; |
|
AVLFG lfg; |
|
float *noise_buf; |
|
int noise_buf_size; |
|
int noise_buf_ptr; |
|
float dither_a[4]; |
|
float dither_b[4]; |
|
} DitherState; |
|
|
|
struct DitherContext { |
|
DitherDSPContext ddsp; |
|
enum AVResampleDitherMethod method; |
|
int apply_map; |
|
ChannelMapInfo *ch_map_info; |
|
|
|
int mute_dither_threshold; // threshold for disabling dither |
|
int mute_reset_threshold; // threshold for resetting noise shaping |
|
const float *ns_coef_b; // noise shaping coeffs |
|
const float *ns_coef_a; // noise shaping coeffs |
|
|
|
int channels; |
|
DitherState *state; // dither states for each channel |
|
|
|
AudioData *flt_data; // input data in fltp |
|
AudioData *s16_data; // dithered output in s16p |
|
AudioConvert *ac_in; // converter for input to fltp |
|
AudioConvert *ac_out; // converter for s16p to s16 (if needed) |
|
|
|
void (*quantize)(int16_t *dst, const float *src, float *dither, int len); |
|
int samples_align; |
|
}; |
|
|
|
/* mute threshold, in seconds */ |
|
#define MUTE_THRESHOLD_SEC 0.000333 |
|
|
|
/* scale factor for 16-bit output. |
|
The signal is attenuated slightly to avoid clipping */ |
|
#define S16_SCALE 32753.0f |
|
|
|
/* scale to convert lfg from INT_MIN/INT_MAX to -0.5/0.5 */ |
|
#define LFG_SCALE (1.0f / (2.0f * INT32_MAX)) |
|
|
|
/* noise shaping coefficients */ |
|
|
|
static const float ns_48_coef_b[4] = { |
|
2.2374f, -0.7339f, -0.1251f, -0.6033f |
|
}; |
|
|
|
static const float ns_48_coef_a[4] = { |
|
0.9030f, 0.0116f, -0.5853f, -0.2571f |
|
}; |
|
|
|
static const float ns_44_coef_b[4] = { |
|
2.2061f, -0.4707f, -0.2534f, -0.6213f |
|
}; |
|
|
|
static const float ns_44_coef_a[4] = { |
|
1.0587f, 0.0676f, -0.6054f, -0.2738f |
|
}; |
|
|
|
static void dither_int_to_float_rectangular_c(float *dst, int *src, int len) |
|
{ |
|
int i; |
|
for (i = 0; i < len; i++) |
|
dst[i] = src[i] * LFG_SCALE; |
|
} |
|
|
|
static void dither_int_to_float_triangular_c(float *dst, int *src0, int len) |
|
{ |
|
int i; |
|
int *src1 = src0 + len; |
|
|
|
for (i = 0; i < len; i++) { |
|
float r = src0[i] * LFG_SCALE; |
|
r += src1[i] * LFG_SCALE; |
|
dst[i] = r; |
|
} |
|
} |
|
|
|
static void quantize_c(int16_t *dst, const float *src, float *dither, int len) |
|
{ |
|
int i; |
|
for (i = 0; i < len; i++) |
|
dst[i] = av_clip_int16(lrintf(src[i] * S16_SCALE + dither[i])); |
|
} |
|
|
|
#define SQRT_1_6 0.40824829046386301723f |
|
|
|
static void dither_highpass_filter(float *src, int len) |
|
{ |
|
int i; |
|
|
|
/* filter is from libswresample in FFmpeg */ |
|
for (i = 0; i < len - 2; i++) |
|
src[i] = (-src[i] + 2 * src[i + 1] - src[i + 2]) * SQRT_1_6; |
|
} |
|
|
|
static int generate_dither_noise(DitherContext *c, DitherState *state, |
|
int min_samples) |
|
{ |
|
int i; |
|
int nb_samples = FFALIGN(min_samples, 16) + 16; |
|
int buf_samples = nb_samples * |
|
(c->method == AV_RESAMPLE_DITHER_RECTANGULAR ? 1 : 2); |
|
unsigned int *noise_buf_ui; |
|
|
|
av_freep(&state->noise_buf); |
|
state->noise_buf_size = state->noise_buf_ptr = 0; |
|
|
|
state->noise_buf = av_malloc(buf_samples * sizeof(*state->noise_buf)); |
|
if (!state->noise_buf) |
|
return AVERROR(ENOMEM); |
|
state->noise_buf_size = FFALIGN(min_samples, 16); |
|
noise_buf_ui = (unsigned int *)state->noise_buf; |
|
|
|
av_lfg_init(&state->lfg, state->seed); |
|
for (i = 0; i < buf_samples; i++) |
|
noise_buf_ui[i] = av_lfg_get(&state->lfg); |
|
|
|
c->ddsp.dither_int_to_float(state->noise_buf, noise_buf_ui, nb_samples); |
|
|
|
if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_HP) |
|
dither_highpass_filter(state->noise_buf, nb_samples); |
|
|
|
return 0; |
|
} |
|
|
|
static void quantize_triangular_ns(DitherContext *c, DitherState *state, |
|
int16_t *dst, const float *src, |
|
int nb_samples) |
|
{ |
|
int i, j; |
|
float *dither = &state->noise_buf[state->noise_buf_ptr]; |
|
|
|
if (state->mute > c->mute_reset_threshold) |
|
memset(state->dither_a, 0, sizeof(state->dither_a)); |
|
|
|
for (i = 0; i < nb_samples; i++) { |
|
float err = 0; |
|
float sample = src[i] * S16_SCALE; |
|
|
|
for (j = 0; j < 4; j++) { |
|
err += c->ns_coef_b[j] * state->dither_b[j] - |
|
c->ns_coef_a[j] * state->dither_a[j]; |
|
} |
|
for (j = 3; j > 0; j--) { |
|
state->dither_a[j] = state->dither_a[j - 1]; |
|
state->dither_b[j] = state->dither_b[j - 1]; |
|
} |
|
state->dither_a[0] = err; |
|
sample -= err; |
|
|
|
if (state->mute > c->mute_dither_threshold) { |
|
dst[i] = av_clip_int16(lrintf(sample)); |
|
state->dither_b[0] = 0; |
|
} else { |
|
dst[i] = av_clip_int16(lrintf(sample + dither[i])); |
|
state->dither_b[0] = av_clipf(dst[i] - sample, -1.5f, 1.5f); |
|
} |
|
|
|
state->mute++; |
|
if (src[i]) |
|
state->mute = 0; |
|
} |
|
} |
|
|
|
static int convert_samples(DitherContext *c, int16_t **dst, float * const *src, |
|
int channels, int nb_samples) |
|
{ |
|
int ch, ret; |
|
int aligned_samples = FFALIGN(nb_samples, 16); |
|
|
|
for (ch = 0; ch < channels; ch++) { |
|
DitherState *state = &c->state[ch]; |
|
|
|
if (state->noise_buf_size < aligned_samples) { |
|
ret = generate_dither_noise(c, state, nb_samples); |
|
if (ret < 0) |
|
return ret; |
|
} else if (state->noise_buf_size - state->noise_buf_ptr < aligned_samples) { |
|
state->noise_buf_ptr = 0; |
|
} |
|
|
|
if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) { |
|
quantize_triangular_ns(c, state, dst[ch], src[ch], nb_samples); |
|
} else { |
|
c->quantize(dst[ch], src[ch], |
|
&state->noise_buf[state->noise_buf_ptr], |
|
FFALIGN(nb_samples, c->samples_align)); |
|
} |
|
|
|
state->noise_buf_ptr += aligned_samples; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
int ff_convert_dither(DitherContext *c, AudioData *dst, AudioData *src) |
|
{ |
|
int ret; |
|
AudioData *flt_data; |
|
|
|
/* output directly to dst if it is planar */ |
|
if (dst->sample_fmt == AV_SAMPLE_FMT_S16P) |
|
c->s16_data = dst; |
|
else { |
|
/* make sure s16_data is large enough for the output */ |
|
ret = ff_audio_data_realloc(c->s16_data, src->nb_samples); |
|
if (ret < 0) |
|
return ret; |
|
} |
|
|
|
if (src->sample_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) { |
|
/* make sure flt_data is large enough for the input */ |
|
ret = ff_audio_data_realloc(c->flt_data, src->nb_samples); |
|
if (ret < 0) |
|
return ret; |
|
flt_data = c->flt_data; |
|
} |
|
|
|
if (src->sample_fmt != AV_SAMPLE_FMT_FLTP) { |
|
/* convert input samples to fltp and scale to s16 range */ |
|
ret = ff_audio_convert(c->ac_in, flt_data, src); |
|
if (ret < 0) |
|
return ret; |
|
} else if (c->apply_map) { |
|
ret = ff_audio_data_copy(flt_data, src, c->ch_map_info); |
|
if (ret < 0) |
|
return ret; |
|
} else { |
|
flt_data = src; |
|
} |
|
|
|
/* check alignment and padding constraints */ |
|
if (c->method != AV_RESAMPLE_DITHER_TRIANGULAR_NS) { |
|
int ptr_align = FFMIN(flt_data->ptr_align, c->s16_data->ptr_align); |
|
int samples_align = FFMIN(flt_data->samples_align, c->s16_data->samples_align); |
|
int aligned_len = FFALIGN(src->nb_samples, c->ddsp.samples_align); |
|
|
|
if (!(ptr_align % c->ddsp.ptr_align) && samples_align >= aligned_len) { |
|
c->quantize = c->ddsp.quantize; |
|
c->samples_align = c->ddsp.samples_align; |
|
} else { |
|
c->quantize = quantize_c; |
|
c->samples_align = 1; |
|
} |
|
} |
|
|
|
ret = convert_samples(c, (int16_t **)c->s16_data->data, |
|
(float * const *)flt_data->data, src->channels, |
|
src->nb_samples); |
|
if (ret < 0) |
|
return ret; |
|
|
|
c->s16_data->nb_samples = src->nb_samples; |
|
|
|
/* interleave output to dst if needed */ |
|
if (dst->sample_fmt == AV_SAMPLE_FMT_S16) { |
|
ret = ff_audio_convert(c->ac_out, dst, c->s16_data); |
|
if (ret < 0) |
|
return ret; |
|
} else |
|
c->s16_data = NULL; |
|
|
|
return 0; |
|
} |
|
|
|
void ff_dither_free(DitherContext **cp) |
|
{ |
|
DitherContext *c = *cp; |
|
int ch; |
|
|
|
if (!c) |
|
return; |
|
ff_audio_data_free(&c->flt_data); |
|
ff_audio_data_free(&c->s16_data); |
|
ff_audio_convert_free(&c->ac_in); |
|
ff_audio_convert_free(&c->ac_out); |
|
for (ch = 0; ch < c->channels; ch++) |
|
av_free(c->state[ch].noise_buf); |
|
av_free(c->state); |
|
av_freep(cp); |
|
} |
|
|
|
static av_cold void dither_init(DitherDSPContext *ddsp, |
|
enum AVResampleDitherMethod method) |
|
{ |
|
ddsp->quantize = quantize_c; |
|
ddsp->ptr_align = 1; |
|
ddsp->samples_align = 1; |
|
|
|
if (method == AV_RESAMPLE_DITHER_RECTANGULAR) |
|
ddsp->dither_int_to_float = dither_int_to_float_rectangular_c; |
|
else |
|
ddsp->dither_int_to_float = dither_int_to_float_triangular_c; |
|
|
|
if (ARCH_X86) |
|
ff_dither_init_x86(ddsp, method); |
|
} |
|
|
|
DitherContext *ff_dither_alloc(AVAudioResampleContext *avr, |
|
enum AVSampleFormat out_fmt, |
|
enum AVSampleFormat in_fmt, |
|
int channels, int sample_rate, int apply_map) |
|
{ |
|
AVLFG seed_gen; |
|
DitherContext *c; |
|
int ch; |
|
|
|
if (av_get_packed_sample_fmt(out_fmt) != AV_SAMPLE_FMT_S16 || |
|
av_get_bytes_per_sample(in_fmt) <= 2) { |
|
av_log(avr, AV_LOG_ERROR, "dithering %s to %s is not supported\n", |
|
av_get_sample_fmt_name(in_fmt), av_get_sample_fmt_name(out_fmt)); |
|
return NULL; |
|
} |
|
|
|
c = av_mallocz(sizeof(*c)); |
|
if (!c) |
|
return NULL; |
|
|
|
c->apply_map = apply_map; |
|
if (apply_map) |
|
c->ch_map_info = &avr->ch_map_info; |
|
|
|
if (avr->dither_method == AV_RESAMPLE_DITHER_TRIANGULAR_NS && |
|
sample_rate != 48000 && sample_rate != 44100) { |
|
av_log(avr, AV_LOG_WARNING, "sample rate must be 48000 or 44100 Hz " |
|
"for triangular_ns dither. using triangular_hp instead.\n"); |
|
avr->dither_method = AV_RESAMPLE_DITHER_TRIANGULAR_HP; |
|
} |
|
c->method = avr->dither_method; |
|
dither_init(&c->ddsp, c->method); |
|
|
|
if (c->method == AV_RESAMPLE_DITHER_TRIANGULAR_NS) { |
|
if (sample_rate == 48000) { |
|
c->ns_coef_b = ns_48_coef_b; |
|
c->ns_coef_a = ns_48_coef_a; |
|
} else { |
|
c->ns_coef_b = ns_44_coef_b; |
|
c->ns_coef_a = ns_44_coef_a; |
|
} |
|
} |
|
|
|
/* Either s16 or s16p output format is allowed, but s16p is used |
|
internally, so we need to use a temp buffer and interleave if the output |
|
format is s16 */ |
|
if (out_fmt != AV_SAMPLE_FMT_S16P) { |
|
c->s16_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_S16P, |
|
"dither s16 buffer"); |
|
if (!c->s16_data) |
|
goto fail; |
|
|
|
c->ac_out = ff_audio_convert_alloc(avr, out_fmt, AV_SAMPLE_FMT_S16P, |
|
channels, sample_rate, 0); |
|
if (!c->ac_out) |
|
goto fail; |
|
} |
|
|
|
if (in_fmt != AV_SAMPLE_FMT_FLTP || c->apply_map) { |
|
c->flt_data = ff_audio_data_alloc(channels, 1024, AV_SAMPLE_FMT_FLTP, |
|
"dither flt buffer"); |
|
if (!c->flt_data) |
|
goto fail; |
|
} |
|
if (in_fmt != AV_SAMPLE_FMT_FLTP) { |
|
c->ac_in = ff_audio_convert_alloc(avr, AV_SAMPLE_FMT_FLTP, in_fmt, |
|
channels, sample_rate, c->apply_map); |
|
if (!c->ac_in) |
|
goto fail; |
|
} |
|
|
|
c->state = av_mallocz(channels * sizeof(*c->state)); |
|
if (!c->state) |
|
goto fail; |
|
c->channels = channels; |
|
|
|
/* calculate thresholds for turning off dithering during periods of |
|
silence to avoid replacing digital silence with quiet dither noise */ |
|
c->mute_dither_threshold = lrintf(sample_rate * MUTE_THRESHOLD_SEC); |
|
c->mute_reset_threshold = c->mute_dither_threshold * 4; |
|
|
|
/* initialize dither states */ |
|
av_lfg_init(&seed_gen, 0xC0FFEE); |
|
for (ch = 0; ch < channels; ch++) { |
|
DitherState *state = &c->state[ch]; |
|
state->mute = c->mute_reset_threshold + 1; |
|
state->seed = av_lfg_get(&seed_gen); |
|
generate_dither_noise(c, state, FFMAX(32768, sample_rate / 2)); |
|
} |
|
|
|
return c; |
|
|
|
fail: |
|
ff_dither_free(&c); |
|
return NULL; |
|
}
|
|
|